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Temporal Correlation of Interference in Bounded
Mobile Ad Hoc Networks with Blockage

Konstantinos Koufos and Carl P. Dettmann

Abstract—In mobile wireless networks with blockage, different
users, and/or a single user at different time slots, may be blocked
by some common obstacles. Therefore the temporal correlation of
interference does not depend only on the user displacement law
but also on the spatial correlation introduced by the obstacles. In
this letter, we show that in mobile networks with a high density of
users, blockage increases the temporal correlation of interference,
while in sparse networks blockage has the opposite effect.

Index Terms—Blockage, Correlation, Interference, Mobility.

I. I NTRODUCTION

T HE temporal correlation of interference affects the tem-
poral correlation of outage, and subsequently, it impacts

many network performance metrics, e.g., end-to-end through-
put, multi-hop delay, etc. Assuming uncorrelated user activity
and fading over time, the user mobility is the main factor
reducing the temporal correlation of interference [1]–[4].

In areas with blockage, different users as well as a single
user at different time slots, may be blocked by some common
obstacles. The interference level is dominated by the Line-of-
Sight (LoS) transmissions, and the transitions between LoS
and Non-Line-of-Sight (NLoS) propagation conditions due to
mobility will reduce the temporal correlation of interference.
However, blockage simultaneously introduces spatial corre-
lation among the users. This is due to correlated penetra-
tion losses. Mobility, however, will not induce significant
decorrelation of interference when the number of users is
high. Studying the impact of blockage on the moments of
interference is a topic of growing interest [5]–[7], considering
the ongoing standardization activities for commercial wireless
networks in millimeter-wave bands. Nevertheless, interference
correlation with blockage is yet to be studied.

Without blockage, the temporal correlation of interference
depends on the user displacement law [8]. In this letter, we
show that with blockage, the correlation of interference does
not depend only on the mobility and the penetration losses but
also on the user density. In sparse networks, where the spatial
correlation among the users is negligible, the transitionsin
the propagation conditions from LoS to NLoS due to mobility
dominate the temporal statistics of interference. As a result,
blockage reduces the temporal correlation of interference. On
the other hand, in dense networks, the correlation in the
interference levels generated by different users dominates the
temporal correlation of interference and mobility may not help
much in reducing it.

In our analysis, we use the Random Waypoint Mobility
(RWPM) model, e.g. [9], because it has some desirable fea-
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tures for our problem: It is defined over a finite area, and it re-
sults in a non-uniform distribution of users. We use the RWPM
model over a one-dimensional (1D) lattice because in that case
the user displacement law is known for time-lags equal to one
and two time slots [8]. For larger time-lags, approximations to
the user displacement are also available for a zero think time.
Note that by increasing the lattice size and at the same time the
user speed, one can obtain approximations for the continuous
1D space. Even though, a two-dimensional (2D) deployment
would be naturally more relevant, the 1D scenario allows to
get analytical insight on the system behaviour. Also, one can
still find practical applications, e.g., correlation of interference
in vehicular networks.

II. SYSTEM MODEL

We consider a Poisson number of users, with meanK,
which are moving across a 1D lattice of sizeN . Each user
selects uniformly at random a destination, and travels with
a constant speedu lattice points per time slot. When it
reaches the destination, it stops and thinks for a number of
time slots selected from the discrete uniform distributionon
{0, 1, . . .M}. Let us denote the Random Variable (RV) of the
i-th user location byxi. Its Probability Distribution Function
(PDF) in the steady state is [8]

fxi
(n)=

p

N
+(1−p)

3N (2n−1)−6n (n−1)−3

N(N2 − 1)
, n≤N (1)

where p = M/2
M/2+(N+1)/(3u) is the average think time for a

randomly selected user.
Given the locationn, let us denote byP(n+k, τ) the prob-

ability that the user is located at the lattice point(n+k) after
τ time slots. The RWPM model introduces different levels of
mobility at different locations. For instance, the probability
that a user thinks at the lattice pointn is P(n, 1) = p

Nfx(n)
,

which means that the users close to the center tend to move
with higher probability than the users near the boundaries [8].
We compute the interference at the locations,yp=n+ c, n=
1, 2, . . . ,

⌊

N
2

⌋

andc ∈ (0, 1).
Let consider a Poisson number of obstacles, with meanNo,

distributed uniformly at random in the continuous space[1, N ].
The obstacles do not hinder the user moves, but they attenuate
the user signal. The number of obstaclesno on the linkxi→
yp, between thei-th user and the locationyp, is a Poisson
RV with parameterqiNo, Po(qiNo), where qi =

di

N−1 , di =
|xi−yp|. The fraction of penetration power loss per obstacle
follows the uniform distribution on[0, γ], γ ≤ 1. The fraction
of penetration loss,βi, over the linkxi → yp is equal to the
product of the power loss fractions from all obstacles on that
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link. Note that the RVsβi and xi are dependent, e.g., the
longer the linkxi → yp is, the higher the penetration loss
should be, because more obstacles are likely to block the user.

Assuming common transmit power levelPt for all users,
the interference at an arbitrarily selected time slott is

I(t) = Pt

∑

i
ξi(t)hi(t)βi(t) g (xi(t)−yp)

whereξi is a Bernoulli RV describing thei-th user activity,
E {ξi} = ξ ∀i, hi is an exponential RV with unit mean
modeling Rayleigh fading,xi ∈ {1, 2, . . . , N} is the RV for
thei-th user location with PDF given in (1), andg(x) = 1

ǫ+|x|a

is the distance-based propagation pathloss function, where ǫ

is used to avoid singularity atx=0.
It is assumed that the user activity and fading are in-

dependent and identically distributed (i.i.d.) over time slots
and users. On the other hand, with the RWPM model, the
locations of a user are correlated in time. Different users move
independently of each other but their penetration losses are
in general correlated because they may be blocked by some
common obstacles. The Moment Generating Function (MGF)
of the interference at two time slotst andτ is

ΦI=

∫∫

∑

ξ,x,i

es1I(t)+s2I(τ)fx,β fξ fh Po(K)dhdβ

whereξ, h, x andβ are vectors of RVs with elements,ξi, hi,
xi andβi ∀i at time slotst and τ , Po(K) = e−KKi

i! , and the
arguments in the PDFs are omitted for brevity.

In order to describe the correlation of interference at time-
lag l= |t−τ |, we use the Pearson correlation coefficient which
is defined as the ratio of the covariance of RVsI(t), I(τ)
divided by the product of their standard deviations. In the
steady state, the moments of interference become independent
of the time we take the measurements, and the Pearson
correlation coefficient becomes

ρl =
E {I(t) I(τ)} − E {I(t)}2

E {I 2(t)} − E {I(t)}
2 . (2)

III. I NTERFERENCE MEAN AND VARIANCE

Conditioned on the number of obstaclesno ≥ 1 over
the link xi → yp, the PDF of the fraction of penetration
power lossfβi|no , h(βno) is equal to the PDF of the
product of no i.i.d. uniform RVs with support[0, γ]. This

PDF ish(βno
)= 1

γno(no−1)!

(

log
(

γno

βno

))no−1

over the interval

[0, γno ] [10]. The PDFfβi
can be computed by averaging the

PDF h(βno) over the Poisson RVno. While it is difficult to
express the PDFfβi

in terms of simple functions, its moments
can be computed as follows

E {βs
i }

(a)
=

∫

βi

βs
i

∞
∑

no=1

h(βno)Po(qiNo)dβi+e−qiNo

(b)
= e

−qiNo

(

1− γs

1+s

)

= e
−αdi

(

1− γs

1+s

)

.

(3)

In (a), the rightmost terme−qiNo corresponds to the LoS
probability, i.e.,no=0. In (b), we changed the orders of inte-
gration and summation because the RVsβno are independent
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Fig. 1. Mean and standard deviation of interference at the locations yp
for c =

1

2
. The model is validated at seven locations for mean number of

obstaclesNo=10 andNo=40. The minimum attenuation per obstacle is3
dB or γ=0.5. Lattice sizeN =50, K =50 users, continuous user activity
ξ = 1, pathloss exponenta= 2, ǫ= 0.5, and maximum think timeM = 5

time slots.

of each other, we used thatE
{

βs
no

}

= γsno(1+s)−no , and
we averaged over the Poisson distribution Po(qiNo). The term
α= No

N−1 indicates the density of obstacles.
In order to compute the moments of interference, one has

to average over the distributions of fading, penetration loss,
number of users, user activity and location.

E{I}
(a)
=

∑

i
E{hi}E{ξi}

∑

xi

∫

βig(di)fβi|xifxidβi Po(K)

=
∑

i
E{hi}E{ξi}

∑

n
E{βn} g(dn) fxi

(n)Po(K)

(b)
=Kξ

∑

n
e−αdn(1− γ

2 )g(dn)fx(n).

In (a), we used that the RVsxi, βi, are dependent. In (b),
we computedE {βn} from equation (3) fors=1, we used that
the users are indistinct, and we took the average in terms of
the Poisson distribution Po(K). The transmit power level has
been taken equal toPt = 1 and dn = |n−yp|. Following the
same assumptions, we get

E
{

I 2
}

=2Kξ
∑

n
e−αdn(1− 1

3
γ2)g2(dn)fx(n) +K2ξ2σ

where we used thatE
{

h2
i

}

= 2, E
{

ξ2i
}

= ξ, E
{

β2
n

}

=

e
−αdn

(

1−γ2

3

)

, andσ=
∑

n,mE{βnβm}g(dn)g(dm)fx(n)fx(m)
captures the correlation in the interference levels generated by
different users.

In order to compute the cross-correlation of penetration loss
we separate between the following cases: (i)n>yp andm<yp
orn<yp andm>yp. In that case, the linksn→yp andm→yp
do not share common obstacles and the penetration losses
become uncorrelated. Thus,E{βnβm} = e−α(dn+dm)(1−γ

2 ).
(ii) n > yp and m > yp or n < yp and m < yp. Let
assume thatdm > dn. Then, E{βnβm} = E

{

β2
nβk

}

, where
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βk is the penetration loss over the distancedk = dm−dn.
Since the penetration losses over the distancesdn and dk

are uncorrelated,E{βnβm} = e
−α

(

dn

(

1−γ2

3

)

+(dm−dn)(1−γ
2 )

)

.
Similarly, one can do the computation fordm ≤ dn. Finally,

E{βnβm}=e
−α

(

min{dn,dm}
(

1−γ2

3

)

+|dm−dn|(1−γ
2 )

)

.

Remark 1. For impenetrable obstacles,γ = 0, whenn > yp
andm<yp or vice-versa,E{βnβm}=e−α(dn+dm). Otherwise,
E{βnβm}=e−αmax{dn,dm}.

The calculation of the mean and standard deviation of inter-
ference are validated in Fig. 1. The impact of blockage on the
mean is more prominent close to the center because over there,
the terme−αdn(1− γ

2 ) filters out interference from both sides of
locationyp. Near the boundaries, fewer users are located and
the interference is practically generated from one direction.
The standard deviation of the generated interference is affected
less from blockage because: (i) The termse−αdn(1− 1

3
γ2) and

e−αdn(1− γ
2 ), which are less than unity, are under the square

root in the computation of the standard deviation. (ii) The
correlation of interference levels generated from different users
increases the standard deviation. In Fig. 1, one may see that
by ignoring the spatial correlation, i.e.,σ= 1

K2σ2E {I}
2, the

underestimation error may become non-negligilble.

IV. T EMPORAL INTERFERENCE CORRELATION

The cross-correlation of interferenceE {I(t)I(τ)} depends
on the user displacement law and the correlation of the RVs
βi(t) and βj(τ). After taking the first-order cross-derivative
of the MGF ∂2

∂s1∂s2
ΦI (0, 0), the cross-correlation at time-lag

l can be read asE {I(t) I(τ)}=Kξ2σl +K2ξ2σ, where

σl=
∑

n,k
E{βnβn+k}g(dn)g(dn+k)P(n+k, τ)fx(n). (4)

Lemma 1. Without blockage, i.e.,α = 0, the correlation
coefficientρl is independent of the user density.

Proof: After replacing in equation(2), σ= 1
K2ξ2E{I}

2,

we get ρl|α=0 =
ξ
∑

n,k
g(dn)g(dn+k)P(n+k,τ)fx(n)

2
∑

n
g2(dn)fx(n).

, which is

independent of the number of usersK. Also, ρl|α=0 ≤ ξ
2 .

Lemma 2. With blockage, the correlation coefficientρl in-
creases with the number of usersK.

Proof: With blockage,ρl = c1+c2K
c3+c2K

for K ≥ 2 where

c1 = ξσl, c2 = ξσ− ξ (
∑

n E {βn} g(dn)fx(n))
2, and c3 =

2
∑

n E
{

β2
n

}

g2(dn)fx(n), For K=1, ρl=
c1
c3

. Since the terms
c1, c2, c3 are positive, and the Pearson correlation coeffcient
is at most equal to unity, we getc3 ≥ c1. Based on that, we
can show that the derivative ofρl in terms ofK is positive.

Remark 2. If we expandρl aroundK→∞, we getρl=1−
c3−c1
Kc2

+O
(

1
K

)2
. Therefore, by making the number of usersK

sufficiently large, we can guarante thatρl>
ξ
2 ≥ ρl|α=0. Using

that E {βnβn+k} ≤ E
{

β2
n

}

∀ {n, k}, one can show that for
K=1, ρl=

c1
c3
≤ρl|α=0. Sinceρl increases withK according

to Lemma 2, there will be a critical number of usersK∗ such

that for K > K∗ we haveρl > ρl|α=0. The critical number
K∗ is different at different points of the lattice.

Equation (4) can be used to calculate the correlation of
interference for any mobility model. Next, we show how to
compute the correlation,E {βnβn+k}, for time-lag l=1 and
user speedu = 1 under RWPM. The number of obstacles
over the linkn→ yp follows the distribution Po(αdn), and it
remains to identify the distribution of obstacles over the link
(n+k)→yp for all possible displacementsk ∈ {−1, 0, 1}. For
that, we separate between four cases.

Case 1: n < ⌊yp⌋. (i) If the user thinks with probability
P(n, 1), the RVsβn and βn+k are fully correlated. Hence,
E
{

β2
n

}

= e−αdn(1− 1
3
γ2). (ii) If the user moves to the right

with probabilityP(n+1, 1), the number of obstacles that the
user bypasses follows the Poisson distribution Po(α). Hence,
E{βnβn+1} = e−α(dn−1)(1−1

3
γ2) e−α(1−γ

2 ). (iii) If the user
moves to the left with probabilityP(n−1, 1), the extra number
of obstacles blocking the user signal follows the Poisson dis-
tribution Po(α) and,E{βnβn−1} = e−αdn(1− 1

3
γ2) e−α(1− γ

2 ).
Therefore forn< n1, n1=⌊yp⌋, the termσ11 , σ1|n<n1 , is

σ11=
∑n1−1

n=1
g(dn)fx(n)e

−(1− 1
3
γ2)αdn

(

P(n, 1)g(dn)+

eα(
γ
2
− γ2

3
)
P(n+1,1)g(dn+1)+e−α(1−γ

2
)
P(n−1,1)g(dn−1)

)

.

Case 2: n > n2, n2 = ⌈yp⌉. Similar to Case 1, we may
computeσ12 , σ1|n>n2

σ12=
∑N

n=n2+1
g(dn)fx(n)e

−(1− 1
3
γ2)αdn

(

P(n, 1)g(dn)+

eα(
γ
2
− γ2

3
)
P(n−1,1)g(dn−1)+e−α(1−γ

2
)
P(n+1,1)g(dn+1)

)

.

Case 3: n = n1. When the user is located atn1 =
⌊yp⌋, dn1 = c, and it moves to the left,E{βn1βn1−1} =

e−αc(1−1
3
γ2) e−α(1− γ

2 ). When it moves to the right, it passes
over the locationyp and the number of obstacles it sees
at the two time slots are i.i.d. Poisson RVs. Therefore
E {βn1βn1+1} = e−αc(1− γ

2 )e−αc̄(1− γ
2 ) = e−α(1− γ

2 ) where
c̄=1−c. The termσ13 , σ1|n=n1 , can be written as

σ13 = g (c) fx(n1)e
−αc(1− 1

3
γ2)

(

P(n1,1)g(c)+

e−α(1− γ
2 )eαc(1−

1
3
γ2)

P(n1 + 1,1)g(c̄)+

e−α(1− γ
2 )P(n1 − 1,1)g(1+c)

)

.

Case 4: n = n2. Similar to Case 3, the termσ14 ,

σ1|n=n2 , n2=⌈yp⌉, anddn2
= c̄ can be written as

σ14 = g (c̄)fx(n2)e
−αc̄(1−1

3
γ2)

(

P(n2,1)g(c̄)+

e−α(1− γ
2 )P(n2+1,1)g(1+ c̄)+

e−α(1− γ
2 )eαc̄(1−

1
3
γ2)

P(n2−1,1)g(c)
)

.
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Fig. 2. Correlation coefficientsρ1, ρ2 at the locationsyp. The parameter
settings are available in the caption of Fig. 1 unless otherwise stated in the
legend.

For impenetrable obstacles, which is a reasonable approxima-
tion for propagation in the millimeter-wave bands, the above
equations are further simplified. Finally, one has to sum up
the termsσ1j , j=1, . . . 4, and the calculation ofσl for l=1
and u= 1 is complete. The calculations forl > 1 and u > 1
can be carried out in a similar manner.

The correlation coefficientsρ1, ρ2 are depicted in Fig. 2.
Without blockage, the temporal correlation of interference is
higher close to the border because over there the level of
mobility is lower. The impact of blockage on the correlation
depends on the location and the density of users. Close to the
boundaries, where the user density is low, the transitions from
LoS to NLoS and vice versa dominate, and the interference
correlation becomes less as compared to the case without
obstacles. On the other hand, close to the center, where the
user density increases, the correlated interference levels from
the different users dominate over the randomness introduced
by the mobility, and the correlation coefficients become higher.
For the parameter settings used to generated Fig. 2, we observe
cross-over points at some locations, see Remark 2. One
may also see that ignoring the correlated interference levels
among the users results in significant underestimation errors
for the correlation coefficients. Finally, in the limit of infinite
think time, M → ∞, the network becomes static and the
user distribution uniform. Without blockage, the correlation
coefficient under Rayleigh fading and continuous user activity
is equal to 1

2 [4]. In Fig. 2, we see that blockage increases
further the correlation coefficient and also makes it location-
dependent.

In Fig. 3, we compare the correlation coefficientsρ1
between a mobile network and a static network with user
distribution given in (1). Blockage increases the correlation
coefficientρ1 in the static case, but mobility brings the cor-
relation down when the number of users is low, e.g.,K=30.
When the user density is high, e.g.,K = 300, the spatial
correlation among the users dominates, and mobility cannot
make the correlation less than in the case without blockage.
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Fig. 3. Correlation coefficientsρ1 at the locationsyp for different number
of usersK and user speedsu. Think timeM = 0. The rest of the parameter
settings are available in the caption of Fig. 1.

For higher user speeds,u= 2, u= 5, the correlation remains
high in the center where the user density is high. Close to the
boundary, the high mobility along with the lower user density
can make the correlation of interference low but not less as
compared to the case without blockage.

V. CONCLUSIONS

In this letter, it is shown that correlated slow fading due to
blockage can have a major impact on the temporal interference
statistics. In the future, it is important to study in more detail
the inter-play between user distribution, blockage distribution,
mobility pattern and interference correlation also in 2D de-
ployments.
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