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Abstract—Open and anonymous nature of peer to peer net- Here,S; is the set of peers evaluating the service of peey
works provides an opportunity to malicious peers to behave s global trust of peey, andp, ¢ are suitably chosen constants.
unpredictably in the network. This leads the lack of trust Equatior 1 can be rearranged as follows (§ée [1]).

among the peers. To control the behavior of peers in the
1
e; T\ [ e;C.diag(t).t\ 7| """
eiCt eiCt

network, reputation system can be used. In a reputation sysim,
aggregation of trust is a primary issue. Algorithm for aggregation to—
;=
_1 . _a
€Tt ™= /e;C.diag(t).t | T+
eiCt eiCt
Here, t is global trust vector. I1tst" entry is a global trust

of trust should be designed such that, it can converge to a c&in
finite value. Absolute Trust is one of the algorithm, which isused
for the aggregation of trust in peer to peer networks. In this
of peeri. diag(t) is a diagonal matrix with itgi entry ast;
|. INTRODUCTION and other entry as zer@ is trust matrix with its elemerif;;
@; a local trust of peei evaluated by peer. T* is transpose
f

Index Terms—Non-negative matrix, Eigenvector, Matrix Norm.

EPUTATION systems have been proposed by ma
authors in the recent past [1], [5]. [6].![7].![8], to preven . : .
the attacks by rogue peers. Absolute Trist [1] is one su ) I-e. Cij = 1,th Ty >0 ?t,herW'seCij = 0. e is the row
model. This model can characterize the past behavior oSpeg?Ctor with its¢** entry as "1" and all the other entry as zero.
in the network. It can be implemented as a truly distributdd®€ = a/p.
system. In this model, peers evaluate each other locally, an
the local trust for each other is aggregated in the whold!l. ANALYSIS OF CONVERGENCE OFABSOLUTE TRUST

network. The aggregated trust is called global trust. Thbal A. Center Point of the Matrix

trust is eva_luatedl re_curs]ively. _ _ H iterat Definition 1. Center point of non-negative matrikt can be
In recursive solution of any equatlon,. eérrorin eac Iteratl defined as the column vecter Where, itsit" elementt; will
must reduce and for large number of iteration it should te (e; Tt /e;Ct)
1 1 .

to zero. This will guarantee the uniqueness of the solution.

was shown in[[1] that if error in global trust is less compare tDefinition 2. A non-negative matriM is said to be mutually
the actual solution, then it will converge to zero. But asay exclusive with a non-negative matriX, if M;; > 0 implies
for large error was not presented. In this letter, we will\ghoNs; = 0. It also implies that wherV,; > 0 then M;; = 0

that in any step, if error is very large compared to the actueémma 1. Center point of any non-negative, irreducible
solution then it will converge much faster in that step. matrix T* is unique and can be calculated by an iterative

Il. PEER TO PEER MODEL AND ABSOLUTE TRUST function

Let there beN peers in a peer to peer network. In_this th = ¢ (8 1) = [diag(dy, da....dy )] T 51
network, peeri can be evaluated by pegrbased on service
provided by peer in the past. Evaluated valug;; can be where d; = e;Ct
represented by a number from one to ten. One is for woistyof. ;
service and ten is for best service. If there is no interactio
between peersT;; will be zero.T}; is called local trust of g (eThtR) ?)
peer: evaluated by peej. All local trust values evaluated ' (eiC.tk1)
by various nodes can be aggregated in the whole network
Aggregated global trust of pegércan be given by ]1]

letter, we present the generalized analysis of convergena# the —
Absolute Trust algorithm.
matrix T. C is incidence matrix corresponding to matrix

th element of iterative function; (tk—1) is

Let t¥ andt¥~! are, far from actual solution, by §¢* and
5th=1 respectively, then

p q 1
to— Ejesi Tt Zjesi t? (CE=) "
e ies. ti + 6tk =
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From definitior1,(e; Tt /e;Ct) is i*" element of center point Proof. Iterative function can be written as
R ;
of matrix T*. So we can write, £ = M(k — 1).6<1

(1+ @I 8 B o
ti+ ot =t | ——Tt = =M(k —1)M(k - 2)...M(0).t
(1 + lveizc't ) eiC.diag(tk)

wherei" row of matrixM (k) is ( )- We can easily

eiC.tk

(1+ %) prove that for matriXM (k), sum of its each row is one. Hence
5ty = t. W -1 it has '1’ as an eigen value. The corresponding eigen vector
+=ace) will be e. For positive initial guess of?, all matricesM (k)
will be non-negative and irreducible. So we can concludé tha
stk — t; ;. Tt.otk—1 ;. C.5tk 1 spectral radius of alM(k) is '1’. Hence (see Lemma 2 in
P (1+ %) e, Ttt  e.C.t [11)
limg s oot = limy_ooM(k — 1).M(k — 2)...M(0).t° = e
_ 1 ' tiei,Tt B t;e;.C. .5tk71 limkj*}ootk _ ll‘mkﬂoodh(tkil) —e
(1+ elg,‘%) e;. Tt t e;.C.t .
= _ A; — B;| .otk ? . :
(1+ ei.c.actl;—l T e B. Properties of Center Point
e;.C.
Property 1. If center point of matrixXM is t then center point
= fi(5t% 1), [Ai _ Bi] Sek1 of matrix kM will be kt. Wherek is any arbitrary scalar.
Proof. Let ¢; is it" element oft then
where A; and B; are it row of NXN matricesA and B e M.t
respectively. It can be observed easily that t; = el.C.t
At=t or
et — e;. kM.t
and ' e.Ct
B.t=t. or
e;.(kM).(kt)
Matrices A, B have non zero elements at same position as (kti) = e;.C.(kt)
matrix T*t, henceA, B are also irreducible. Therefore spectrall1 it i ¢ int of matrigM 0
radius of A, B will be '1'(see[Z]). encent is center point of matri
Now 1 Property 2. If all entries of the NXN matrix M are
fi(otk—1) = T eca pqsiti_ve(]\/,fi:j > 0 Vi,j ) then_ center point will lie on the
(1+ W) principle eigen vector of matrix.
If stk << t then f;(0tk"1) ~ 1 Proof. If all the entry of matrixM are positive then
Hence,
otk = [A — B].otk! S ;
= ] eCt=Y t;=\ Vi

Limy,— 00 0t™ = limy_ 0o [A — B]*6t% = 0 j=1
: 0 i i ) Here )\ is a constant. Further,
(see Theorem 1 ir[1]) her&? is initial error int aMt M

k-1 . k-1 i t: = =
Now, for the case whefit >t then f; (6t~ 1) < 1, in = eCt 3

each stepgt? will decrease more rapidly. §t<~! ~ t then . _ _
fi(6t%=1) ~ 1/2, in this case eacht® will reduced to half HenceMt = \t. HenceA will be spectral radius and will

in k" step. be principle eigen vector of matrikI (se€e[2]) O

Hence we can conclude that center point of any non negroperty 3. If center point ofm non-negative, irreducible and
ative, irreducible matrix can be calculated by above iteeat y,tyally exclusive matricesM;, M,....M,, are same, then

function. Error in each step will depend upon the error intpagye center point of their sum will also be the same.

step. Error will reduce very fast, if it is far from actual stbn o ] _ )

in an step and after large iterations it will go to zero. [0 Proof. Let the incidence matrix corresponding to matri-
cesMi,Ms...M,, are Cq,C,....C,, respectively. Now if

Lemma 2. If vector t is the center point of matrix C.diag(t), M = M; + M, + ....M,, then incidence matrix correspond-
then center point will lie on the vector e. It can be calculated  ing to matrixM will be C = C; + Cs + ....Cy, because ma-
by iterative function tricesM;, Mz....M,, are mutually exclusive. Let" element
tk — ¢2(tk—1) _ [diag(dl,dg....dN)]_1.C.diag(tk‘1).tk‘1 of center point of matricedl;, M,....M,,, be t; then

. . ei.M;.t .
where e is a vector with each element as’1’ and d; = e;Ct. T e Ot Vj
i.C;.




or
t;ie;.Cj.t = e;.M;.t

taking summation on both side w.r.

Ztiei-cj-t = Zei.Mj.t
j=1 Jj=1
m m
tiei-(z Cj).t = ei.(z Mj).t
Jj=1 j=1
tiei.C.t = ei.M.t

or
e;. M.t

ei.C.t
hencet is also the center point of matrixI.

P =

C. Convergence of Absolute Trust for Large Error in Initial
Guess

We can write

S5t < 1 (eiTt.étk_l)
" T l4al| (eC.otk 1)
a | (eiC.diag(stk—1).5tk~1)
1+« (eiC.5tk*1)
5E% < 1 (565 4+ — o (st
“1+a l+a '’ '

Hereg, (.) andgs(.) are as defined in Lemnaa 1 and in Lemma
[2 respectively.

(07

1 ,
otk < 1+—O[1\/11.6t“*1 +1 M, .otk~t (3)

It is convex combination of iterative functiafy andgs,. i*"
(eiC.diag(étkfl))
(eiC.otx-1)
is one. Hencexo—norm of matrix My, is My = 1 using

the property of norm([3]

M. 065 oo < [Ma|oe. |66 Yoo = [6t5 Yoo (4)

(e

row of matrixM,, is { and sum of each row

It was stated in[[1] that global trust in equatibh 1 can beunction¢, is converging function toward center point. It is

calculated by iterative function
th = p(t* 1) = [diag(dy, da....dy ) TE.t* 1| =

(eiC,diag(tk71 ).tk ) “

whered; = =Ty

eiCtk*1
for the small error that is, if initial guess ofis very close to

the actual solution. However global trust can be calcul&ted

any positive initial guess. In this subsection we will shdatt

it will converge faster in any step if error is large compare

to t.
Let t* andt"~! are, far from actual solutiony by 4% and
5tk=1 respectively, then

T G (R )
| (eC(t + atk 1)
(e;C.diag(t + otk—1).(t + otk—1)) | 7
(eiC(t + otk—1))
If error dt<~'>t then we can approximate

t + ot¥1 ~ 5tk hence

5tk — (eiTtﬁtkl)] e

K2

(eiC.étk—l)

(e;C.diag(sth—1).0tk1) T
(eiC.étk—l)

Using Young'’s Inequality[[4], i.e.

cd < LCHO‘ + Ld(Ho‘)/a;
T 1+ 1+«
and taking :
(eTt.otk—1)] ™=
" | (esCot 1) ]
and

(e;C.diag(sth~1).otk1) rha
(eiC.étk—l)

] . Proof was derived only

shown in Lemmd11 that in any step, kK is very far from
the center point then it will tend toward the center pointyver
rapidly. Hence forstk—1 >t

o1 (5tk71) < otk

or ,
M, .6t5 71 < [0t% 7Y

yow taking oo-norm on both side of equatidn 3

()

1 / « /
Ot oo < |—— M, .0t + — M, .5t5 1
[0tFoo < |1 +a L 1 +a 2 |

1 ’ « ’
< |MOtR T+ —— Myt o
_1+a| 1 | +1+a| 2 |

Using equation 4 and) 5,

L et = [5tR o

1
|6t%] oo < —— [0tk +
14+«

1+«
Hence
|5tk|00 < |5tk*1|00

Therefore error in every step will decrease. In any stepijlit w
decrease faster t* is very far from actual solution. Speed of
convergence depends upon theFor lower«, impact of ¢,
will be lower and¢; will dominate the speed of convergence.
Hence for smallerx speed of convergence will be high.

IV. NUMERICAL RESULTS

In order to verify what has been discussed in earlier segtion
we have taken the values of the trust maffixas

O oo O
= O O Ot
O O ot
(el \ORNG; S

The value of center point and the global trust in each iterati
is calculated and shown in Talile[] [IJICV ahd V.



Table I: Center point in each iteration, when initial guess iTable Ill; Global trust in each iteration, when initial gses

close to center point

3 1 2 3 4
t0 1.0000 2.0000 3.0000 4.0000
t! 6.2000 4.8750 5.3333 3.6667
t2 6.4327 5.1096 5.5598 4.4027
t3 6.4367 5.0706 5.5573 4.4008
t% 6.4313 5.0705 5.5594 4.4002
to 6.4310 5.0707 5.5592 4.3994
t® 6.4311 5.0708 5.5591 4.3994
t7 6.4311 5.0708 5.5591 4.3994

Table 1I: Center point in each iteration, when initial guéss
very far from center point

7 1 2 3 4
t0 100.0000| 300.0000| 200.0000| 100.0000
tT 6.8000 5.2500 5.2500 4.1667
t2 6.5000 5.0668 5.5643 4.4827
t3 6.4298 5.0654 5.5620 4.4050
t2 6.4299 5.0706 5.5593 4.3987
t° 6.4310 5.0708 5.5591 4.3993
t® 6.4311 5.0708 5.5591 4.3994
t7 6.4311 5.0708 5.5591 4.3994

A. Convergence of the Center Point

The convergence of center point of mati¥ is shown in
Tablel andll. In Tabl€ll initial guest® =[1 2 3 4], it is close
to the center point and in Takld Il initial gues® =[100 300
200 100}, which is significantly far from center point. But
we can see in both the cases that it will converge in sev
iterations . In the latter case, error is very large0ift step

and it becomes less thenwith in one step. 3]
[4]
B. Convergence of the Global Trust 5

Impact of initial guess and parameteron the convergence
of global trust is shown in Table]I[ IV arid]V. In Tadlellll and
V] « is taken as 1/3 but initial guess is different. Again w
can see that for large initial guess of global trust it takely o
one more iteration to converge to final value. It converge ve[r7]
fast when erroit) is very large compare to global trust(

In Table[Il and[V initial guess is taken same hutis
different and we can see that fer= 1/6 it converges only (8]
in eight iterations.

V. CONCLUSION

close to global trustq{ = 1/3)

3 1 2 3 4
t0 1.0000 2.0000 3.0000 4.0000
t! 4.9893 4.4051 3.9876 3.2749
t2 5.8801 4.8299 5.3148 4.4838
t3 6.0621 5.1110 5.5131 4.6039
t% 6.1418 5.1543 5.5636 4.6490
to 6.1550 5.1683 5.5802 4.6631
t® 6.1593 5.1717 5.5834 4.6657
t7 6.1603 5.1725 5.5844 4.6665
t8 6.1605 5.1727 5.5846 4.6667
t9 6.1606 5.1728 5.5847 4.6667
t10 6.1606 5.1728 5.5847 4.6667

Table IV: Global trust in each iteration, when initial guass
very far from global trust¢ = 1/3)

3 1 2 3 4
t0 100.0000 | 300.0000| 200.0000| 100.0000
t! 16.9093 | 12.1379 | 13.7913 | 11.3982
t2 7.6469 6.5685 7.1369 5.9630
t3 6.5419 5.4824 5.9029 4.9291
t% 6.2499 5.2477 5.6685 4.7377
t° 6.1829 5.1918 5.6048 4.6834
8 6.1662 5.1775 5.5897 4.6710
t7 6.1620 5.1740 5.5859 4.6678
t8 6.1610 5.1731 5.5850 4.6670
t9 6.1607 5.1729 5.5847 4.6668
t10 6.1606 5.1728 5.5847 4.6667
t1T 6.1606 5.1728 5.5847 4.6667
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Table V: Global trust in each iteration for lesser valueogf
In this letter, we analyzed the convergence of global trust— 1/6)

given by equatiofi]l1. We have shown that in recursive calcula-
tion of global trust, error will decrease even if initial gseis
very far from the actual solution. In any step, convergence
is faster if error is larger. We have shown that speed of
convergence depends upon the valuenofFor smallera it

will converge more faster.
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