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Effective Capacity and Power Allocation for
Machine-Type Communication

Mohammad Shehab, Hirley Alves, and Matti Latva-aho

Abstract—Effective capacity (EC) determines the maximum
communication rate subject to a particular delay constraint. In
this work, we analyze the EC of ultra reliable Machine Type
Communication (MTC) networks operating in the finite block-
length (FB) regime. First, we present a closed form approximation
for EC in quasi-static Rayleigh fading channels. Our analysis
determines the upper bounds for EC and delay constraint when
varying transmission power. Finally, we characterize the power-
delay trade-off for fixed EC and propose an optimum power
allocation scheme which exploits the asymptotic behavior of EC
in the high SNR regime. The results illustrate that the proposed
scheme provides significant power saving with a negligible loss
in EC.

Index Terms—Effective capacity, finite blocklength, ultra reli-
able communication, optimal power allocation.

I. INTRODUCTION

Communication systems have become everyday use equip-
ments everywhere around us. In these systems, information
is commonly conveyed in the form of data bits which are
then transformed to coded packets. Packets are then transmit-
ted in noisy mediums which are affected by fading. For a
certain communication channel, Shannon capacity determines
the attainable rate by which information can be transmitted
with almost no error. Conventionally, communication systems
are designed based on Shannon theory, which resorts to the
transmission of relatively long data packages when there is
a large number of channel uses per packet. Machine type
communication (MTC) systems ranging from sensor to ve-
hicular networks often have strict delay constraints, where
packets are relatively short and required to be transmitted at
minimum latency and a high level of reliability (i.e, >99.99%).
This is not merely achieved via conventional coding with
long blocklength. Meanwhile, ultra reliable communication
(URC) has evolved to propose solutions for reliable and
low latency communication. The next generations of mobile
communication are expected to support such demands via
MTC [1]–[3].

To achieve minimum latency and ultra reliability as envi-
sioned for real time applications and emerging technologies
such as e-health and road safety, these networks communicate
on short messages. Transmission of short packets does not
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comply to Shannon capacity, which becomes a poor per-
formance metric at finite blocklength as pointed out in [2].
Communication in the finite blocklength regime has gained an
increasing attention in the recent years [2], [4]–[8], especially
after the seminal work in [9], where coding rates of short
packets are defined for the additive white Gaussian noise
(AWGN) channel. Later, in [6] the authors determined the
maximum communication rate as a function of blocklength
and error outage probability in quasi-static fading. The re-
sults highlighted a constant gap between their achievability
bound and practical coding schemes which are implemented
in current standards. However, the gains in latency due to short
messages come at a cost of reliability as discussed in [2].

Effective capacity (EC) is defined as a measure of the
highest arrival rate which can be served by the network under
particular latency constraint. It is a metric which was first
introduced in [10] to capture the physical and link layers char-
acteristics by insuring specific quality of service guarantees.
Thus, it allows us to investigate further the latency-reliability
trade-off. In [7] and [8], finite blocklength performance of
cooperative and relay-assisted networks was discussed but
without considering power allocation or latency aspects. In
our work, we resort to the EC theory to analyze the latency
and data rate for finite blocklength packets. In [5], Gursoy
discussed the statistical framework of effective capacity given
in bits per channel use (bpcu) of one node in Rayleigh
block fading environment where the channel coefficients are
constant through one block transmission time. The EC was
defined as a function of error probability and delay quality
of service (QoS) exponent. However, they did not present a
closed form expression for the effective capacity in their work.
Musavian et al. analyzed the EC maximization of a cognitive
network in [11] and investigated the EC maximization subject
to effective energy efficiency constraint in [12]. The per-node
EC in massive MTC networks was studied in [13] proposing
three methods to alleviate interference namely power control,
graceful degradation of delay constraint and the hybrid method
which is based on the first two.

Herein, we analyze the EC of short packet transmission in
quasi-static Rayleigh fading channels under delay exponent
limit. The motivation of this work is to provide a mathematical
framework for the performance analysis of ultra reliable low
latency MTC. Moreover, we aim at characterizing the power
delay relation and how to allocate power efficiently in the high
SNR regime. The contributions of this work are summarized as
follows: i) a closed-form approximation for the EC is obtained
in terms of incomplete gamma function, which facilitates the
derivation of the optimum error probability that maximizes the
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Fig. 1. Transmission in finite blocklength with delay exponent θ. One block
consists of n symbols.

EC, therefore the maximal transmission rate; ii) we derive an
upper bound for EC for fixed delay exponent and an upper
bound of delay exponent for fixed EC; iii) we characterize the
amount of power required to support a certain EC while meet-
ing its delay requirement; and iv) we propose a power saving
scheme which determines the optimum power allocation at the
high SNR regime.

The rest of the paper is organized as follows: in Section II,
we introduce the system model and some definitions. Next,
we obtain a tight closed form approximation for the EC in
quasi-static Rayleigh fading environment and characterize the
optimum error probability in Section II-C. In Section III, we
discuss the power-delay trade off and propose an optimum
power allocation scheme in the high SNR regime. The results
are depicted in Section IV. Finally, Section V concludes the
paper.

II. PRELIMINARIES

A. System Layout

We consider a point to point transmission in which short
packets are transmitted through a quasi-static fading channel,
and full channel state information (CSI) is assumed, thus al-
lowing rate adaption as in [5]. Also, the fading is considered to
be Rayleigh distributed where the coefficients remain constant
over n symbols spanning the whole packet duration. Note that
the fading coefficients Z “ |h|2 are exponentially distributed,
thus fZpzq “ e´z . In short packet transmission, packets are
conveyed at a rate that is not only a function of the SNR, but
also the blocklength n, and the probability of error ε P r0, 1s
[2], as illustrated in Fig. 1. In this case, ε has a small value but
not vanishing. In Fig. 1, a packet buffer is the memory space
which stores packets awaiting transmission over the network.
Packets are stored temporarily and then transmitted in a FIFO
process. Thus, transmission delay occurs for packets while
waiting in the buffer. Assume that each symbol is transmitted
with SNR ρ in a channel whose fading coefficients are denoted
by h and the noise is zero-mean AWGN. Thus, the normalized
achievable rate in bpcu is approximated by1

r « C
`

ρ|h|2
˘

´

b

V pρ|h|2q
n Q´1

pεq, (1)

where Cpxq “ log2p1 ` xq is Shannon’s channel capacity,
V pxq “

´

1´ p1` xq
´2

¯

plog2 eq
2 denotes the channel dis-

persion [5], Qpxq “
ş8

x
1?
2π

expp´t
2

2 qdt is the Gaussian Q-
function.

1The approximation is accurate for blocklength n ě 100 as demonstrated
in [9, Figs. 12 and 13] for AWGN channel, and in [6] for fading channels.

B. Effective Capacity of finite blocklength packets

EC denoted as Ce defines the maximum rate that a com-
munication network can transfer data with, while maintaining
certain delay limits in terms of delay outage probability and
maximum delay bound Dmax. The delay outage probability
is the probability that the transmission delay exceeds the
maximum delay bound Dmax channel uses and hence, an
outage occurs. The delay outage probability is given by [10]

Pout_delay “ Prpdelay ě Dmaxq « e´θCeDmax , (2)

where Prp¨q means the probability of the event between
brackets. The delay exponent θ indicates the system’s tolerance
to long delays. Small values of θ mean that the network
tolerates longer delays. Conversely, higher θ values mean that
the system is less tolerable to longer delays. In quasi-static
fading, the EC in bpcu is given by [5]

Cepρ, θ, εq “ ´
ln EZ

“

ε` p1´ εqe´nθr
‰

nθ
, (3)

where the variable rate r is given in (1), and EZp¨q is the
expectation of the fading distribution.

Remark 1. Contrary to the infinite blocklength model (as in
[12]), the EC is upper bounded in the finite blocklength regime
by

Ceb “ lim
ρÑ8

´ ln
`

EZ
“

ε` p1´ εqe´nθr
‰˘

nθ
“ ´

lnpεq

nθ
, (4)

where the rate r also tends to inf . It follows that the EC is
asymptotic at the high SNR regime towards ´ lnpεq

nθ which is
independent of power. Likewise, there is an upper bound for
the delay exponent that can be supported by a buffer with
constant EC which is given by

θb “ lim
ρÑ8

´ ln
`

EZ
“

ε` p1´ εqe´nθr
‰˘

n Ce
“ ´

lnpεq

n Ce
. (5)

Note that, the bounds in (4) and (5) disappear as the
blocklength tends to infinity and the error probability vanishes.
The EC is asymptotic in the finite blocklength regime and not
monotonically increasing as in the infinite blocklength model.

C. Effective Capacity in quasi-static Rayleigh fading

In [5], a stochastic model for EC under finite blocklength
coding was introduced, but numerically evaluated. Herein,
we propose a tight approximation for the EC in quasi-static
Rayleigh fading.

Lemma 1. For a quasi-static Rayleigh fading channel with
blocklength n, the EC is approximated as

Cepρ, θ, εq « ´
1

nθ
ln rε` p1´ εq J s , (6)

where

J “e
1
ρρα

„

pκ`1qΓ

ˆ

α` 1,
1

ρ

˙

´
κ´ β

2

ρ2
Γ

ˆ

α´1,
1

ρ

˙

ff

, (7)

and κ “ β2

2 `β, α “ ´θn
ln 2 , β “ θ

?
nQ´1pεq log2 e, and Γp¨, ¨q

is the upper incomplete gamma function [14, §8.350-2].

Proof. Please refer to Appendix A.
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Lemma 2. There is a unique global maximizer for the EC in
the error probability ε in quasi-static Rayleigh fading channels
which is given by

ε˚pρ, α, βq « arg min
0ďεď1

ε` p1´ εq J . (8)

Proof. The expectation given by (13) was proven to be convex
in ε in [5] for any distribution of the channel coefficients. Note
that J is a function of ε as indicated in Lemma 1, in (7) and
the auxiliary variable β. Therefore, the unique maximizer of
the EC is the same as the minimizer of (13) given by ε˚ in
(8).

Notice that ε˚ from Lemma 2 is attained via exhaustive
search (or numerical solvers available in Matlab). Then the
maximum effective capacity Cemax is obtained by plugging
the solution of (8) into (6). Thus, the importance of Lemma
2 is to assure that for delay limited applications, in order to
maximize the rate subject to a certain delay constraint, it is
optimal to transmit with a non-zero error probability.

III. ASYMPTOTIC ANALYSIS

Due to the asymptotic nature of EC in the finite blocklength
regime which is concluded in (4), there is a slight gain in EC
when increasing transmit power in the high SNR region. In this
section, we aim at observing the delay bound characterized in
(5) for fixed EC and exploit the asymptotic behavior of EC in
the high SNR regime in order to save power. For this purpose,
from Lemma 1 we propose a tight approximation for the power
delay profile at high SNR as follows:

Lemma 3. At high SNR (ρÑ8), the required SNR to achieve
an EC of Ce for a certain delay constraint θ is approximated
as

ρpCe, θ, εq «
1

W
` G
F
˘ , (9)

where G “ e´nθCe´ε
1´ε , F “

κ´ β2
α´1 ´

κ`1
α`1 , and Wp.q is the

Lambert-W function [15].

Proof. Please refer to Appendix B.

Note that (9) gives the amount of power needed for a certain
buffer to support a fixed EC in the high SNR regime. In
order to reduce power consumption and guarantee negligibly
degraded EC, we maximize the EC subject to a constraint
on the rate of change of EC with respect to SNR. This can
be formulated as the following minimization problem with a
maximum power constraint ρmax:

Problem 1.

min
ρě0

ψpρ, θ, εq “ ε` p1´ εqJ , (10a)

s.t ρ ď ρmax, (10b)
BCe
Bρ

ě µ. (10c)

Note that µ is the power saving factor and the minimum
acceptable rate of change of the EC with respect to power.
The constraint (10c) guarantees that if transmit power is raised,
there will be a reasonable gain in EC. Moreover, µ is chosen to

be a positive number close to zero so that the constraint is not
extremely tight and the loss in EC is negligible. For instance,
for a noise power of 1 mW, µ “ 10´2 means that doubling
the transmit power results in only 10´2 bpcu increase in the
EC.

Theorem 1. At high SNR, the solution of Problem 1 admits
an optimum power allocation policy given by

ρ˚ “ min

$

’

’

&

’

’

%

2
c

1` 4
b

µnθε
p1´εqF ´ 1

, ρmax

,

/

/

.

/

/

-

, (11)

where F is defined in Lemma 3.

Proof. Please refer to Appendix C.

The saved power in dB is given by
η “ ρmax ´ ρ

˚. (12)

IV. NUMERICAL RESULTS

In Fig. 2, we present the EC in quasi-static Rayleigh fading
channel when varying delay exponents. The plots apply the
expectation in (3) and Lemma 1. The system parameters are
n “ 500 channel uses, ε “ 10´4. The figure corroborates the
accuracy of Lemma 1 specially in the high SNR regime of
interest with and the error of 0.001% where the error is defined
as 100ˆ|pa´bq|{a, where a is given in (3) and b denotes (6).
Furthermore, the figure shows the upper bound of EC in the
finite blocklength regime obtained from (4) and the unbounded
EC when applying Shannon’s model which assumes infinite
blocklength and zero error. This result is expected since in
the finite blocklength regime, the rate is not only bounded
to the SNR but also to the error probability. However, the
performance gap is only significant in the high SNR regime.
That is why we concentrated our analysis in Section III on the
high SNR region while [12] provides an alternative for other
transmission regions relying on conventional coding.

Fig. 3 depicts the power delay profile for different QoS
constraints at high SNR operating with fixed EC. We obtain
these plots by applying Lemma 3. The figure shows that for
a fixed EC value, the consumed power grows exponentially
when the delay exponent becomes more strict. Furthermore,
we observe the upper bound of the delay exponent that can
be supported for each fixed EC value obtained from (5) which
also validates the tightness of Lemma 3. Thus, in order to
support higher delay constraints, EC should be suppressed.
This implies low rate transmission with ultra low latency
which serves the intuition of MTC.

In Fig. 4, we plot the power gain obtained from applying
Theorem 1 for n “ 500, ρmax “ 20 and 30 dB and ε “ 10´4.
Note that the red curve represents the no gain line (µ “ 0, η “
0 dB). We observe that higher power gains can be achieved
when the power saving factor µ and the delay constraint θ
increase. This occurs due to the fact that rising the transmit
power renders limited gain in EC for delay strict networks
as pointed in Proposition 1 in [13]. Notice that as the power
saving parameter µ becomes higher, we obtain higher power
gain. However, this comes at the cost of greater loss in the



4

-20 -10 0 10 20 30 40
SNR  (dB)

0

0.5

1

1.5

2

2.5

3

3.5

4
E

ffe
ct

iv
e 

ca
pa

ci
ty

 C
e
 (

bp
cu

)

upper bound (4)
Shannon
expectation (3)
Lemma 1 (6)

=0.1

=0.01

=0.005

Fig. 2. Effective capacity as a function of SNR in quasi-static Rayleigh fading
for n “ 500, ε “ 10´4.

EC as pointed out in Fig. 5, which shows the EC as function
of the delay exponent.

Fig. 5 depicts the EC loss due to the power saving obtained
from our proposed power allocation strategy. It is obvious
that the asymptotic nature of the EC in the finite blocklength
regime provides considerable power saving at a very low loss
in EC. This can be noticed specially at the high SNR regime
where the simulation is performed.
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Fig. 3. Power delay profile for fixed EC buffers with n “ 500 and ε “ 10´4.

V. CONCLUSION

In this work, we thoroughly analyzed the effective capacity
for short packets transmission in MTC networks. For quasi-
static Rayleigh fading channels, we obtained a tight closed
form approximation for the EC in terms of well known
mathematical functions and characterized the optimum error
probability for maximizing the EC. Furthermore, in contrary
to the infinity blocklength case, we showed that in the fi-
nite blocklength regime, the EC is upper bounded in high
SNR, which is a consequence of the short blocklength and
error probability imposed by the system design. Finally, we
discussed the power-delay relation and proposed an optimum
power allocation scheme in the high SNR regime exploiting
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Fig. 4. Power saving vs the delay exponent θ for n “ 500, ε “ 10´4, and
ρmax “ 20, 30 dB.
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Fig. 5. Effect of power saving in quasi-static Rayleigh fading, where n “
500, ε “ 10´4, and ρmax “ 20, 30 dB.

the asymptotic behavior of EC. The proposed power allocation
strategy leads to considerable power saving at a very low loss
in EC.

APPENDIX A
PROOF OF LEMMA 1

Let us first define

ψpρ, θ, εq “ EZ
“

ε` p1´ εqe´nθr
‰

(13)

“

ż 8

0

`

ε` p1´ εqe´θnr
˘

e´zdz. (14)

From (1) and [13], we have

e´θnr “ p1` ρzqαeβγ , (15)

where γ “
a

p1´ p1` ρzq´2q. Since γ tends to 1 as ρÑ8

and β Ñ 0 for the cases under interest (namely, ultra reliable
scenarios with finite block length, where n is small and ε is
small but not zero), we can then truncate the Maclaurin series
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as eβγ “ 1` pβγq ` pβγq2

2 and replace it into (15), then (13)
becomes

ψpρ, θ, εq “ ε` p1´ εq

„
ż 8

0

p1` ρzqαe´zdz`

β

ż 8

0

p1` ρzqαγe´zdz `
β2

2

ż 8

0

p1` ρzqαγ2e´zdz



.

(16)

The first integral reduces to e
1
ρ ραΓ

´

α` 1, 1ρ

¯

. After we
apply Laurent’s expansion for γ [16], we attain γ « 1 ´
1
2 p1` ρzq

´2. Then, the second and third integrals can be
written as e

1
ρ βρα

´

Γ
´

α` 1, 1ρ

¯

´ 1
2ρ2 Γ

´

α´ 1, 1ρ

¯¯

, and

e
1
ρ β

2

2 ρ
α
´

Γ
´

α` 1, 1ρ

¯

´ 1
ρ2 Γ

´

α´ 1, 1ρ

¯¯

, respectively. Af-
ter some algebraic manipulations we obtain ψ “ ε`p1´ εqJ
where J is given by (7).

APPENDIX B
PROOF OF LEMMA 3

According to [17], the gamma function can be represented
in terms of the generalized exponential integral E1´ap¨q as

Γ
´

a, 1ρ

¯

“ ρ´aE1´a

´

1
ρ

¯

« ´
ρ´a

a
, (17)

where lim
ρÑ8

E1´a

´

1
ρ

¯

« ´ 1
a [18, §8.19.6]. For a “ α`1 and

a “ α´ 1, it is observed that the approximation in (17) holds
for ta P R|a ă 1u which corresponds to all practical values
of α. Thus, by applying (17) into (7), we obtain

J8 « e
1
ρ

1

ρ

«

´
κ` 1

α` 1
`
κ´ β

2

α´ 1

ff

“ e
1
ρ

1

ρ
F . (18)

From (6), we isolate J as

J8 “
e´nθ Ce ´ ε

1´ ε
. (19)

After manipulating (18) and (19) we get (9) with the help of
the definition of the Lambert-W function which is defined as
the solution to [15]

fpxq “ xex, where x “ f´1pxq “Wpxexq (20)

APPENDIX C
PROOF OF THEOREM 1

As envisioned from Fig. 2, the effective capacity is an
increasing function of the transmit SNR. However, at high
SNR, the rate of increase of effective capacity decreases due
to the asymptotic behaviour which is concluded in Remark 1.
Thus, the optimal power allocation is achieved at equality of
the constraint given by (10 c). From (6) and (18), we have

BCe
Bρ

“ ´
p1´ εq

nθψ

BJ
Bρ

“ ´
p1´ εq

nθψ
F
ˆ

´1

ρ2
e

1
ρ ´

1

ρ3
e

1
ρ

˙

“
p1´ εq

nθψ

F
ρ2
e

1
ρ

ˆ

1`
1

ρ

˙

plq
«
p1´ εq

nθψ

F
ρ2

ˆ

1`
1

ρ

˙2

, (21)

where in step plq, we applied the first order Taylor expansion
of e

1
ρ « 1 ` 1

ρ around zero. According to (4), as ρ Ñ 8, ψ
converges to ε. At equality of the constraint (10c), we attain

p1´ εq

nθε

F
ρ2

ˆ

1`
1

ρ

˙2

“
p1´ εq

nθε
F
ˆ

1

ρ4
`

2

ρ3
`

1

ρ2

˙

“µ, (22)

which leads to
ˆ

1

ρ4
`

2

ρ3
`

1

ρ2

˙

“
µnθε

p1´ εqF
. (23)

Leveraging the constraint (10b) and (23), we obtain the
positive solution to this problem as in Theorem 1.
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