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Abstract—In short range optical networks channel errors 

occur due to energy losses. Upon transmission, they mostly 
manifest themselves as spotty byte asymmetric errors. In this 
paper we present a class of codes that can correct these errors. 
The presented codes use integer and lookup table operations, 
which makes them suitable for software implementation. In 
addition, if needed, the proposed codes can be interleaved 
without delay and without using any additional hardware. 

 

 
Index Terms—Integer codes, error correction, asymmetric 

errors, look-up table. 

I. INTRODUCTION 
N wireless networks it is impossible to predict the polarity 
of channel errors. Also, due to the presence of EMI/RFI, it 
is hard to draw any general conclusion regarding the error 

behavior: in some case random errors dominate, while in other 
cases burst errors are the rule rather than the exception. In 
optical networks without optical amplifiers (e.g. local and 
access networks) the situation is quite different. First, in these 
networks the number of received photons never exceeds the 
number of transmitted ones. Hence, upon transmission only    
1 → 0 transitions can occur [1]. Second, due to immunity to 
EMI/RFI, channel errors affect only small number of bits. This 
phenomenon was first reported in [2], and then confirmed by 
many other experiments [3], [4]. In all these studies it was 
shown that 96.9% to 99.9% of all errors are t-bit errors (t ≤ 3) 
confined to one or two adjacent bytes.  

Despite these facts, the codes correcting asymmetric errors 
(1 → 0 errors) are mainly designed for use in non-networked 
environments (see [5], [6] and references therein). A notable 
exception are Bose-Al-Bassam codes [7] that can correct all 
asymmetric errors confined to a b-bit byte. This capability is 
achieved by using two checksums: one, which is obtained by 
XORing all data bytes, and other, which incorporates the 
information about the number of 1’s within each data byte. 
Although this solution resembles the Fletcher’s algorithm [8], 
it includes operations at the bit level. Hence, it cannot be 
efficiently implemented on general purpose hardware. On the 
other hand, in local and access networks this type of 
implementation is highly preferred, since the network nodes 
(PCs, servers, routers, switches, OLU/OTN units, etc.) already 
possess high computing power [9], [10]. 
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Motivated by this, in this paper we present a new class of 
integer codes. The most attractive feature of these codes is the 
ability to encode/decode using 3k operations per codeword, 
where k denotes the number of data bytes. Besides this, the 
proposed codes use simple method to correct spotty byte 
asymmetric errors. In essence, it is about search-and-compare 
strategy, where the non-zero syndrome is compared with table 
entries. As will be seen, this solution is similar to routing [9], 
and thus highly suitable for software implementation. 

II. CODES CONSTRUCTION 

A. Encoding and Decoding Procedures 
Let

2 1bZ
−

= {0, 1,…, 2b - 2} be the ring of integers modulo   

2b - 1, and let us suppose that the data are divided into k b-bit 
bytes (Fig. 1). In addition, let Ci and Ck+1 be integers such that 

{ }0,1∈ 2 -1biC Z \ and Ck+1 = - 1. 

As in [11], the check-byte CB is computed using 
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At the receiver,  the decoder will perform the same calculation 
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after which the syndrome S will be formed 
= − −ˆ BB

ˆ[ ] (mod 2 1)bS C C                                                                     (3) 
Obviously, when S ≠ 0, the codeword is corrupted by noise. 

B. Necessary and Sufficient Conditions 
Definition 1. An error is called a spotty byte asymmetric 

error or t/b asymmetric error if t or fewer bits within a b-bit 
byte are in a 1 → 0 error, where 1 ≤ t < b. 

Definition 2. Let em ={ }2 2 m1 + + xx be   a positive  integer, 
where 0 ≤ x1 <  < xm < b and 1 ≤ m ≤ t. Then, the set of 
syndromes corresponding to t/b asymmetric errors is defined 
as 
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With these definitions we can prove the following theorem. 
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 Fig. 1. The codeword structure of the proposed codes. 
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Theorem 1. The codes defined by (1)-(4) can correct all t/b 
asymmetric errors if and only if there exist k mutually different 
coefficients { }2 -1

0, 1∈ biC Z \ such that 
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where ε denotes the cardinality of ε. 
Proof. From (4) it is clear that the set ε can be expressed as 
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Obviously, if the coefficients Ci are chosen in such a way that 
each one multiplied (modulo 2b - 1) by each em yields a 
different result it is clear that 
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In that case, the set ε will have 
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nonzero elements. □  
In order to illustrate the applicability of Theorem 1, we show 
results of a computer-search for some codes with parameters    
t ≤ 3 (Tables 1 and 2). 

C. Error Control Procedure  
As mentioned, the key idea behind the proposed codes is to 

exploit high computing power of the network nodes. Such an 
approach drastically reduces implementation costs, since it 
does not require a dedicated hardware (the encoding/decoding 
circuits) as in the case of classical codes. Given this, let us 
suppose that the encoder and decoder are multicore processors 
(MPs) [9], [10]. In addition, let us assume that the decoder 
uses a lookup table (LUT2) size of 2ε  × ⋅    2+ ( + 1)b log k  
bits. Unlike the LUT1, which stores the coefficients Ci, this 
table is generated using (4). Its aim is to describe the 
relationship between the nonzero syndrome (element of the set 
ε), error location (i) and error vector (e) (Fig. 2). 

Bearing this in mind, it is easy to see that the main task of the 
decoder is to find the entry where the first b bits match that of 
the syndrome S. For that purpose, the decoder must perform a 
series of table lookups (similar to routing [9]). In the end, after 
nTL table lookups, the decoder will declare failure (S∉ε) or 
execute one of the following operations (S∈ε): 
•   for t/b asymmetric errors within the i-th data byte 

ˆ[ ] 1

[ ] 1m
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(mod 2 1), – 1;

b
i i
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                                                                          (5) 

•   for t/b asymmetric errors within the check-byte 

m

= + −

= − ≤ ≤ ≤
B B
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[ ] (mod 2 1), 1 – 1;

b

b

C C e
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Although the procedure described above is very simple, it is 
clear that its efficiency depends on the number of table 
lookups. For this reason it is very important that the elements 
of ε are sorted in increasing order. In that case it is possible to 
use binary search algorithm, which requires nTL table lookups 
(1 ≤ nTL ≤ 2 2)log + ε [12]. 

Example 1. Let b = 8, m = 2, k = 1 and C1 = 2. According 
to Theorem 1, the LUT2 will have |ε| = 72 entries. Given this, 
suppose that we want to transmit 8 bits of data, D = 10010011. 
In that case, after calculating the value of the check-byte CB 

2 147 255 = 39= ⋅ − = ⋅B 1 1[ ] (mod 2 1) [ ] (mod )bC C B  
the codeword CW =  10010011 00100111 will have 16 bits. 
Now, let us analyze the following scenarios. 

Case 1: Suppose that during data transmission an error on 
the 4th and 7th bit has occurred  (ĈW = 10000001 00100111). In 
that case, the decoder will calculate 

2 129 255 = 3

3 39 255 219

= ⋅ − = ⋅

= − − = − =

ˆ 1 1B

ˆ BB

ˆ[ ] (mod 2 1) [ ] (mod )
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b

b

C C B
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and check whether the value S = 219 belongs to the set ε 
(Table 3). After completing this task, it will perform error 
correction by using:  

b
1 1

ˆ[ ] 2 1 [129 18] 255 147.= + − +(mod ) = (mod ) =B B e  

   
 Fig. 2. Bit-width of one LUT2 entry. 
 
  

TABLE II 
COEFFICIENTS FOR CODES WITH PARAMETERS T = 3, B ≤ 32 AND K ≤ 64.  

b = 16 
2 15 71 89 143 179 377 593 

1379 1499 2441 2477 2877 3467   

b = 24 
2 15 31 71 83 89 139 141 

157 167 173 189 203 269 277 281 
303 305 331 339 429 475 543 573 
583 895 921 1065 1115    

b = 32 
2 15 31 71 83 89 101 119 

127 139 141 143 149 157 163 167 
173 177 179 181 189 191 199 203 
211 223 227 229 233 239 251 253 
263 269 271 277 281 283 305 307 
313 317 331 339 349 353 359 361 
367 373 379 383 389 395 397 401 
409 421 431 433 443 463 465 467 

 

TABLE I 
NUMBER OF COEFFICIENTS FOR CODES WITH PARAMETERS T ≤ 3 AND B ≤ 16.  

 b = 4 b = 6 b = 8 b = 10 b = 12 b = 14 b = 16 
t = 1 2 8 29 98 334 1160 4079 
t = 2 0 1 1 5 8 17 29 
t = 3 0 0 1 1 1 5 14 
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Case 2: Let us assume that during data transmission an error 

on the 11th bit has occurred (ĈW = 10010011 00000111). 
Similar to the previous case, after calculating 

2 147 255 = 39

39 7 255 32

= ⋅ − = ⋅

= − − = − =

ˆ 1 1B

ˆ BB

ˆ[ ] (mod 2 1) [ ] (mod )
ˆ[ ] (mod 2 1) [ ] (mod )

b

b

C C B

S C C
 

the decoder will conclude that the value S   =   32 indicates an 
error within the check-byte (Table 3). On the basis of this 
information, it will perform the error correcting by using 

54 32 255 186.= + − +B B
ˆ[ ] (mod 2 1) = [1 ] (mod ) =bC C e  

III. INTERLEAVING AND IMPLEMENTATION STRATEGY 
A. Interleaving  

One of the most important features of the proposed codes is 
that they can be interleaved without delay. In order to illustrate 
how this can be done, suppose that we need to transmit 2 · k b-
bit bytes. In that case, instead of one, we will have two check-
bytes. These check-bytes will be calculated as follows: 

−
=
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1
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k

b
i i

i

C C B                                                 (7) 

=
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At the receiver, the decoder will perform identical operations 

−
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=
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after which two syndromes will be formed 
= − −ˆ1 B1B1

ˆ[ ] (mod 2 1)bS C C                                                (11)  

= − −ˆ2 B2B2
ˆ[ ] (mod 2 1)bS C C                                                  (12) 

If we compare (1)-(3) and (7)-(12) we can conclude that the 
same encoder/decoder can be used for both non-interleaved 
and interleaved codes. Namely, in the case of non-interleaved  

 
codes there is only one check-byte. For its generation, the 
encoder/decoder sequentially uses the coefficients C1, C2, ... , 
Ck. In the case of interleaved codes we have two check-bytes. 
From (7)-(10) we see that the values of these check-bytes are 
always updated alternately. This, obviously, corresponds to 
the situation in which the encoder/decoder sequentially uses 
the coefficients C1, C1, C2, C2, ..., Ck, Ck. Hence, there is no 
delay during the encoding/decoding process. 

B. Implementation Strategy 
From the above it is clear that the en/decoder uses integer 

and LUT operations. Since these operations are supported by 
all processors, it is interesting to discuss how the proposed 
codes can be implemented on 8-core processors (EPs) (Fig. 3). 

 
First of all, recall that each processing core has at least one 

integer unit and two private caches: L1 and L2. The L1 has a 
small size (up to 64 KB) and very low access latency (1-5 
clock cycles) [10]. The L2, on the other hand, is somewhat 
slower (8-15 clock cycles), but much larger (up to 512 KB) 
[10]. Finally, all cores have access to the shared L3 cache. 
This cache has the highest access latency (25-50 clock cycles), 
and largest storage capacity (up to 32 MB) [10].  

Now, let us go back to the encoding, decoding and error 
control procedures. They can be briefly described as follows: 

     

 
  
     Fig. 3. Block diagram of 8-core processor. 

 

TABLE III 
LOOK-UP TABLE (LUT2) FOR INTEGER (16, 8) DECODER. 

 Element  
of the set ε i e 

 

 Element  
of the set ε i e 

 

 Element   
of the set ε i e 

 

 Element   
of the set ε i e 

1 1 2 1 19 36 2 36 37 128 2 128 55 221 1 17 
2 2 2 2 20 40 2 40 38 129 2 129 56 222 1 144 
3 3 2 3 21 48 2 48 39 130 2 130 57 223 1 16 
4 4 2 4 22 63 1 96 40 132 2 132 58 231 1 12 
5 5 2 5 23 64 2 64 41 136 2 136 59 235 1 10 
6 6 2 6 24 65 2 65 42 144 2 144 60 237 1 9 
7 8 2 8 25 66 2 66 43 159 1 48 61 238 1 136 
8 9 2 9 26 68 2 68 44 160 2 160 62 239 1 8 
9 10 2 10 27 72 2 72 45 175 1 40 63 243 1 6 
10 12 2 12 28 80 2 80 46 183 1 36 64 245 1 5 
11 16 2 16 29 95 1 80 47 187 1 34 65 246 1 132 
12 17 2 17 30 96 2 96 48 189 1 33 66 247 1 4 
13 18 2 18 31 111 1 72 49 190 1 160 67 249 1 3 
14 20 2 20 32 119 1 68 50 191 1 32 68 250 1 130 
15 24 2 24 33 123 1 66 51 192 2 192 69 251 1 2 
16 32 2 32 34 125 1 65 52 207 1 24 70 252 1 129 
17 33 2 33 35 126 1 192 53 215 1 20 71 253 1 1 
18 34 2 34 36 127 1 64 54 219 1 18 72 254 1 128 
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•   Encoding procedure 
       Step 1. Read the Ci’s from a LUT1 and compute the BC   

          according to (1).  
•   Decoding procedure 

    Step 1. Read the Ci’s from a LUT1 and compute the
B̂C  

    according to (2).  
  Step 2. Calculate the syndrome S with (3). 

• Error control procedure 
  Step 1. If S = 0, the codeword is error-free. 
  Step 2. If S ≠ 0, perform a binary search of a LUT2 to find  
     the error vector (e) and error location (i). 

    Step 3. If S ∈ε, execute (5) or (6). Else, declare a failure. 
To implement these procedures, both LUTs must be placed 

in appropriate caches. In the case of a LUT1, the memory 
requirements are less than 1 KB (Table 4). Hence, this table 
should be placed into the L1 cache. As far as LUT2 is 
concerned, we need to allocate up to 3.17 MB of memory 
(Table   4). This means that we do not have any other option, 
but to store this table in the L2/L3 cache.  

 
IV. COMPARISON WITH THE BEST SBAEC CODES 

From [2], [3], [4] it is easy to conclude that codes with the 
parameter t = 3 provide nearly the same level of reliability as 
the single b-bit byte asymmetric error correcting (SbAEC) 
codes. For that reason we will compare our codes with the best 
SbAEC codes [7]. First, let us focus on the parameters of both 
codes. According to [7], the SbAEC codes use b + log2 (k) 
check bits. This means that the S16AEC codes require up to 23 
check-bits to protect data words of length K ≤ 2048 bits. On 
the other hand, we know that the proposed codes always have 
b check-bits. In addition, from Table 2 it is clear that data 
words of length K ≥ 1024 bits can be protected only by using 
the codes with 32 check-bits. 

From a practical point of view, however, this limitation is 
insignificant. Namely, during the software implementation the 
larger value of b is more preferable, since modern EPs operate 
in 64-bit mode. If we look at this from the perspective of the 
proposed codes, the benefit is clear: one processing core must 
perform 3k operations (Table 5) (k table lookups, k integer 
multiplications, k - 1 integer additions and one modulo 
reduction) per codeword. On the other hand, from [7] we 
know that each SbAEC code consists of two check-bytes: the 
parity byte (PB) and the arithmetic residue check (ARC) byte. 
These bytes are calculated as 
PB B B= ⊕ ⊕ 1[ ]k                                                                         (13) 

ARC modN k N p= ⋅ + + ⋅ 1[1 ] ( )k                                                                                                                                                                                                                                                                                                                                                      (14) 

where ⊕ indicates the EXOR operation, Ṅi the number of 1’s 
in transmitted/received byte Ḃi, while p represents the smallest 
prime such that (p – 1)/2 ≥ k. Since (13) and (14) are mutually 
independent, it is clear that "odd" processing cores must 
perform k· (b + 1) operations (k· (b – 1) binary additions, k 
integer multiplications, k - 1 integer additions and one modulo 
reduction) per codeword. As far as error control procedure is 
concerned, the SbAEC codes also use LUTs. However, in this 
case a LUT is used to store multiplicative inverses of Ṅi with 
respect to modulo p. 

 
V. CONCLUSION 

In this paper we presented a class integer codes capable of 
correcting spotty byte asymmetric errors. We have shown that 
the encoding/decoding procedures for these codes are very 
simple, whereas the error control algorithm resembles the 
routing process. Thanks to these features, the presented codes 
have a potential to be practically applied, especially in optical 
networks covering small areas. 
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TABLE IV 
LOOK-UP TABLE SIZES FOR CODES WITH PARAMETERS T = 3 AND  B = 32. 

Code 
Encoder Decoder 

LUT1 LUT1 LUT2 
Size Size Size # of Table Lookups 

(1024, 992) 124 B 124 B 1.51 MB 1 ≤ nTL ≤ 19 
(1056, 1024) 128 B 128 B 1.58 MB 1 ≤ nTL ≤ 19 
(2048, 2016) 252 B 252 B 3.07 MB 1 ≤ nTL ≤ 20 
(2080, 2048) 256 B 256 B 3.17 MB 1 ≤ nTL ≤ 20 

 

TABLE V 
COMPARISON OF PROPOSED CODES AND BOSE-AL-BASSAM CODES. 

Main 
Characteristics Proposed Codes Bose-Al-Bassam 

Codes 
Number of check-bits b b + log2 (k) 

Maximum number        
of data bytes 

Not specified 
(depends on the results 
of a computer search) 

The largest prime  
less than 2k 

Error correction 
capabilities 

Correction up to three 
asymmetric errors 
within a b-bit byte 

Correction of all 
asymmetric errors 
within a b-bit byte 

Maximum number of         
en/decoding operations 
per core per codeword 

3·k (b + 1)·k 

Number of error   
control operations ≤ 23 ≤ 9 

 Size of error control table               ≤ 3.17 MB ≤ 64 B 
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