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Effect of Densification on Cellular Network
Performance with Bounded Pathloss Model

Junyu Liu, Min Sheng, Lei Liu, Jiandong Li

Abstract—In this paper, we investigate how network densifica-
tion influences the performance of downlink cellular network in
terms of coverage probability (CP) and area spectral efficiency
(ASE). Instead of the simplified unbounded pathloss model
(UPM), we apply a more realistic bounded pathloss model (BPM)
to model the decay of signal power caused by pathloss. It is shown
that network densification indeed degrades CP when the base
station (BS) densityλ is sufficiently large. This is inconsistent
with the result derived using UPM that CP is independent ofλ.
Moreover, we shed light on the impact of ultra-dense deployment
of BSs on the ASE scaling law. Specifically, it is proved that the
cellular network ASE scales with rateλe−κλ, i.e., first increases
with λ and then diminishes to be zero asλ goes to infinity.

I. I NTRODUCTION

DUE to the simplicity and mathematical tractability, the
unbounded pathloss model (UPM)g (d) = d−α1 has

been widely applied to characterize channel power gain caused
by pathloss in wireless networks [1]–[3], especially when
transmission distance is large in the rural areas. One exhil-
arating result derived using this model is that the area spectral
efficiency (ASE) is monotonically increasing with the base
station (BS) density in heavily loaded cellular networks [3].
However, as the network density becomes larger in the future
fifth generation (5G) wireless networks, it becomes more likely
that the transmission distance is small. Despite its simplicity,
UPM fails to accurately characterize channel power gain in
this case. In particular, whend ∈ (0, 1), applying UPM would
artificially force the received signal power to be greater than
the transmitted signal power, which is physically impossible.

With this regard, a more realistic model, namely, bounded
pathloss model (BPM), has been adopted to model the channel
power gain caused by pathloss, especially for dense urban sce-
narios. Widely applied BPMs include(1 + d)−α, (1 + dα)−1

andmin (1, d−α). In literature, the impact of BPM on wireless
network performance has been extensively investigated [4]–
[6]. In [4], authors have figured out the influence of UPM
and BPM on the performance of clustered wireless ad hoc
networks. To be specific, depending on the user density, it is
shown that the benefits of clustering is greatly overestimated
using UPM. Meanwhile, the results in [5] indicate that the
probability density function (PDF) of the interference signal
strength becomes heavy-tailed under UPM, while quickly
decays to be zero under BPM. The difference is due to
the singularity of the UPM at 0. Accordingly, compared to
BPM, the application of UPM leads to significant deviations
when evaluating the network performance, such as bit error

1Note that d denotes the distance from the receiver to the intended
transmitter.

rate and wireless channel capacity, etc. However, to our best
knowledge, the effect of BPM on how ASE scales with
network density in cellular downlink networks remains to be
explored.

In this paper, we investigate the influence of BPM on the
key parameters of cellular networks, i.e., coverage probability
(CP) and ASE. It is shown that CP is invariant of BS density
in sparse scenarios, while is dramatically degraded by the
increasing BS density when BSs are over-deployed. Based
on this result, we further prove that the ASE first increases
and then decreases with the BS density under BPM, which
is different from the results in [3]. In addition, the optimal
BS density, which leads to the largest network ASE, can
be numerically obtained or be approximated in closed-form
according to the analysis. The results are useful for the BS
deployment and network design.

II. SYSTEM MODEL

We considera cellular network, which consists BSs and
downlink users. Two independent homogeneous Poisson Point
Processes (HPPPs),ΠBS = {BSi} andΠU = {Uj} (i, j ∈ N),
are used to model the locations of BSs and downlink users,
respectively, in the infinitely large two-dimensional plane. A
distance-based association rule has been adopted, i.e., each
cellular user is connected to the geographically closest BS
with constant transmit powerPBS. Meanwhile, we consider a
heavily loaded network, in which user density is much greater
than the BS densityλ, such that each BS is connected with
at least one user2. Besides, BSs are assumed to always have
data to transmit.

Channel power gain is assumed to consist of a pathloss com-
ponent and a distance-independent small-scale fading compo-
nent. In particular, to characterize the power gain caused by
pathloss, two typical BPMs are used, i.e.,g1 (d) = (1 + d)

−α

and g2 (d) = (1 + dα)
−1, whereα > 2 denotes the pathloss

exponent. Meanwhile, Rayleigh fading,H ∼ exp (1), is used
to model the power gain caused by small-scale fading.

Notation: Let f1 (x) and f2 (x) denote two functions de-
fined on the subset of real numbers. Then, we writef1 (x) =
Ω (f2 (x)) if ∃m > 0, x0, ∀x > x0, m |f2 (x)| ≤ |f1 (x)|
andf1 (x) = O (f2 (x)) if ∃m > 0, x0, ∀x > x0, |f1 (x)| ≤
m |f2 (x)|.

III. C OVERAGE PROBABILITY ANALYSIS

In this section, we investigate the performance of the
downlink cellular network by evaluating the CP of a typical

2Note that each BS serves one use at one time and users are served in a
round robin manner if more than one user is connected to one BS.

http://arxiv.org/abs/1606.01599v1


2

downlink userU0, which is defined as

PSIR (λ) = P (SIRU0 > τ) , (1)

where SIRU0 denotes the signal-to-interference ratio3 (SIR)
at U0 and τ denotes the SIR threshold. Denotingdi as the
distance fromBSi to U0, SIRU0 in (1) can be expressed as

SIRU0 =
PBSgn (d0)HU0,BS0
∑

BSi∈Π†

BS

PBSgn (di)HU0,BSi

, n ∈ {1, 2} (2)

whereHU0,BSi
denotes the power gain caused by fading from

BSi to U0 andΠ†
BS = ΠBS\ {BS0}.

In the following, we provide the CP of U0

under BPM in Proposition 1. Note that we
denote HyF1 (x) = 2F1 (1, 1− δ, 2− δ,−x) and
HyF2 (x) = 2F1

(

1, 1− δ
2 , 2− δ

2 ,−x
)

, where δ = 2
α

< 1
and2F1 (·, ·, ·, ·) is the Gaussian hypergeometric function, for
simplicity throughout the paper.

Proposition 1 (CP Under BMP). Under BPMs g1 (d) =
(1 + d)

−α and g2 (d) = (1 + dα)
−1, the CPs defined by (1)

are given by (3) and (4), respectively,

PSIR,g1 (λ) = Ed0

[

e
−πλ(1+d0)(c1(1+d0)−c2)

]

=
e−πλĉ

1 + c1
+

π
√
λ (c1 + ĉ) e

πλ(c22−4ĉ)
4(1+c1)

2 (1 + c1)
3
2

×

(

Erfc

(

−
√
πλ (c1 + ĉ)

2
√
1 + c1

)

− 2

)

, (3)

PSIR,g2 (λ) = Ed0



e
−

2πλτ(1+dα0 )
(α−2)d

α−2
0

HyF1

(

1+τ(1+dα0 )
dα
0

)


 , (4)

where c1 = 2τHyF1(τ)
α−2 , c2 = 2τHyF2(τ)

α−1 , ĉ = c1 − c2 and
Erfc (·) denotes the complementary error function. As each
user is associated with the nearest BS, the PDF ofd0 is given
by fd0 (x) = 2πλxe−πλx2

, x ≥ 0.

Proof: According to (1) and (2), we derive the CP as

PSIR (λ) =P



HU0,BS0 > s
∑

BSi∈Π†

BS

HU0,BSi
gn (di)





(a)
=E

d0,Π
†

BS,HU0,BSi





∏

BSi∈Π†

BS

e−sHU0,BSi
gn(di)





(b)
=E

d0,Π
†
BS





∏

BSi∈Π†
BS

1

1 + sgn (di)





(c)
=Ed0

[

e
−2πλ

∫

∞

d0
x(1− 1

1+sgn(x))dx
]

, (5)

where s = τ
gn(d0)

. In (5), (a) and (b) follow due to
HU0,BS0 ∼ exp (1) and HU0,BSi

∼ exp (1), respectively,
and (c) follows due to the probability generating functional
(PGFL) of Poisson point process (PPP). Replacinggn (di) with

3We ignore the impact of thermal noise on network performance, since
noise is negligible in interference-limited networks.
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Figure 1. CP scaling with BS density. System parameters are set asPBS =

20 dBmW andα = 4. Numerical results and simulation results are drawn
by lines and markers, respectively.

g1 (di) = (1 + di)
−α andg2 (di) = (1 + dαi )

−1, respectively,
we complete the proof.

According to Proposition 1, we can numerically obtain
the scaling law of CP. Fig. 1 plots the CP as a function
of BS density varying SIR thresholds under pathloss models
g (d) = d−α, g1 (d) andg2 (d), respectively. Note that the CP
derived usingg (d) is obtained from the results in [3]. It is
observed that the CPs areλ-invariant whenλ is sufficiently
small. The intuition behind this is that the increase of the
received signal power is counter-balanced by the increase
of interference power. Hence, the impact ofλ on CP is
neutralized. Furthermore, we can see that the gap between
the CPs derived using BPMs and that derived using UPM
is small. This indicates that UPM can accurately model the
channel power gain caused by pathloss in sparse networks,
where transmission distance is basically large. Nevertheless,
when the network is further densified, the difference of UPM
and BPM in impacting CP variation behavior becomes evident.
Specifically, under BPM, the CP is greatly reduced with
increasingλ (e.g.,λ ∈ [0.1, 1] BSs/m2 in Fig. 1) and decays
to be zero whenλ is sufficiently large (e.g.,λ > 1 BSs/m2

in Fig. 1). The result manifests that user experience is signif-
icantly degraded by the over-deployment of BSs. In the next
section, the influence of network densification on the network
performance, i.e., network ASE, is explored.

IV. SCALING LAW OF AREA SPECTRAL EFFICIENCY

In this section, we study the network ASE and investigate
the ASE scaling law. In particular, the ASE of the downlink
cellular network is defined as

A = λPSIR (λ) log2 (1 + τ) .
[

bits/
(

s ·Hz ·m2
)]

(6)

By definition, it is easy to derive the network ASE based
on Proposition 1 when two typical BPMs are considered.
However, since the exact results of the ASE are in complicated
forms, it is difficult to directly observe how ASE scales with
the BS density. To this end, we analyze the scaling law of ASE
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upper bound and lower bound. Before providing the bounds
of ASE, we first give the following lemma.

Lemma 1. Denote F1 (x) = HyF1 (x) and F2 (x) =
HyF1(x)

α−2 − HyF2(x)
α−1 (x ≥ 0). Then, F1 (x) and F2 (x) are

monotonically decreasing functions ofx.

Proof: The monotonicity ofF1 (x) and F2 (x) can be
obtained by showingdF1(x)

dx
< 0 and dF2(x)

dx
< 0. By def-

inition, dF1(x)
dx

= − 1−δ
2−δ 2F1 (2, 2− δ, 3− δ,−x). According

to [7, Theorem 3], we havedF1(x)
dx

< − 1−δ
2−δ

1

(1+x 2−δ
3−δ )

2 < 0.

Then,F1 (x) is monotonically decreasing withx. Meanwhile,
dF2(x)

dx
= HyF2(x)−HyF1(x)

αx
. According to [7, Theorem 1],

F3 (x) = HyF2(x)
HyF1(x)

is a decreasing function ofx, the max-
imum of which equals 1 whenx = 0. Therefore, we have
HyF2 (x) < HyF1 (x) and dF2(x)

dx
< 0. Hence, we complete

the proof.
Based on Lemma 1, we study the upper/lower bounds of

ASE under BPMs in the following proposition.

Proposition 2 (ASE Upper/Lower Bound Under BMPs).
Under BPMsg1 (d) = (1 + d)−α and g2 (d) = (1 + dα)−1,
the network ASE is upper bounded byAU (λ) =

λlog2 (1 + τ) e−πλ2−αĉ

1+2−αĉ
and lower bounded byAL (λ)

= λlog2 (1 + τ)

[

e−πλ(1+2αc1)

1 + 2α−2c1

−
2α−2c1π

√
λe

−πλc12α−2

1+2α−2c1 Erfc

(√
πλ(1+2α−1c1)√

1+2α−2c1

)

(1 + 2α−2c1)
3
2









.(7)

Proof: When gn (d) is replaced byg1 (d) = (1 + d)
−α,

we obtain the lower bound of CP based on (3) as

PSIR,g1 (λ)
(a)
>Ed0

[

e−πλc1(1+d0)
2
]

=
e−πλc1

1 + c1
− e−

πλc1
1+c1 π

√
λc1

(1 + c1)
3
2

Erfc

( √
πλc1√
1 + c1

)

=P
L
SIR,g1

(λ) , (8)

where (a) follows due to the fact thatc1 (1 + d0) − c2 <
c1 (1 + d0) since c2 > 0, and e−x is a decreasing function
of x. Next, we obtain the upper bound of CP as

PSIR,g1 (λ)
(a)
<Ed0

[

e−πλĉ(1+d0)
2
]

=
e−πλĉ

1 + ĉ
− e−

πλĉ
1+ĉπ

√
λĉ

(1 + ĉ)
3
2

Erfc

( √
πλĉ√
1 + ĉ

)

=P
U
SIR,g1

(λ) , (9)

where (a) follows becausec1 (1 + d0) − c2 > c1 (1 + d0) −
c2 (1 + d0) in (3) ande−x is a decreasing function ofx.

Whengn (d) is replaced byg2 (d) = (1 + dα)
−1, the CP in

(1) turns into

PSIR,g2 (λBS) =P









PBSHU0,BS0g2 (d0)
∑

BSi∈Π†
BS

PBSHU0,BSi
g2 (di)

> τ









.

Sinceg1 (d) < g2 (d), we derive the lower bound of CP by
weakening the useful signal power received atBS0 using the
BPM g1 (d0). Accordingly, we have

PSIR,g2 (λ) > P









PBSHU0,BS0g1 (d0)
∑

BSi∈Π†

BS

PBSHU0,BSi
g2 (di)

> τ









(a)
= Ed0

[

e
− 2πλτ(1+d0)α

(α−2)d
α−2
0

HyF1

(

1+τ(1+dα0 )
dα
0

)
]

(b)
> Ed0

[

e
−πλc1(1+d0)α

d
α−2
0

]

> Ed0

[

e
−πλc1(1+d0)α

d
α−2
0 |d0 ∈ [1,∞)

]

(c)

≥ Ed0

[

e−πλc1(1+d0)
α( 1+d0

2 )
2−α

|d0 ∈ [1,∞)
]

= P
L
SIR,g2

(λ) < P
L
SIR,g1

(λ) . (10)

In (10), the derivation step of (a) is similar to those in
(5), (b) follows becauseF1 (x) = HyF1 (x) is a decreasing
function of x according to Lemma 1 and (c) follows because
d2−α
0 ≤

(

1+d0

2

)2−α
whend0 ∈ [1,∞). Similarly, we weaken

the interference signal power received atBS0 by replacing
g2 (di) with g1 (di). Hence, the CP upper bound can be
obtained as follows

PSIR,g2 (λ)

<P









PBSHU0,BS0g2 (d0)
∑

BSi∈Π†
BS

PBSHU0,BSi
g1 (di)

> τ









=Ed0









e
− 2πλs2

(1+d0)α−2





HyF1

(

s2
(1+d0)α

)

α−2 −
HyF2

(

s2
(1+d0)α

)

α−1













(a)
<Ed0

[

e−πλĉ(1+dα
0 )(1+d0)

2−α
]

(b)
<Ed0

[

e−πλĉ
(1+d0)α

2α (1+d0)
2−α
]

<Ed0

[

e−πλĉ
1+d20
2α

]

=P
U
SIR,g2

(λ) > P
U
SIR,g1

(λ) , (11)

where (a) follows becauseF2 (x) = HyF1(x)
α−2 − HyF2(x)

α−1 is
a decreasing function ofx according to Lemma 1 and (b)
follows due to1 + dα0 ≥

(

1+d0

2

)α
. Combining the results in

(8), (9), (10) and (11), we complete the proof.
Based on Proposition 2, we characterize the scaling law of

the ASE using the following theorem.
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Theorem 1 (ASE Scaling Under BMP). Under the BPMs
g1 (d) = (1 + d)

−α and g2 (d) = (1 + dα)
−1, network ASE

scales with rateλe−κλ, whereκ is a constant.

Proof: The result is obtained by proving that
AL (λ) = Ω

(

λe−πλ(1+2αc1)
)

andAU (λ) = O
(

λe−πλ2−αĉ
)

.
According to Proposition 2, it is obtained that
∣

∣AU (λ)
∣

∣ ≤ λlog2 (1 + τ) e−πλ2−αĉ. Therefore, it can

be shown that AU (λ) = O
(

λe−πλ2−αĉ
)

. Then,

considering the ASE lower bound, we have
∣

∣AL (λ)
∣

∣ ≥
λlog2(1+τ)
1+2α−2c1

(Q1 (λ)−Q2 (λ)), whereQ1 (λ) = e−πλ(1+2αc1)

and Q2 (λ) = 2α−2πc1
√
λe

−
πλc12α−2

1+c12α−2√
1+2α−2c1

Erfc

(√
πλ(c12α−1+1)√

c12α−2+1

)

.

Through showing∃λ0 > 0, ∀λ > λ0, Q2(λ)
Q1(λ)

∈
(

0, 12
)

,

we have
∣

∣AL (λ)
∣

∣ ≥ λlog2(1+τ)
2(1+2α−2c1)

Q1 (λ). Hence,∀λ > λ0,
∣

∣AL (λ)
∣

∣ ≥ log2(1+τ)
2(1+2α−2c1)

∣

∣λe−πλ(1+2αc1)
∣

∣. Therefore, we have

AL (λ) = Ω
(

λe−πλ(1+2αc1)
)

.
It is shown from Theorem 1 that the network ASE first

increases and then decreases withλ. On the one hand, network
densification greatly improves spatial reuse by reducing the
distance between transmitters and receivers. On the other
hand, network over-densification pushes too many interfering
BSs around downlink users, which incurs severe inter-cell
interference. Therefore, when the spatial resources are fully
exhausted, the benefits of spatial reuse vanish and the detri-
ment of network densification overwhelms, thereby degrading
network ASE. More importantly, the results demonstrate the
importance of using BPM to characterize channel power gain,
considering the ultra-dense deployment of BSs.

Fig. 2 plots the ASE scaling with BS density. It can be seen
that the network performance is overestimated using UPM, as
the resulting ASE is always greater than that derived using
BPM. The reason is that the application of UPM artificially
amplifies the useful signal power atd ∈ (0, 1). Meanwhile,
we observe that the exact results derived using the two
BPMs decay withλ at the same rate with those derived
using the upper/lower bound. This indicates the validity of
Theorem 1. Additionally, we interestingly find that the optimal
λ∗, which maximizes the system ASE, can be approximated
using the densitiesλ∗

U that maximize the ASE upper bound
AU

g1
(λ) = λlog2 (1 + τ)PU

SIR,g1
(λ), where P

U
SIR,g1

(λ) is
given by (9). Note thatλ∗

U can be derived in closed-form

by solving
dAU

g1
(λ)

dλ
= 0. Therefore, the impact of system

parameters onλ∗ can be directly observed, which provides
guidance for the deployment of BSs.

V. CONCLUSION

In this paper, we show that the cellular network ASE
scales with rateλe−κλ when BPM is used to characterize
pathloss. According to the scaling law, network densification
cannot alway boost the network capacity especially when BS
density is sufficiently large. This differs from the traditional
understanding that cellular network ASE scales linearly with
λ. Meanwhile, the closed-form expression of the density,
which leads to the inflection of the ASE, can be approximated.
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Figure 2. ASE scaling with BS density. System parameters areset asPBS =

20 dBmW, τ = 10 dB andα = 4. Numerical results and simulation results
are drawn by lines and markers, respectively.

The result is helpful to understand how network parameters
affect the network scaling law, thereby providing guideline
for the efficient deployment of cellular networks.

It is worth noting that the single-slope BPM used throughout
the paper cannot characterize the discrepant power decay
levels within different regions, which is caused by non-line-
of-sight (NLOS) and line-of-sight (LOS) propagation of the
signal. Recently, the influence of NLOS and LOS transmis-
sions on dense network performance, e.g., CP and ASE,
has been evaluated and proved to be significant in [8], [9].
Nonetheless, the impact of singularity has not been fully
explored therein. Therefore, future study should considerthe
multiple pathloss model, which is defined based on BPM.
Following this approach, the influence of network densification
on the network capacity would become valid and convincing.
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