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On the Message Dimensions of
Vector Linearly Solvable Networks

Niladri Das and Brijesh Kumar Rai

Abstract

It is known that there exists a network which does not have a scalar linear solution over any finite field but has a vector
linear solution when message dimension is2 [3]. It is not known whether this result can be generalized for an arbitrary message
dimension. In this paper, we show that there exists a networkwhich admits anm dimensional vector linear solution, wherem
is a positive integer greater than or equal to2, but does not have a vector linear solution over any finite field when the message
dimension is less thanm.

I. I NTRODUCTION

Network coding - which emerged as an improvement over routing - has been an intense area of research since its inception
in the year 2000 [1]. It was shown in [1] that for the multicastnetworks, the min-cut bound can be achieved using network
coding. Moreover, scalar linear network coding over a sufficiently large finite field was shown to be sufficient to achieve the
capacity of a multicast network [2]. However, for the non-multicast networks, Médardet al. [3] presented an instance of a
network coding problem which does not admit a scalar linear solution over any finite field but has a2 dimensional vector linear
solution over every finite field. This network is known as the M-network in the literature. It is a natural question whether, for
any positive integerm ≥ 2, there exists a network which admits anm dimensional vector linear solution but has no vector
linear solution over any finite field when message dimension is less thanm. In this paper, we show that indeed there exists
such a network.

The prior works related to the problem addressed in this paper are as follows. [4], [5] studied the effect of message dimension
on vector linear solvability. In [4], a network was presented which has anm dimensional vector linear solution overF2 for an
arbitrary positivem, but does not have anm dimensional vector linear solution overFq for oddq and anym. In [5], a multicast
network was presented which has a vector linear solution over F2 for message dimension4 but not for message dimension5.
In [6], it was shown that the notion of scalar linear solvability of networks can be captured by matroids. Specifically, itwas
shown that a network is scalar linearly solvable only if it isa matroidal network associated with a representable matroid over a
finite field. The converse of this result was proved in [7]. [8]generalized the results of [6], [7] for the vector linearly solvable
networks and showed that the existence of anm dimensional vector linear network code solution implies the existence of a
discrete polymatroid with certain properties and vice versa. To show that for any positive integerm ≥ 2, there exists a network
which has anm dimensional vector linear solution but has no vector linearsolution for a message dimension less thanm,
either one has to give construction of such a network, or equivalently, one can construct a discrete polymatroid such that it
is representable if the rank of its every element is allowed to be less than or equal tom, but not representable if the rank of
its every element is strictly lesser thanm [8]. To the best of our knowledge, neither such a network has been presented in
the literature nor it has been shown that for every integerm ≥ 2, there do not exist such networks; likewise in the area of
matroid theory, no discrete polymatroid having the above mentioned property has been reported nor it has been shown that
such a discrete polymatroid does not exist.

The organization of the rest of the paper is as follows. In Section II, we present the formal definitions related to network
coding. In Section III, we present the main result of the paper. Section IV is devoted to the proof of the main theorem of the
paper. We conclude the paper in Section V.

II. PRELIMINARIES

The networks considered in this paper are directed acyclic networks. A directed acyclic network can be modelled by a
directed acyclic graphG = (V,E), whereV is the set of nodes andE ⊆ V × V is the set of edges. For an edgee = (u, v),
u is denoted bytail(e) andv is denoted byhead(e). For a nodev, the set of edges{(x, v)|x ∈ V } is denoted byIn(v). A
set of nodes, denoted byS ⊂ V , will be called as sources and a set of nodes, denoted byT ⊂ V , will be called as terminals.
Without loss of generality (w.l.o.g), we assume that a source does not have any incoming edge and a terminal does not have
any outgoing edge. Associated with every source, there is ani.i.d. random process which is uniformly distributed over afinite
field Fq. Each source process is independent of all other source processes. The source process associated with a sourcesi ∈ S

is indicated byXi, and the message carried over an edgee is indicated byYe. Each terminal demands a subset of source
processes. All the edges in the network are assumed to be unitcapacity edges. An(n, n) vector linear network code over
a finite field Fq can be described in terms of the message passing through every edge and the decoding function at every
terminal. For an edgee, when tail(e) = si ∈ S, Ye = A{si,e}Xi, whereXi, Ye ∈ F

n
q , andA{si,e} ∈ F

n×n
q . When tail(e)
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Fig. 1. A communication networkN , which we name as “generalized M-network”, which is vector linearly solvable only when the message dimension is
positive integer multiple ofm

is an intermediate node (a node other than a source or a terminal), Ye =
∑

e′∈In(tail(e)) A{e′,e}Ye′ , whereYe, Ye′ ∈ F
n
q and

A{e′,e} ∈ F
n×n
q . And for a terminal nodeti, Yti =

∑

e′∈In(t) A{e′,ti}Ye′ , whereYe′ , Yti ∈ F
n
q , andA{e′,ti} ∈ F

n×n
q .

A (1, 1) vector linear code is referred as a scalar linear code. In an(n, n) vector linear code,n is said to be the message
dimension. An(n, n) vector linear code is termed as ann dimensional vector linear code. A network is said to have an(n, n)
vector linear solution if there exists an(n, n) vector linear code for the network which enables all the terminals in the network
to receiven source symbols (inn uses of every edge) from each of their respective demanded sources. If a network has ann
dimensional vector linear solution then it is said to be vector linearly solvable (forn = 1, scalar linearly solvable).

III. M AIN RESULT

In Fig. 1, we present a networkN which has a vector linear solution inm ≥ 2 message dimension but has no vector linear
solution if the message dimension is less thanm. N hasm2 sources andmm terminals. The sources are partitioned intom

sets. Thej th source in theith set is denoted bysij . The sourcesij generates the messageXij . Below we list the edges in the
network:

1) An edge(sij ,ui) for 1 ≤ i, j ≤ m

2) An edgeeii = (ui, vi) and an edgeeij = (ui, vj) for 1 ≤ i ≤ m andm+ 1 ≤ j ≤ 2m− 1
3) An edge(vi,tj) for 1 ≤ i ≤ 2m− 1 and1 ≤ j ≤ mm

The message transmitted over the edge(sij ,ui) is denoted byXij . The message transmitted over the edgeeij is denoted by
Yij . The message transmitted over the edge(vi, tj) is denoted byZij for m+1 ≤ i ≤ 2m−1 and1 ≤ j ≤ mm. Each terminal
demands a unique tuple ofm source messages where theith element of the tuple isXij for any j in the range:1 ≤ j ≤ m.
W.l.o.g, we assume thatt1 demands the source messages:(X11, X21, . . . , Xm1).

We note that form = 2, N is the M-network. Therefore, the presented networkN is a generalisation of the M-network.

Theorem 1. For an arbitrary finite fieldFq, the networkN has ad dimensional vector linear solution overFq if and only if
d is a multiple ofm.

As a consequence, we have the following corollary.

Corollary 2. The networkN is not vector linearly solvable for any message dimension less thanm, but has anm dimensional
vector linear solution.

Remark 1. It was shown in [6] that the M-network does not have an odd dimensional vector linear solution. This result is a
special case of Theorem 1 for the casem = 2.
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IV. PROOF OFTHEOREM 1

Our proof of Theorem 1 relies on a result related to discrete polymatroids [8]. Therefore to make the proof accessible, in
the following, the definitions of discrete polymatroid, representable discrete polymatroid and discrete plolymatroidal network
are given [8]–[10]. The definitions are borrowed from [8]. Wefirst fix some notations. LetN = {1, 2, . . . n}. The set of all
non-negative integers are denoted byZ≥0 and the set of positive integers are denoted byZ>0. The notationZn

≥0 indicates the
set of alln length vector whose elements are inZ≥0. For ann length vectorv, andA ⊆ N , v(A) is the vector having only
the components indexed by the elements ofA, and |v(A)| is the sum of the components ofv(A).

Definition 1. Let ρ be a function that maps2N into Z≥0 and satisfies the following three conditions:
(1) ρ(∅) = 0.
(2) If X ⊆ Y ⊆ N thenρ(X) ≤ ρ(Y ).
(3) If X,Y ⊆ N , thenρ(X ∪ Y ) + ρ(X ∩ Y ) ≤ ρ(X) + ρ(Y ).
Let D be the collection of all elementsv ∈ Z

n
≥0 such that|v(A)| ≤ ρ(A) for ∀A ⊆ N . ThenD is a discrete polymatroid

having rank functionρ and ground setN .

A discrete polymatroidD hasρmax = d if ρ follows this additional rule: for∀A ⊆ N , ρ(A) ≤ d|A|.
By settingρmax = 1, one can completely describe a matroid with a discrete polymatroid [8]. So the discrete polymatroids

can be viewed as the generalized version of matroids. Conditions (1)-(3) are known as thepolymatroidal axioms. It is known
that if the entropy functionH( ), in a Shannon-type inequality, is replaced by a function that obeys the polymatroidal axioms
then the inequality still remains valid [6]. We will use thisfact in our proof.

Definition 2. A discrete polymatroidD with rank functionρ and ground setN , is said to be representable overFq if there
exist vector subspacesV1, V2, . . . , Vn of a vector spaceV over Fq such thatdim(

∑

i∈X Vi) = ρ(X) for ∀X ⊆ N . The set
of vector spacesVi, i ∈ N is said to form a representation ofD. A discrete polymatroid is said to be representable if it is
representable for some field.

Let ǫin be ann length vector whoseith component is one and all other components are zero. Considera network in which
the set of source messages, the set of nodes and the set of messages carried over by the edges are denoted byµ, V and δ

respectively. For a non-source nodev ∈ V , let I(v) be the set of messages carried by the edges inIn(v). Whenv is a source,
let I(v) denote the message generated atv. Also, letO(v) be the set of messages carried by the edges inOut(v). Let D be a
discrete polymatroid with ground setN and the rank functionρ whereρmax = d.

Definition 3. A network is a discrete polymatroidal network associated with D if there exists a functionf : µ ∪ δ → N such
that the following conditions are satisfied:
(1) f is one-to-one onµ.
(2)

∑

i∈f(µ) dǫin ∈ D.
(3) ρ(f(I(x))) = ρ(f(I(x) ∪O(x))), ∀x ∈ V .

Note that if a network is matroidal (defined in [6]) then it is also discrete polymatroidal forρmax = 1. The following
theorem is reproduction ofTheorem 1from [8].

Theorem 3. A network has ak dimensional vector linear solution overFq if and only if it is discrete polymatroidal with
respect to a discrete polymatroidD representable overFq with ρmax = k.

Proof of Theorem 1:The proof is similar to that used in [6] to show that the M-network is not matroidal. Say the function
f maps the networkN to a discrete polymatroidD conforming to the rules of mapping presented in Definition 3.Also let
g = ρ ◦ f whereρ is the rank function ofD. Assumeρmax = d. Our proof depends on the following two sets of inequalities.
Set I:

g(Y11, X1j1) + g(Y22, X2j2) + · · ·+ g(Ymm, Xmjm) ≤ (2m− 1)d for ji ∈ {1, 2, . . . ,m}, 1 ≤ i ≤ m (1)

Set II:
g(Yii, Xi1) + g(Yii, Xi2) + · · ·+ g(Yii, Xim) ≥ (2m− 1)d for 1 ≤ i ≤ m (2)

Claim 1. The inequalities in Set I hold true.

Proof: We give the proof forji = 1, for 1 ≤ i ≤ m. The rest of the inequalities can be proved in a similar way. To prove
our claim we use the following fact about the entropy function: for any set of random variablesAj , 1 ≤ j ≤ k,

H(A1) +H(A2) + · · ·+H(Ak) = H(A1, A2, . . . , Ak) iff H(Ai|A1, A2, . . . , Ai−1) = H(Ai) for 2 ≤ i ≤ k (3)

Now in N1, H(Y22, X21|Y11, X11) = H(Y22, X21).
Similarly, for 1 ≤ i, j, l, k ≤ m, H(Yii, Xij | ∪k 6=i Ykk,∪k 6=iXkl) = H(Yii, Xij). Therefore,

H(Y11, X11) +H(Y22, X21) + · · ·+H(Ymm, Xm1) = H(Y11, X11, Y22, X21, . . . , Ymm, Xm1) (4)
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Sinceg obeys polymatroid axioms, it also obeys (4) ifH is replaced byg. Thus,

g(Y11, X11) + g(Y22, X21) + · · ·+ g(Ymm, Xm1)

= g(Y11, X11, Y22, X21, . . . , Ymm, Xm1)

≤ g(Y11, X11, Y22, X21, . . . , Ymm, Xm1, Z(m+1,1), Z(m+2,1), . . . , Z(2m−1,1))

= g(Y11, Y22, . . . , Ymm, Z(m+1,1), . . . , Z(2m−1,1)) (5)

≤ (2m− 1)d (6)

The equation (5) is true because the terminalt1 computes(X11, X21, . . . , Xm1) from the messages{Y11, Y22, . . . , Ymm,

Z(m+1,1), Z(m+2,1), . . . , Z(2m−1,1)}. Equation (6) is true because each element can have rank maximum of d and there are
(2m− 1) elements. This concludes the proof of Claim 1.

Claim 2. The inequalities in Set II hold true.

Proof: We will give the proof of the inequality fori = 1. The rest can be proved similarly. First we show thatg(Yii) =
g(Yij) = d for 1 ≤ i ≤ m,m+ 1 ≤ j ≤ 2m− 1. Since all source messages are independent,

m2d = g(X11, X12, . . . , Xmm)

≤ g(X11, . . . , Xmm, Y11, . . . , Ymm, Y1(m+1), . . . , Ym(2m−1))

= g(Y11, Y22, . . . , Ymm, Y1(m+1), Y1(m+2), . . . , Ym(2m−1)) (7)

≤ g(Y11) + g(Y22) + · · ·+ g(Ymm) + g(Y1(m+1)) + g(Y1(m+2)) + · · ·+ g(Ym(2m−1))

≤ md+m(m− 1)d = m2d

Equality in (7) follows because every symbol is demanded by some terminal. Hence,

g(Y11) + g(Y22) + · · ·+ g(Ymm) + g(Y1(m+1)) + g(Y1(m+2)) + · · ·+ g(Ym(2m−1)) = m2d (8)

Since, there arem2 terms and each term can take a maximum value ofd, g(Yii) = g(Yij) = d for 1 ≤ i ≤ m and
m+ 1 ≤ j ≤ 2m− 1. Now we prove the inequality:

g(Y11, X11) + g(Y11, X12) + · · ·+ g(Y11, X1m)

≥ g(Y11, X11, X12) + g(Y11) + · · ·+ g(Y11, X1m)

≥ g(Y11, X11, X12, X13) + 2g(Y11) + · · ·+ g(Y11, X1m)

: : :

≥ g(Y11, X11, X12, . . . , X1m) + (m− 1)g(Y11)

= md+ (m− 1)d = (2m− 1)d

Here we have used condition (3) from definition 1 repeatedly.This concludes the proof of Claim 2.
We prove the theorem by finding a constraint on the rank function using the inequalities in Set I and Set II. We show that

g(Yii, Xij) =
(2m−1)d

m
for 1 ≤ i, j ≤ m. We will give the proof only forg(Ymm, Xm1) =

(2m−1)d
m

. The rest can be proved
similarly. To prove thatg(Ymm, Xm1) =

(2m−1)d
m

, we consider an inequality from Set I which hasg(Ymm, Xm1) on the left
hand side. We then eliminate (one by one) all the rest terms exceptg(Ymm, Xm1) from left hand side using other inequalities
from the Set I and inequalities from Set II. Consider the inequality:

g(Y11, X11)+g(Y22, X21)+ · · ·+g(Ymm, Xm1) ≤ (2m− 1)d

(9)

Now consider all other inequalities from Set I which differ only at the first term than the above inequality. There are exactly
m− 1 such inequalities. These inequalities are written below:

g(Y11, X12)+g(Y22, X21)+ · · ·+g(Ymm, Xm1) ≤ (2m− 1)d

g(Y11, X13)+g(Y22, X21)+ · · ·+g(Ymm, Xm1) ≤ (2m− 1)d

: : :

g(Y11, X1m)+g(Y22, X21)+ · · ·+g(Ymm, Xm1)≤(2m− 1)d

Summing up all of the abovem− 1 inequalities and the inequality in the equation (9), we get:

g(Y11, X11) + g(Y11, X12) + · · ·+ g(Y11, X1m) +m
{

g(Y22, X21) + · · ·+ g(Ymm, Xm1)
}

≤ m(2m− 1)d
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From Set II, we know thatg(Y11, X11)+g(Y11, X12)+ · · ·+g(Y11, X1m) ≥ (2m−1)d. Substituting this in the above equation
we get:

m
{

g(Y22, X21) + g(Y33, X31) + · · ·+ g(Ymm, Xm1)
}

≤ m(2m− 1)d− (2m− 1)d (10)

Note that the termg(Y11, X11) has been eliminated in the equation (9). In the similar manner as above, we can show that

m
{

g(Y22, X2j) + g(Y33, X31) + · · ·+ g(Ymm, Xm1)
}

≤ m(2m− 1)d− (2m− 1)d for 2 ≤ j ≤ m (11)

Summing up the abovem− 1 inequalities and the inequality in the equation (10), we get:

mg(Y22, X21) +mg(Y22, X22) + · · ·+mg(Y22, X2m) +m2
g(Y33, X31) + · · ·+m2

g(Ymm, Xm1)

≤ m2(2m− 1)d−m(2m− 1)d (12)

From Set II, we haveg(Y22, X21)+ g(Y22, X22)+ · · ·+ g(Y11, X2m) ≥ (2m− 1)d. Using this inequality in the equation (12),
we have:

m2
g(Y33, X31) + · · ·+m2

g(Ymm, Xm1) ≤ m2(2m− 1)d− 2m(2m− 1)d (13)

Note that, in the above inequality, the termg(Y22, X21) from the equation (10) has been eliminated and thereby the terms
g(Y11, X11) andg(Y22, X21) from the equation (9) have been eliminated. In this way, eliminating term after term from the
left hand side of the equation (9), we get

mm−1
g(Ymm, Xm1) ≤ mm−1(2m− 1)d− (m− 1)mm−2(2m− 1)d (14)

And hence, g(Ymm, Xm1) ≤
(2m− 1)d

m
(15)

Similarly it can be shown that

g(Ymm, Xmj) ≤
(2m− 1)d

m
for 2 ≤ j ≤ m (16)

From Set II, we have thatg(Ymm, Xm1) + g(Ymm, Xm2) + · · ·+ g(Ymm, Xmm) ≥ (2m− 1)d. Hence, it must be that

g(Ymm, Xm1) =
(2m− 1)d

m
(17)

Note thatgcd(2m− 1,m) = 1. Also, by definition, the rank function is integer valued. Therefore, forg(Yii, Xij) to be a
positive integer,d has to be a positive integer multiple ofm. Thus, by Theorem 3, forN to be vector linearly solvable, it is
necessary that the message dimension is a positive integer multiple of m.

Now we describe a coding scheme for the network achieving anm dimensional vector linear solution. In fact, our coding
scheme is a routing scheme. Let thekth symbol of the sourcesij is denoted byXijk where 1 ≤ k ≤ m. The edgeeii
for 1 ≤ i ≤ m carries the followingm length vector:[Xi11, Xi21, . . . , Xim1]. And the edgeeij for 1 ≤ i ≤ m and
m+1 ≤ j ≤ 2m−1, carries the vector[Xi1(j−m+1), Xi2(j−m+1), . . . , Xim(j−m+1)]. Now, for any terminal it can be seen that
the demands can be satisfied just by routing the required symbols from vi for 1 ≤ i ≤ 2m− 1 to the terminals. For example,
the demands of the terminalt1 is met in the following way: the terminalt1 getsXi11 from the message coming from(vi, t1)
for 1 ≤ i ≤ m; and [X11(j+1), X21(j+1), . . . , Xm1(j+1)] for 1 ≤ j ≤ m− 1 from the edge(vm+j , t1). �

V. CONCLUSION

In this paper, we have shown that for any integerm ≥ 2, there exists a network which has am dimensional vector
linear solution, but has no vector linear solution when message dimension is less thanm. Our future research objective is to
investigate the necessary and sufficient conditions for a network to have a 2-dimensional vector linear solution, but noscalar
linear solution.
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