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Abstract—In this paper, we investigate how network densifica- rate and wireless channel capacity, etc. However, to our bes
tion influences the performance of downlink cellular netwok in knowledge, the effect of BPM on how ASE scales with

terms of coverage probability (CP) and area spectral efficiecy PR ; ;
(ASE). Instead of the simplified unbounded pathloss model g)e(:)vl\:)orrekddensny in cellular downlink networks remains to be

(UPM), we apply a more realistic bounded pathloss model (BPW i . . .
to model the decay of signal power caused by pathloss. It is givn In this paper, we investigate the influence of BPM on the
that network densification indeed degrades CP when the base key parameters of cellular networks, i.e., coverage pritibab
station (BS) density A is sufficiently large. This is inconsistent (CP) and ASE. It is shown that CP is invariant of BS density
with the result derived using UPM that CP is independent of\.  j, gparse scenarios, while is dramatically degraded by the
Moreover, we shed light on the impact of ultra-dense deploymnt . . BS d it h BS del d B d
of BSs on the ASE scaling law. Specifically, it is proved thathe mcregsmg ensity when S are over- eP oyg - base
cellular network ASE scales with rate \e ">, i.e., first increases ON this result, we furth_er prove that thf—' ASE first Increases
with X and then diminishes to be zero as\ goes to infinity. and then decreases with the BS density under BPM, which
is different from the results in_[3]. In addition, the optima
BS density, which leads to the largest network ASE, can
be numerically obtained or be approximated in closed-form

UE to the simplicity and mathematical tractability, the,ccorging to the analysis. The results are useful for the BS
unbounded pathloss model (UPM)(d) = d ] has deployment and network design.

been widely applied to characterize channel power gainezhus
by pathloss in wireless network§1[1]+[3], especially when Il. SYSTEM MODEL

transmission distance is large in the rural areas. One -exhil\we considera cellular network, which consists BSs and
arating result derived using this model is that the areatsglec downlink users. Two independent homogeneous Poisson Point
efficiency (ASE) is monotonically increasing with the basprgcesses (HPPP3)ps = {BS;} andIly = {U,} (i, € N),
station (BS) density in heavily loaded cellular networkk [3are used to model the locations of BSs and downlink users,
However, as the network density becomes larger in the futig@pectively, in the infinitely large two-dimensional plar
fifth generation (5G) wireless networks, it becomes momlyik gjistance-based association rule has been adopted, iah, ea
that the transmission distance is small. Despite its sEfipli cellular user is connected to the geographically closest BS
UPM fails to accurately characterize channel power gain {gith constant transmit powelPss. Meanwhile, we consider a
this case. In particular, whehe (0, 1), applying UPM would heayily loaded network, in which user density is much greate
artificially force the received signal power to be great@mth than the BS density, such that each BS is connected with
the transmitted signal power, which is physically impoksib at |east one udérBesides, BSs are assumed to always have
With this regard, a more realistic model, namely, boundeghia to transmit.
pathloss model (BPM), has been adopted to model the channethannel power gain is assumed to consist of a pathloss com-
power gain caused by pathloss, especially for dense urtean gonent and a distance-independent small-scale fading @omp
narios. Widely applied BPMs includg +d)"“, (1+d*)"" nent. In particular, to characterize the power gain caused b
andmin (1,d™*). In literature, the impact of BPM on wirelesspathloss, two typical BPMs are used, i.g.(d) = (1 +d)”“
network performance has been extensively investigated [4nq g2 (d) = (1+ d*)~', wherea > 2 denotes the pathloss
[6]. In [4], authors have figured out the influence of UPMexponent. Meanwhile, Rayleigh fading, ~ exp (1), is used
and BPM on the performance of clustered wireless ad h@g¢model the power gain caused by small-scale fading.
networks. To be specific, depending on the user density, it iSNotation: Let f; (z) and f (z) denote two functions de-
shown that the benefits of clustering is greatly overeshatfined on the subset of real numbers. Then, we wfitér) =
using UPM. Meanwhile, the results inl[5] indicate that the) (f2 (x)) if Im > 0, zo, Y& > 2o, m|fa (x)] < |f1(2)]
probability density function (PDF) of the interferencer®l) and f, (z) = O (f2 (z)) if 3Im > 0, zo, Yz > z0, | f1 (2)] <
strength becomes heavy-tailed under UPM, while quic:k;yl|f2 (z)].
decays to be zero under BPM. The difference is due to
the singularity of the UPM at 0. Accordingly, compared to Ill. COVERAGE PROBABILITY ANALYSIS
BPM, the application of UPM leads to significant deviations In this section, we investigate the performance of the
when evaluating the network performance, such as bit eri@gwnlink cellular network by evaluating the CP of a typical

|. INTRODUCTION

INote that d denotes the distance from the receiver to the intended 2Note that each BS serves one use at one time and users ard seme
transmitter. round robin manner if more than one user is connected to one BS
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downlink userUy, which is defined as

Psir ()\) =P (SIRUO > 7') R (1)

where SIRy, denotes the signal-to-interference rEt((SIR)

at Uy and 7 denotes the SIR threshold. Denotidg as the
distance fromBS; to Uy, SIRy, in (@) can be expressed as

PBSgn (dO) HU07B80

> Pgsgn(d;) Hu, Bs,
BS; €Il

SIRy, =

,ne{l,2t (2

whereHy, ps, denotes the power gain caused by fading fro
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In the following, we provide the CP of U ol = . RN Y
under BPM in Proposition [J1. Note that we 10 10 A BS 10 10
denote HyF; (z) = oF1 (1,1 -6,2—0,—2z) and

HyFs (v) = o} (1,1—g,2—%,—x), where§ = % <1

Figure 1. CP scaling with BS density. System parameterseirasi’gs =

and.F, (-, -, -) is the Gaussian hypergeometric function, fo20 dBmW and oo = 4. Numerical results and simulation results are drawn

simplicity throughout the paper.

Proposition 1 (CP Under BMP) Under BPMs g; (d)
(1+d)~* and g2 (d) = (1+d*)"", the CPs defined b
are given by[(B) and{4), respectively,

(1)

Psir.g, (A) = Eq [e*ﬂk(lﬂio)(q(1+d0)*62)]
) 0
mA(c§—ae)

7V (c1 + &) e TaFeD

677r>\€

:1+C1

2(1+c1)?
« | Erfe —vmA(e +¢) —92], ©)
2\/1+C1
B 2nxr(1zd§‘2) Hym ( 1+7’(dl;d%)>
Psir,g, (A) = Eq, (e @72% 0 , (4
2rHyF (1) co = 2rHyF>(1) A

wherec; = )
Erfc () denotes the
user is associated with the nearest BS, the PDEyo given
by fa, () = 27r)\xe_’”\12, z > 0.

Proof: According to [1) and[{2), we derive the CP as

, , ¢ = ¢ —co and

a—1

Psir (\) =P | Hy,ms, > s Y Huyps,gn (di)
BS; €Il

€]

Sy o) H eszUO,Bsign(di)

BS, €lljg

df)vHIgS-,HUO,BSi

1
1+ sgn, (d;)

(g)IE H

BS;€llf;g

- 1
[e—Qﬂ'k j;; m(l— (o) )dm} ’
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d07HBS

s,

0

(®)

where s AR In @), (@) and (b) follow due to
Hy,Bs, ~ exp(l) and Hy, s, ~ exp(l), respectively,
and (c) follows due to the probability generating functibn
(PGFL) of Poisson point process (PPP). Replagingl;) with

SWe ignore the impact of thermal noise on network performarsiece
noise is negligible in interference-limited networks.

" . ha
complementary error function. As eac

a

by lines and markers, respectively.

g1 (dy) = (1+d;)"" andgs (d;) = (1+d*)"", respectively,
we complete the proof. O
According to Proposition 1, we can numerically obtain
the scaling law of CP. Figl1l plots the CP as a function
of BS density varying SIR thresholds under pathloss models
g(d) =d= %, g1 (d) and g (d), respectively. Note that the CP
derived usingg (d) is obtained from the results inl[3]. It is
observed that the CPs areinvariant when)\ is sufficiently
small. The intuition behind this is that the increase of the
received signal power is counter-balanced by the increase
of interference power. Hence, the impact afon CP is
neutralized. Furthermore, we can see that the gap between
the CPs derived using BPMs and that derived using UPM
is small. This indicates that UPM can accurately model the
nnel power gain caused by pathloss in sparse networks,
where transmission distance is basically large. Nevestisel
when the network is further densified, the difference of UPM
and BPM in impacting CP variation behavior becomes evident.
Specifically, under BPM, the CP is greatly reduced with
increasing\ (e.g.,A € [0.1,1] BSs/m? in Fig.[d) and decays
to be zero when\ is sufficiently large (e.g.A > 1 BSs/m?
in Fig.[). The result manifests that user experience isifsign
icantly degraded by the over-deployment of BSs. In the next
section, the influence of network densification on the networ
performance, i.e., network ASE, is explored.

IV. SCALING LAW OF AREA SPECTRAL EFFICIENCY

In this section, we study the network ASE and investigate
the ASE scaling law. In particular, the ASE of the downlink
cellular network is defined as

A= APsir (M) logs (14 7). [bits/ (s -Hz - m2)] (6)

By definition, it is easy to derive the network ASE based
on Proposition 1 when two typical BPMs are considered.
However, since the exact results of the ASE are in complicate
forms, it is difficult to directly observe how ASE scales with

the BS density. To this end, we analyze the scaling law of ASE



upper bound and lower bound. Before providing the boundg) turns into

of ASE, we first give the following lemma.

Lemma 1. Denote Fy (z) = HyF)(z) and Fy(z) =
HyP(x) _ HyFa@) (> 0). Then, Fy (z) and F(z) are

monotonlcally decreasing functions of

Proof: The monotonicity of F; (x) and F, (z) can be

Pgs Hy, Bs, 92 (do)

Z PBSHULMBSng (dl)
BS; €11},

Psir,g, (ABs) =P > T

Since g (d) < g2 (d), we derive the lower bound of CP by

obtained by showmngl— < 0 and sz I> < 0. By def- Wweakening the useful signal power received3a, using the

inition, df}; 2) = 2F1 (2,2—6,3— 5 —z). According

to [7, Theorem 3], we havgﬂ < _HW < 0.

Then, F; (z) is monotonically decreasing with. Meanwhile,

difm(””) = HyF2(”) HyFl(””) According to [7, Theorem 1],
Fs(z) = gyﬁ}gj) is a decreasing function of, the max-

imum of which equals 1 when: = 0. Therefore, we have
HyF, (z) < HyF, (z) and %f) < 0. Hence, we complete
the proof. O

Based on Lemmal1, we study the upper/lower bounds
ASE under BPMs in the following proposition.

Proposition 2 (ASE Upper/Lower Bound Under BMPS)
Under BPMsg; (d) = (1+d)™“ and g, (d) = (1 +d~)""
the network ASE is upper bounded hyV (\)
Mog, (1 +7) H% and lower bounded byl™ (\)

6777)\(1+20‘c1)
= )\10g2 (1 + T) [m

A 2977 2

2c1mv/Ae” T e Erfe YEA(L2 o)

\/ 14+22—2¢;

" (

(1+202¢1)%

) (7)

Proof: When g,, (d) is replaced byg; (d) = (1+d)™°,
we obtain the lower bound of CP based bh (3) as

Q)

Psir,g, (A) >Eq, |e [ w,\cl(1+d0)2]

TAC
_e‘”)‘cl e ~ e W\/Xcl Erfe VrAcy
1+ (1+Cl)g V14
:PélR,gl ()‘) ’ (8)

where (a) follows due to the fact that (14 dp) — c2 <
c1(14+dp) sincecs > 0, ande™* is a decreasing function
of z. Next, we obtain the upper bound of CP as

(a)
Psir.g, (A) <Eq, [ —mae( 1+d0)}
78770‘& _ RRVAY: Erfe VTAC
1+¢ ( )% Vi+eé

:PgIR,gl ()\) ) (9)

where (a) follows because (1 + dy) —c2 > ¢1 (1 +do) —

c2 (1 +dp) in @) ande™* is a decreasing function af.
Wheng,, (d) is replaced by, (d) = (1+d~)"", the CP in

BPM g (do). Accordingly, we have

Pgs Huy, Bs,91 (do)
PSIR. A >P 9,20 >T
o () > PsHuy, Bs; 92 (d;)
BS; €Il
oy [ s (o))
Ed (a—2)dg~ ‘ g
(b) _ﬂ)\clsxlj»do)o‘
of S Edo [6 g
_7r>\c1(1+;0)°‘
>Eq, |e a5 |do € [1,00)
(c) o 2—a
> By [e7 000" () 1d € [1,00) |

= PIé‘IR.,gg ()\) < PgIR,gl ()\) ° (10)

In (@J), the derivation step of (a) is similar to those in
(B), (b) follows becausd’ (z) = HyF) (z) is a decreasing
function of z according to LemmA&l1 and (c) follows because
2 < (%)2_CY whend, € [1,00). Similarly, we weaken
the interference signal power received B$, by replacing
g2 (d;) with ¢ (d;). Hence, the CP upper bound can be
obtained as follows

PsiRr,g, (A)
PpsH d
<p Bs Hu,,Bs, 92 (do) o
> PpsHu,ss,91 (di)
BS;ellfg
[ _ 2mAsy <HyF1((1+Sd20)O‘)HyF2<(1+Sd20)°‘))
(1+dg)> =2 a=2 ot
:Edo €
(E)Edo —efﬂ—Aé(lerﬁ)(lero)z""}
(E)Edo —w,\a%(lﬁo)%a}
144,
<Ed0 e—Tr)\c 0:|
PSIR g (A) > PSIR g (A, (11)
where () follows because (z) = Zufln) _ Hulelr) jg

a decreasing function of accordmg to Lemmﬂal 1and (b)
follows due tol + d§ > (142)®. Combining the results in
@), (9), (10) and[(11), we complete the proof. O
Based on Propositidd 2, we characterize the scaling law of
the ASE using the following theorem.



Theorem 1 (ASE Scaling Under BMR) Under the BPMs

g1(d) = (14+d)"* and g5 (d) = (1+d*)"", network ASE Scales linearly

0

scales with rate\e"*, wherex is a constant. 10 ¢ Upper bound
Proof: The result is obtained by proving that —~ H
AL () = Q (Aem™(H42%)) and AU (V) = O (™2 7¢), F
According to Proposition [J2, it is obtained " thai f
AV (N)] < Mog, (1+7)e ™2 "¢, Therefore, it can glo_sc
be shown that AU ()\) _ O ()\e—ﬂ)@*aé . Then, EE ‘‘‘‘‘ Unbounded Model
ZE - - -Bounded Model 1

considering the ASE lower bound, we hayel" (\)| >

- - -Bounded Model 2

/\11%%«7(};2) (Q1 (\) — Q2 (N), whereQ; (\) = e~ ™A(1+2%) _Epperg(’““j
71')\0120472 10*107 — Lower Oun
o e VaX(er2o71 1) —w)
and \) = 2 0mavAe tras 2ElffC< > ‘ ‘
Q2 () Vit2e -2 Ver2e 241 0™ 10° 107 0" 10° 10" 10°
Through showing3\, > 0, VA > o, Qfgig e (0,1), A BS/m?

we have| A" (\)| > SeelET) g, ()). Hence,VA > o,

(1+2°-2¢;) Figure 2. ASE scaling with BS density. System parametersetrasPgs =
L log, (147) —7A(142%¢1) 20dBmW, 7 = 10dB and« = 4. Numerical results and simulation results
"A (/\) 2 2(1+2%=2¢y) ’)\e ‘ Therefore, we have are drawn by lines and markers, respectively.

AL (X)) = Q (Aemm(1+2%e), O
It is shown from Theoreni]l that the network ASE first
increases and then decreases witldn the one hand, network The result is helpful to understand how network parameters
densification greatly improves spatial reuse by reducirgg tAffect the network scaling law, thereby providing guidelin
distance between transmitters and receivers. On the otfrthe efficient deployment of cellular networks.
hand, network over-densification pushes too many interderi It is worth noting that the single-slope BPM used throughout
BSs around downlink users, which incurs severe inter-c&l® paper cannot characterize the discrepant power decay
interference. Therefore, when the spatial resources dke f€vels within different regions, which is caused by norefin
exhausted, the benefits of spatial reuse vanish and the déisight (NLOS) and line-of-sight (LOS) propagation of the
ment of network densification overwhelms, thereby degigdi§ignal- Recently, the influence of NLOS and LOS transmis-
network ASE. More importantly, the results demonstrate tféons on dense network performance, e.g., CP and ASE,
importance of using BPM to characterize channel power gaftgS been evaluated and proved to be significantin [8], [9].
considering the ultra-dense deployment of BSs. Nonetheless, t.he impact of singularity has not been fully
Fig.[2 plots the ASE scaling with BS density. It can be secfXPlored therein. Therefore, future study should consiber
that the network performance is overestimated using UPM, B&!ltiple pathloss model, which is defined based on BPM.
the resulting ASE is always greater than that derived usifi@!lowing this approach, the influence of network densifarat
BPM. The reason is that the application of UPM artificiallyPD the network capacity would become valid and convincing.

amplifies the useful signal power dte (0,1). Meanwhile,

we observe that the exact results derived using the two
BPMs decay withA at the same rate with those derived!]
using the upper/lower bound. This indicates the validity of
Theorent]L. Additionally, we interestingly find that the opal [2]
A*, which maximizes the system ASE, can be approximated
using the densities; that maximize the ASE upper bound
A (N Mog, (14 7)P§ig ,, (A), where PG . (V) is 3]
given by (9). Note that\{; can be derived in closed-form

. dAY () .
by solving —%— = 0. Therefore, the impact of systeml4]

parameters om\* can be directly observed, which provides
guidance for the deployment of BSs. 5]

V. CONCLUSION [6]

In this paper, we show that the cellular network ASE
scales with rate\e="** when BPM is used to characterize”]
pathloss. According to the scaling law, network densifarati
cannot alway boost the network capacity especially when B
density is sufficiently large. This differs from the traditial
understanding that cellular network ASE scales linearlthwi 9]
A. Meanwhile, the closed-form expression of the density,
which leads to the inflection of the ASE, can be approximated.
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