
1089-7798 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LCOMM.2016.2598803, IEEE
Communications Letters

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract—In short range optical networks channel errors

occur due to energy losses. Upon transmission, they mostly
manifest themselves as spotty byte asymmetric errors. In this
paper we present a class of codes that can correct these errors.
The presented codes use integer and lookup table operations,
which makes them suitable for software implementation. In
addition, if needed, the proposed codes can be interleaved
without delay and without using any additional hardware.

Index Terms—Integer codes, error correction, asymmetric

errors, look-up table.

I. INTRODUCTION
N wireless networks it is impossible to predict the polarity
of channel errors. Also, due to the presence of EMI/RFI, it
is hard to draw any general conclusion regarding the error

behavior: in some case random errors dominate, while in other
cases burst errors are the rule rather than the exception. In
optical networks without optical amplifiers (e.g. local and
access networks) the situation is quite different. First, in these
networks the number of received photons never exceeds the
number of transmitted ones. Hence, upon transmission only
1 → 0 transitions can occur [1]. Second, due to immunity to
EMI/RFI, channel errors affect only small number of bits. This
phenomenon was first reported in [2], and then confirmed by
many other experiments [3], [4]. In all these studies it was
shown that 96.9% to 99.9% of all errors are t-bit errors (t ≤ 3)
confined to one or two adjacent bytes.

Despite these facts, the codes correcting asymmetric errors
(1 → 0 errors) are mainly designed for use in non-networked
environments (see [5], [6] and references therein). A notable
exception are Bose-Al-Bassam codes [7] that can correct all
asymmetric errors confined to a b-bit byte. This capability is
achieved by using two checksums: one, which is obtained by
XORing all data bytes, and other, which incorporates the
information about the number of 1’s within each data byte.
Although this solution resembles the Fletcher’s algorithm [8],
it includes operations at the bit level. Hence, it cannot be
efficiently implemented on general purpose hardware. On the
other hand, in local and access networks this type of
implementation is highly preferred, since the network nodes
(PCs, servers, routers, switches, OLU/OTN units, etc.) already
possess high computing power [9], [10].

The authors are with the Institute of Technical Sciences of the Serbian

Academy of Sciences and Arts, 11000 Belgrade, Serbia (e-mail:
sasa_radonjic@yahoo.com; vujicicv@yahoo.com).

Motivated by this, in this paper we present a new class of
integer codes. The most attractive feature of these codes is the
ability to encode/decode using 3k operations per codeword,
where k denotes the number of data bytes. Besides this, the
proposed codes use simple method to correct spotty byte
asymmetric errors. In essence, it is about search-and-compare
strategy, where the non-zero syndrome is compared with table
entries. As will be seen, this solution is similar to routing [9],
and thus highly suitable for software implementation.

II. CODES CONSTRUCTION

A. Encoding and Decoding Procedures
Let

2 1bZ
−

= {0, 1,…, 2b - 2} be the ring of integers modulo

2b - 1, and let us suppose that the data are divided into k b-bit
bytes (Fig. 1). In addition, let Ci and Ck+1 be integers such that

{ }0,1∈ 2 -1biC Z \ and Ck+1 = - 1.

As in [11], the check-byte CB is computed using

B 1 1
1

[] (mod 2 1) (mod 2 1)
=

= ⋅ + + ⋅ − = ⋅ −∑

k
b b

k k i i
i

C C B C B C B (1)

At the receiver, the decoder will perform the same calculation

ˆ 1 1B
1

ˆ ˆ ˆ[] (mod 2 1) (mod 2 1)
=

= ⋅ + + ⋅ − = ⋅ −∑

k
b b

k k i i
i

C C B C B C B (2)

after which the syndrome S will be formed
= − −ˆ BB

ˆ[] (mod 2 1)bS C C (3)
Obviously, when S ≠ 0, the codeword is corrupted by noise.

B. Necessary and Sufficient Conditions
Definition 1. An error is called a spotty byte asymmetric

error or t/b asymmetric error if t or fewer bits within a b-bit
byte are in a 1 → 0 error, where 1 ≤ t < b.

Definition 2. Let em ={ }2 2 m1 + + xx be a positive integer,
where 0 ≤ x1 < < xm < b and 1 ≤ m ≤ t. Then, the set of
syndromes corresponding to t/b asymmetric errors is defined
as

() ()
1

: 1mε
  = − ⋅ − ≤ < 
  


+1

1

mod 2 1
t k

b
i

m= i=

C e t b (4)

With these definitions we can prove the following theorem.

Aleksandar Radonjic and Vladimir Vujicic

Integer Codes Correcting Spotty Byte Asymmetric
Errors

I

 Fig. 1. The codeword structure of the proposed codes.

1089-7798 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LCOMM.2016.2598803, IEEE
Communications Letters

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

Theorem 1. The codes defined by (1)-(4) can correct all t/b
asymmetric errors if and only if there exist k mutually different
coefficients { }2 -1

0, 1∈ biC Z \ such that

1)
b

ε k +
m

 
⋅  

 
∑

=1
= (

t

m

where ε denotes the cardinality of ε.
Proof. From (4) it is clear that the set ε can be expressed as

ε = 
1

1

k+

i
i=

X

where

() ()

() ()

() ()

1 1
1

1

1
1

: 1

: 1

: 1

m

k k m

k+ m

  = − ⋅ − ≤ < 
  

  = − ⋅ − ≤ < 
  

  = − ≤ < 
  









mod 2 1

mod 2 1

mod 2 1

t
b

m=

t
b

m=

t
b

m=

X C e t b

X C e t b

X e t b

Obviously, if the coefficients Ci are chosen in such a way that
each one multiplied (modulo 2b - 1) by each em yields a
different result it is clear that

1 +1

1 +1 .
k k

k k

= ∅

= = =

 



X X X
X X X

In that case, the set ε will have

1 +1 +11) 1)k k k

b
ε k + k +

m
 

+ + + ⋅ ⋅  
 

∑
=1

= = (= (
t

m
X X X X

nonzero elements. □
In order to illustrate the applicability of Theorem 1, we show
results of a computer-search for some codes with parameters
t ≤ 3 (Tables 1 and 2).

C. Error Control Procedure
As mentioned, the key idea behind the proposed codes is to

exploit high computing power of the network nodes. Such an
approach drastically reduces implementation costs, since it
does not require a dedicated hardware (the encoding/decoding
circuits) as in the case of classical codes. Given this, let us
suppose that the encoder and decoder are multicore processors
(MPs) [9], [10]. In addition, let us assume that the decoder
uses a lookup table (LUT2) size of 2ε  × ⋅    2+ (+ 1)b log k
bits. Unlike the LUT1, which stores the coefficients Ci, this
table is generated using (4). Its aim is to describe the
relationship between the nonzero syndrome (element of the set
ε), error location (i) and error vector (e) (Fig. 2).

Bearing this in mind, it is easy to see that the main task of the
decoder is to find the entry where the first b bits match that of
the syndrome S. For that purpose, the decoder must perform a
series of table lookups (similar to routing [9]). In the end, after
nTL table lookups, the decoder will declare failure (S∉ε) or
execute one of the following operations (S∈ε):
• for t/b asymmetric errors within the i-th data byte

ˆ[] 1

[] 1m

= + − ≤ ≤

= − ≤ ≤ ≤

(mod 2 1), ;
(mod 2 1), – 1;

b
i i

b

B B e i k
e e m t b

 (5)

• for t/b asymmetric errors within the check-byte

m

= + −

= − ≤ ≤ ≤
B B

ˆ[] (mod 2 1);

[] (mod 2 1), 1 – 1;

b

b

C C e

e e m t b
 (6)

Although the procedure described above is very simple, it is
clear that its efficiency depends on the number of table
lookups. For this reason it is very important that the elements
of ε are sorted in increasing order. In that case it is possible to
use binary search algorithm, which requires nTL table lookups
(1 ≤ nTL ≤ 2 2)log + ε [12].

Example 1. Let b = 8, m = 2, k = 1 and C1 = 2. According
to Theorem 1, the LUT2 will have |ε| = 72 entries. Given this,
suppose that we want to transmit 8 bits of data, D = 10010011.
In that case, after calculating the value of the check-byte CB

2 147 255 = 39= ⋅ − = ⋅B 1 1[] (mod 2 1) [] (mod)bC C B
the codeword CW = 10010011 00100111 will have 16 bits.
Now, let us analyze the following scenarios.

Case 1: Suppose that during data transmission an error on
the 4th and 7th bit has occurred (ĈW = 10000001 00100111). In
that case, the decoder will calculate

2 129 255 = 3

3 39 255 219

= ⋅ − = ⋅

= − − = − =

ˆ 1 1B

ˆ BB

ˆ[] (mod 2 1) [] (mod)
ˆ[] (mod 2 1) [] (mod)

b

b

C C B

S C C

and check whether the value S = 219 belongs to the set ε
(Table 3). After completing this task, it will perform error
correction by using:

b
1 1

ˆ[] 2 1 [129 18] 255 147.= + − +(mod) = (mod) =B B e

 Fig. 2. Bit-width of one LUT2 entry.

TABLE II
COEFFICIENTS FOR CODES WITH PARAMETERS T = 3, B ≤ 32 AND K ≤ 64.

b = 16
2 15 71 89 143 179 377 593

1379 1499 2441 2477 2877 3467

b = 24
2 15 31 71 83 89 139 141

157 167 173 189 203 269 277 281
303 305 331 339 429 475 543 573
583 895 921 1065 1115

b = 32
2 15 31 71 83 89 101 119

127 139 141 143 149 157 163 167
173 177 179 181 189 191 199 203
211 223 227 229 233 239 251 253
263 269 271 277 281 283 305 307
313 317 331 339 349 353 359 361
367 373 379 383 389 395 397 401
409 421 431 433 443 463 465 467

TABLE I
NUMBER OF COEFFICIENTS FOR CODES WITH PARAMETERS T ≤ 3 AND B ≤ 16.

 b = 4 b = 6 b = 8 b = 10 b = 12 b = 14 b = 16
t = 1 2 8 29 98 334 1160 4079
t = 2 0 1 1 5 8 17 29
t = 3 0 0 1 1 1 5 14

1089-7798 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LCOMM.2016.2598803, IEEE
Communications Letters

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

Case 2: Let us assume that during data transmission an error

on the 11th bit has occurred (ĈW = 10010011 00000111).
Similar to the previous case, after calculating

2 147 255 = 39

39 7 255 32

= ⋅ − = ⋅

= − − = − =

ˆ 1 1B

ˆ BB

ˆ[] (mod 2 1) [] (mod)
ˆ[] (mod 2 1) [] (mod)

b

b

C C B

S C C

the decoder will conclude that the value S = 32 indicates an
error within the check-byte (Table 3). On the basis of this
information, it will perform the error correcting by using

54 32 255 186.= + − +B B
ˆ[] (mod 2 1) = [1] (mod) =bC C e

III. INTERLEAVING AND IMPLEMENTATION STRATEGY
A. Interleaving

One of the most important features of the proposed codes is
that they can be interleaved without delay. In order to illustrate
how this can be done, suppose that we need to transmit 2 · k b-
bit bytes. In that case, instead of one, we will have two check-
bytes. These check-bytes will be calculated as follows:

−
=

= ⋅ −∑B1 2 1
1

(mod 2 1)
k

b
i i

i

C C B (7)

=

= ⋅ −∑B2 2
1

(mod 2 1)
k

b
i i

i

C C B (8)

At the receiver, the decoder will perform identical operations

−
=

= ⋅ −∑B1 2 1
1

(mod 2 1)
k

b
i i

i

C C B (9)

=

= ⋅ −∑B2 2
1

(mod 2 1)
k

b
i i

i

C C B (10)

after which two syndromes will be formed
= − −ˆ1 B1B1

ˆ[] (mod 2 1)bS C C (11)

= − −ˆ2 B2B2
ˆ[] (mod 2 1)bS C C (12)

If we compare (1)-(3) and (7)-(12) we can conclude that the
same encoder/decoder can be used for both non-interleaved
and interleaved codes. Namely, in the case of non-interleaved

codes there is only one check-byte. For its generation, the
encoder/decoder sequentially uses the coefficients C1, C2, ... ,
Ck. In the case of interleaved codes we have two check-bytes.
From (7)-(10) we see that the values of these check-bytes are
always updated alternately. This, obviously, corresponds to
the situation in which the encoder/decoder sequentially uses
the coefficients C1, C1, C2, C2, ..., Ck, Ck. Hence, there is no
delay during the encoding/decoding process.

B. Implementation Strategy
From the above it is clear that the en/decoder uses integer

and LUT operations. Since these operations are supported by
all processors, it is interesting to discuss how the proposed
codes can be implemented on 8-core processors (EPs) (Fig. 3).

First of all, recall that each processing core has at least one

integer unit and two private caches: L1 and L2. The L1 has a
small size (up to 64 KB) and very low access latency (1-5
clock cycles) [10]. The L2, on the other hand, is somewhat
slower (8-15 clock cycles), but much larger (up to 512 KB)
[10]. Finally, all cores have access to the shared L3 cache.
This cache has the highest access latency (25-50 clock cycles),
and largest storage capacity (up to 32 MB) [10].

Now, let us go back to the encoding, decoding and error
control procedures. They can be briefly described as follows:

 Fig. 3. Block diagram of 8-core processor.

TABLE III
LOOK-UP TABLE (LUT2) FOR INTEGER (16, 8) DECODER.

 Element
of the set ε i e

 Element
of the set ε i e

 Element
of the set ε i e

 Element
of the set ε i e

1 1 2 1 19 36 2 36 37 128 2 128 55 221 1 17
2 2 2 2 20 40 2 40 38 129 2 129 56 222 1 144
3 3 2 3 21 48 2 48 39 130 2 130 57 223 1 16
4 4 2 4 22 63 1 96 40 132 2 132 58 231 1 12
5 5 2 5 23 64 2 64 41 136 2 136 59 235 1 10
6 6 2 6 24 65 2 65 42 144 2 144 60 237 1 9
7 8 2 8 25 66 2 66 43 159 1 48 61 238 1 136
8 9 2 9 26 68 2 68 44 160 2 160 62 239 1 8
9 10 2 10 27 72 2 72 45 175 1 40 63 243 1 6
10 12 2 12 28 80 2 80 46 183 1 36 64 245 1 5
11 16 2 16 29 95 1 80 47 187 1 34 65 246 1 132
12 17 2 17 30 96 2 96 48 189 1 33 66 247 1 4
13 18 2 18 31 111 1 72 49 190 1 160 67 249 1 3
14 20 2 20 32 119 1 68 50 191 1 32 68 250 1 130
15 24 2 24 33 123 1 66 51 192 2 192 69 251 1 2
16 32 2 32 34 125 1 65 52 207 1 24 70 252 1 129
17 33 2 33 35 126 1 192 53 215 1 20 71 253 1 1
18 34 2 34 36 127 1 64 54 219 1 18 72 254 1 128

1089-7798 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LCOMM.2016.2598803, IEEE
Communications Letters

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

• Encoding procedure
 Step 1. Read the Ci’s from a LUT1 and compute the BC

 according to (1).
• Decoding procedure

 Step 1. Read the Ci’s from a LUT1 and compute the
B̂C

 according to (2).
 Step 2. Calculate the syndrome S with (3).

• Error control procedure
 Step 1. If S = 0, the codeword is error-free.
 Step 2. If S ≠ 0, perform a binary search of a LUT2 to find
 the error vector (e) and error location (i).

 Step 3. If S ∈ε, execute (5) or (6). Else, declare a failure.
To implement these procedures, both LUTs must be placed

in appropriate caches. In the case of a LUT1, the memory
requirements are less than 1 KB (Table 4). Hence, this table
should be placed into the L1 cache. As far as LUT2 is
concerned, we need to allocate up to 3.17 MB of memory
(Table 4). This means that we do not have any other option,
but to store this table in the L2/L3 cache.

IV. COMPARISON WITH THE BEST SBAEC CODES

From [2], [3], [4] it is easy to conclude that codes with the
parameter t = 3 provide nearly the same level of reliability as
the single b-bit byte asymmetric error correcting (SbAEC)
codes. For that reason we will compare our codes with the best
SbAEC codes [7]. First, let us focus on the parameters of both
codes. According to [7], the SbAEC codes use b + log2 (k)
check bits. This means that the S16AEC codes require up to 23
check-bits to protect data words of length K ≤ 2048 bits. On
the other hand, we know that the proposed codes always have
b check-bits. In addition, from Table 2 it is clear that data
words of length K ≥ 1024 bits can be protected only by using
the codes with 32 check-bits.

From a practical point of view, however, this limitation is
insignificant. Namely, during the software implementation the
larger value of b is more preferable, since modern EPs operate
in 64-bit mode. If we look at this from the perspective of the
proposed codes, the benefit is clear: one processing core must
perform 3k operations (Table 5) (k table lookups, k integer
multiplications, k - 1 integer additions and one modulo
reduction) per codeword. On the other hand, from [7] we
know that each SbAEC code consists of two check-bytes: the
parity byte (PB) and the arithmetic residue check (ARC) byte.
These bytes are calculated as
PB B B= ⊕ ⊕ 1[]k (13)

ARC modN k N p= ⋅ + + ⋅ 1[1] ()k (14)

where ⊕ indicates the EXOR operation, Ṅi the number of 1’s
in transmitted/received byte Ḃi, while p represents the smallest
prime such that (p – 1)/2 ≥ k. Since (13) and (14) are mutually
independent, it is clear that "odd" processing cores must
perform k· (b + 1) operations (k· (b – 1) binary additions, k
integer multiplications, k - 1 integer additions and one modulo
reduction) per codeword. As far as error control procedure is
concerned, the SbAEC codes also use LUTs. However, in this
case a LUT is used to store multiplicative inverses of Ṅi with
respect to modulo p.

V. CONCLUSION

In this paper we presented a class integer codes capable of
correcting spotty byte asymmetric errors. We have shown that
the encoding/decoding procedures for these codes are very
simple, whereas the error control algorithm resembles the
routing process. Thanks to these features, the presented codes
have a potential to be practically applied, especially in optical
networks covering small areas.

REFERENCES
[1] P. Oprisan and B. Bose, “ARQ in Optical Networks,” Proc. IEEE Int’l

Symp. Pacific Rim Dependable Computing, pp. 251-257, Dec. 2001.
[2] CCITT Study Group XVIII Contribution D21, “Observations of Error

Characteristics of Fiber Optic Transmission Systems,” Jan. 1989.
[3] D. Mello, E. Offer and J. Reichert, “Error Arrival Statistics for FEC

Design in Four-Wave Mixing Limited Systems,” Proc. Optical Fiber
Communications Conference (OFC ’03), pp. 529-530, Mar. 2003.

[4] L. James, “Error Behaviour in Optical Networks”, PhD thesis, Dept. of
Engineering, University of Cambridge, 2005.

[5] T. Kløve, “Error Correcting Codes for the Asymmetric Channel”,
University of Bergen, Tech. Rep. 1809-0781, 1995.

[6] H. Kaneko and E. Fujiwara, “A Class of M-ary Asymmetric Symbol
Error Correcting Codes for Data Entry Devices,” IEEE Trans.
Computers, vol. 53, no. 2, pp. 159-167, Feb. 2004.

[7] B. Bose and S. Al-Bassam, “Byte Unidirectional Error Correcting and
Detecting Codes,” IEEE Trans. Computers, vol. 41, no. 12, pp. 1601-
1606, Dec. 1992.

[8] J. Fletcher, “An Arithmetic Checksum for Serial Transmission,” IEEE
Trans. Communications, vol. 30, no. 1, pp. 247-252, Jan. 1982.

[9] R. Giladi, Network Processors: Architecture, Programming, and
Implementation, Elsevier, Inc., 2008.

[10] L. Johnsson, “Introduction to HPC Architecture,” University of Houston,
Jan. 2014.

[11] A. Radonjic and V. Vujicic, “Integer Codes Correcting Burst Errors
within a Byte,” IEEE Trans. Computers, vol. 62, no. 2, pp. 411-415,
Feb. 2013.

[12] K. Mehlhorn and P. Sanders, Algorithms and Data Structures: The Basic
Toolbox, Springer, 2008.

TABLE IV
LOOK-UP TABLE SIZES FOR CODES WITH PARAMETERS T = 3 AND B = 32.

Code
Encoder Decoder

LUT1 LUT1 LUT2
Size Size Size # of Table Lookups

(1024, 992) 124 B 124 B 1.51 MB 1 ≤ nTL ≤ 19
(1056, 1024) 128 B 128 B 1.58 MB 1 ≤ nTL ≤ 19
(2048, 2016) 252 B 252 B 3.07 MB 1 ≤ nTL ≤ 20
(2080, 2048) 256 B 256 B 3.17 MB 1 ≤ nTL ≤ 20

TABLE V
COMPARISON OF PROPOSED CODES AND BOSE-AL-BASSAM CODES.

Main
Characteristics Proposed Codes Bose-Al-Bassam

Codes
Number of check-bits b b + log2 (k)

Maximum number
of data bytes

Not specified
(depends on the results
of a computer search)

The largest prime
less than 2k

Error correction
capabilities

Correction up to three
asymmetric errors
within a b-bit byte

Correction of all
asymmetric errors
within a b-bit byte

Maximum number of
en/decoding operations
per core per codeword

3·k (b + 1)·k

Number of error
control operations ≤ 23 ≤ 9

 Size of error control table ≤ 3.17 MB ≤ 64 B

http://www.amazon.com/Kurt-Mehlhorn/e/B001HPFJXA/ref=ntt_athr_dp_pel_1�
http://www.amazon.com/Kurt-Mehlhorn/e/B001HPFJXA/ref=ntt_athr_dp_pel_1�
http://www.amazon.com/Peter-Sanders/e/B0045AQ5Q4/ref=ntt_athr_dp_pel_2�

