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Abstract—In optical networks without optical amplifiers the 

number of received photons never exceeds the number of sent 
ones. Hence, upon transmission, only asymmetric (1 → 0) errors 
can occur. Motivated by this fact, in this letter we present a class 
of integer codes capable of correcting high-density asymmetric 
errors within a b-bit byte. Unlike classical codes, these codes use 
integer and lookup table operations. As a result, they can be 
implemented "for free", i.e. without modifying the network 
hardware. 

 

 
Index Terms—Integer codes, error correction, asymmetric 

errors, look-up table. 

I. INTRODUCTION 
RROR control codes are usually designed for use on binary 
symmetric channels, where the error probabilities 0 → 1 
and 1 → 0 are equal. However, in certain systems, the 

errors have a highly asymmetric nature. For the purpose of this 
paper, the most interesting example are optical networks 
without optical amplifiers (ONWOAs) (e.g. local and access 
networks) [1]. In these networks, the number of received 
photons never exceeds the number of transmitted ones. Hence, 
upon transmission only asymmetric (1 → 0) errors can occur 
[2], [3]. Besides this, it is known that these errors affect small 
number of bits. More precisely, the experiments showed that 
99% to 99.9% of all errors are t-bit errors (1 ≤ t ≤ 4) confined 
to one or two adjacent bytes [4]-[6]. 

Another common feature of ONWOAs is high computing 
power of network nodes. This can be seen from the fact that 
exterior nodes (e.g. PCs and servers) contain general purpose 
processors, whereas interior nodes (e.g. switches and routers) 
are always equipped with network processors (NPs) [7], [8]. 
The only difference between these chips is that NPs integrate 
coprocessors for common kernels of computation (e.g. lookup 
and cryptographic operations). On the other hand, both these 
chips have integer execution units as well as the memory 
system including the caches [7], [8]. Hence, it can be said that 
they are designed for integer and lookup table operations. 

Motivated by these facts, in this letter we present a new 
class of integer codes. The proposed codes, like those in [9]-
[11], have several desirable properties including systematic 
structure, simple encoding/decoding procedures and fast error 
correction algorithm based on table lookups. However, unlike 
[9]-[11], the codes presented in this paper can correct two 
types of errors within a b-bit byte: single t/d asymmetric errors 
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and double adjacent t'/d asymmetric errors, where 1 ≤ t' < t < d 
and p = b/d ≥ 2. Thanks to this feature, they are more suitable 
for use in ONWOAs than the codes proposed in [9]-[11]. 

The organization of this paper is as follows: Section 2 deals 
with the construction of integer codes capable of correcting 
single t/d and double adjacent t'/d asymmetric errors in a b-bit 
byte (integer (St/dAEC-DAt'/dAEC)b codes) Section 3 explains 
the implementation strategy for these codes, while Section 4 
concludes the letter. Table 1 shows the notations used in this 
work. 

II. CODES CONSTRUCTION 

A. Encoding and Decoding Procedures 
Let

2 1bZ
−

= {0, 1,…, 2b - 2} be the ring of integers modulo   

2b - 1, and let Ci and Ck+1 be integers such that { }0,1C Z∈ 2 -1bi \  
and Ck+1 = - 1. Now, suppose that the data are divided into k b-
bit bytes. In that case, the encoder will compute the check-
byte in the same way as in [9]-[11], i.e. by using the following 
operations: 

B 1 1
1

[ ] (mod 2 1) (mod 2 1)
=

= ⋅ + + ⋅ − = ⋅ −∑

k
b b

k k i i
i

C C B C B C B                                        (1) 

At the receiver,  the decoder will perform the same calculation 

ˆ 1 1B
1

ˆ ˆ ˆ[ ] (mod 2 1) (mod 2 1)
=

= ⋅ + + ⋅ − = ⋅ −∑

k
b b

k k i i
i

C C B C B C B                                 (2) 

after which the syndrome S will be formed 
= − −ˆ BB

ˆ[ ] (mod 2 1)bS C C                                                                     (3) 
Obviously, when S ≠ 0, the codeword is corrupted by one or 
more errors. Whether these errors can be corrected or not 
depends on the values of the coefficients Ci. On the other 
hand, the coefficient Ck+1 always has the same value, since it 
corresponds to the errors within the check-byte. 
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TABLE I 
NOTATIONS USED IN THIS LETTER. 

Symbol Meaning 

iB  Integer value of the i-th b-bit data byte at the sender side 

BC  Integer value of the b-bit check-byte at the sender side 

ˆ
iB  Integer value of the received i-th b-bit data byte 

BĈ  Integer value of the received b-bit check-byte 

B̂C  Integer value of the b-bit check-byte at the receiver side 
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B. Necessary and Sufficient Conditions 
Definition 1. An error is called t/d asymmetric error if t or 
fewer bits in a d-bit byte are in a 1 → 0 error, where 1 ≤ t < d. 
Definition 2. An error is called low-density byte asymmetric 
(LDBA) error if there exists one t/d asymmetric error within a 
b-bit byte, where p = b/d ≥ 2. 
Definition 3. An error is called high-density byte asymmetric 
(HDBA) error if there exists two adjacent t'/d asymmetric 
errors within a b-bit byte, where 1 ≤ t' < t < d and p = b/d ≥ 2. 
To make these definitions more clear, we give examples of 
LDBA and HDBA errors (Fig. 1). 

Definition 4. Let 0 ≤ x1 << xl < d, 1 ≤ l ≤ t, 0 ≤ r ≤ p – 1,     
and let 1

, ={(2 2 ) 2 }d r
l re ⋅⋅+ +lx x be the difference between the 

integer values of the correct b-bit byte and its received 
erroneous counterpart affected by LDBA error. Then, the set 
of syndromes corresponding to LDBA errors is defined as 

   ( ) ( )1
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Definition 5. Let 0 ≤ y1 << ym < d, 0 ≤ z1 << zn < d,          
1 ≤        m,  n    ≤ t', 0 ≤ s ≤ p - 2 and let 1 ( +1)

, , ={(2 2 ) 2m d s
m n se ⋅⋅ ++ +y y  

1(2 2 ) 2 }nz z d s⋅⋅+ + be the difference between the integer 
values of the correct b-bit byte and its received erroneous 
counterpart affected by HDBA error. Then, the set of 
syndromes corresponding to HDBA errors is defined as 

( ) ( )
-2

2
1 1 0

2
p

m,n,s
s

s e
  = − ⋅ − 
  


+1

1

mod 1
t' t'k

b
i

i= m= n= =

C                                                                                                                                                                                                                                                                              (5) 

Now, we can prove the following theorem. 
Theorem 1. The codes defined by (1)-(5) can correct all 

LDBA and HDBA errors iff there exist k mutually different 
coefficients { }C ∈

2 -1
0, 1bi Z \ such that 
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where A denotes the cardinality of A, and A B the 
intersection of A and B. 

Proof. Condition 1 of this theorem says that LDBA errors 
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syndromes that are nonzero. To 

prove this, observe that the set s1 can be expressed as 
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Now, suppose that the coefficients Ci are chosen in such a way 
that each one multiplied (modulo 2b - 1) by each ,l re yields a 
different result. In that case, it will hold that 
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As a consequence, the set s1 will have 
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nonzero elements. In a similar way Condition 2 says that 

HDBA errors generate
2
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are nonzero. To prove this, note that the set s2 can be 
expressed as  
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Given this, suppose that the Ci's are chosen such that 
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In that case, it is clear that the set s2 will have 
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nonzero elements. Finally, Condition 3 is a necessary condition 
for distinguishing LDBA errors from HDBA errors. Therefore, 
the codes that satisfy the above conditions are (kb + b, kb) 
integer (St/dAEC-DAt'/dAEC)b codes. □  

 
 Fig. 1. Examples of (a) LDBA errors and (b) HDBA errors, where p = 3. 
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Theorem 2. Let ξ be the error set for (kb + b, kb) integer 
(St/dAEC-DAt'/dAEC)b codes. Then, 
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Proof. This theorem follows from Theorem 1. □ 
From Theorems 1 and 2 it is easy to see that the elements 

of ξ cannot be generated without using a computer. Thus, it is 
clear that for some particular values of t', t, d and b we cannot 
know a priori the number and the values of coefficients Ci. In 
this letter, we have restricted ourselves to practical codes, i.e. 
to codes with parameters t' = 3, t = 4, d = 8, b = 32 and k ≤ 64. 
The results of the corresponding computer search are given in 
Table 2. 

C. Error Correction Procedure  
From Theorem 2 we know that LDBA and HDBA errors 

generate | ξ | nonzero syndromes. In addition, from the same 
theorem, we implicitly know that the relationship between the 
nonzero syndrome (element of the set ξ), error location (i) and 
error vector (e) can be described using (4)-(5). Both these facts 
imply that the syndrome table requires 2ξ  × ⋅    2+ ( + 1)b log k  
bits (Fig. 2) to store the error correction data. 

Given this, suppose that that the data are received in error  
(S ≠ 0). In that case, the decoder will first search the syndrome 
table to find the appropriate entry. After that, it will execute 
one of the following operations:  
•   for LDBA errors within the i-th data byte 

    
ˆ[ ] 2 1

[ ] 2 1 , 0l,re p

= + − ≤ ≤

= − ≤ ≤ ≤ ≤

(mod 1), ;
(mod 1), – 1;

b
i i

b

B B e i k
e l t r

                                                                            (6) 

•   for LDBA errors within the check-byte 

    
2
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= − ≤ ≤ ≤ ≤
B B
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b

b

C C e
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                                                                                                                                 (7) 

•   for HDBA errors within the i-th data byte 
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b
i i

b
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•   for HDBA errors within the i-th check-byte 

    
ˆ[ ] 2

[ ] 2 1 , 0 2m,n,se m n s p
= + −

= − ≤ ≤ ≤ ≤
B B (mod 1);

(mod 1), – ;

b

b

C C e
e t',
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From the above it is clear that the efficiency of the error 
correction procedure (in terms of processing time) depends on 
the number of table lookups. For this reason it is desirable that 
the elements of ξ are sorted in increasing order. In that case it 
is possible to use binary search algorithm, which requires nTL 
table lookups (1≤ nTL ≤ 2 2)log + ξ [12]. 

Example 1. Let b = 8, d = 4, t = 3, t' =  1, k = 1 and C1 = 2. 
According to Theorem 2, the syndrome table will have | ξ | = 88 
entries. Given this, let us assume that we want to transmit 8 
bits of data, D = 10110011. In that case, after calculating the 
value of check-byte CB 

2 179 255 = 103= ⋅ − = ⋅B 1 1[ ] (mod 2 1) [ ] (mod )bC C B  
the codeword CW =  10110011 01100111 will have 16 bits. 
Now, let us analyze the following scenarios. 

Scenario 1: Suppose that during data transmission an error 
on the 1st, 3rd and 4th bit has occurred (ĈW = 0000

= 2 3 255 = 6

6 103 255 158

= ⋅ − ⋅

= − − = − =

ˆ 1 1B

ˆ BB

ˆ[ ] (mod 2 1) [ ] (mod )
ˆ[ ] (mod 2 1) [ ] (mod )

b

b

C C B

S C C

0011 
01100111). In that case, the decoder will calculate 

 

in order to check whether the value S = 158 belongs to the set 
ξ (Table 3). After completing this task, it will perform error 
correction by using 

b
1 1

ˆ[ ] 2 1 [3 176] 255 179.= + − +(mod ) = (mod ) =B B e  
Scenario 2: Let us assume that during data transmission an 

error on the 10th and 16th bit has occurred (ĈW = 10110011 
00100110). Similar to the previous case, after calculating 

= 2 179 255 = 103

103 38 255 65

= ⋅ − ⋅

= − − = − =

ˆ 1 1B

ˆ BB

ˆ[ ] (mod 2 1) [ ] (mod )
ˆ[ ] (mod 2 1) [ ] (mod )

b

b

C C B

S C C
 

the decoder will conclude that the value S = 65 indicates an 
error within the check-byte (Table 3). As a consequence, the 
following procedure will take place: 

B B 38 + 65 255 103.C C= + −ˆ[ ] (mod 2 1) = [ ] (mod ) =be  

III. IMPLEMENTATION STRATEGY 
From (1)-(3) and (6)-(9) it is clear that the encoder/decoder 

uses integer and lookup table (LUT) operations. Since these 
operations are supported by all processors, it is interesting to 
discuss how the proposed codes can be implemented on 
modern architectures. Without loss of generality, we will 
restrict ourselves to eight-core processors (Fig. 3) and integer 
(S4/8AEC-DA3/8AEC)32 codes. 

   
    Fig. 2. Bit-width of one syndrome table entry. 
 
  

TABLE II 
FIRST 64 COEFFICIENTS FOR INTEGER (S4/8AEC-DA3/8AEC)32 CODES. 
2 127 255 511 767 967 1007 1019 

1087 1151 1279 1567 1663 1727 1747 1927 
1999 2011 2029 2047 2447 2503 2539 2549 
2557 2591 2623 2687 2741 2813 2879 2887 
3023 3061 3063 3067 3071 3229 3253 3257 
3271 3301 3359 3527 3529 3571 3581 3583 
3623 3631 3733 3834 3847 3851 3853 4007 
4019 4073 4091 4159 4222 4247 4479 4567 

 

     

 

 
  
     Fig. 3. Block diagram of eight-core processor. 
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1) L1 caches. The L1 cache is the smallest and fastest type 
of cache. Its size is limited to 64 KB (per core), whereas the 
data can be accessed in 1-5 clock cycles [8]. Both these facts 
suggest that the L1 can be used for storing the coefficient table 
(LUT1) whose size is ×k b bits (Table 4). 

2) L2 caches. The L2 cache is somewhat slower and larger 
than the L1. Precisely, its size is limited to 512 KB (per core), 
whereas the individual entries can be accessed in 8-15 clock 
cycles [8]. Based on these parameters, it is clear that the L2 
cannot be used for storing the syndrome table (LUT2). 

3) L3 cache. Unlike L1 and L2 caches, the L3 is shared 
among all cores. Due to this reason, this cache has the highest 
access latency (25-50 clock cycles). On the other hand, its size 
is sufficiently large (20-32 MB [8]) to store any LUT2. 

4) Processing cores. From [7], [8] it is known that each core 
has at least one unit that performs 32/64-bit integer operations. 
Thus, it is clear that the encoding/decoding algorithm can be 
parallelized using eight threads. The similar applies for the 
error correction procedure. For instance, Core 1 can be used 
for performing binary search over first /8ξ entries, Core 2 for 
performing binary search over next /8ξ entries, and so on. 

 

IV. CONCLUSION 
In this letter, we proposed a class of integer codes capable 

of correcting high-density asymmetric errors within a b-bit 
byte. We have shown that these codes can be implemented 
"for free", i.e. without modifying the network hardware. 
Thanks to this feature, the proposed codes have high potential 
to be used in practice. This primarily refers to optical networks 
without optical amplifiers in which all nodes possess powerful 
processors. 
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TABLE III 
THE SYNDROME TABLE (LUT2) FOR (16, 8) INTEGER (S3/4AEC-DA1/4AEC)8 DECODER. 

 Element  
of the set ξ i e 

 

 Element  
of the set ξ i e 

 

 Element  
of the set ξ i e 

 

 Element  
of the set ξ i e 

1 1 2 1 23 34 2 34 45 128 2 128 67 222 1 144 
2 2 2 2 24 36 2 36 46 129 2 129 68 223 1 16 
3 3 2 3 25 40 2 40 47 130 2 130 69 224 2 224 
4 4 2 4 26 48 2 48 48 132 2 132 70 227 1 14 
5 5 2 5 27 62 1 224 49 136 2 136 71 229 1 13 
6 6 2 6 28 63 1 96 50 144 2 144 72 231 1 12 
7 7 2 7 29 64 2 64 51 158 1 176 73 233 1 11 
8 8 2 8 30 65 2 65 52 159 1 48 74 235 1 10 
9 9 2 9 31 66 2 66 53 160 2 160 75 237 1 9 
10 10 2 10 32 68 2 68 54 175 1 40 76 238 1 136 
11 11 2 11 33 72 2 72 55 176 2 176 77 239 1 8 
12 12 2 12 34 80 2 80 56 183 1 36 78 241 1 7 
13 13 2 13 35 94 1 208 57 187 1 34 79 243 1 6 
14 14 2 14 36 95 1 80 58 189 1 33 80 245 1 5 
15 16 2 16 37 96 2 96 59 190 1 160 81 246 1 132 
16 17 2 17 38 111 1 72 60 191 1 32 82 247 1 4 
17 18 2 18 39 112 2 112 61 192 2 192 83 249 1 3 
18 20 2 20 40 119 1 68 62 207 1 24 84 250 1 130 
19 24 2 24 41 123 1 66 63 208 2 208 85 251 1 2 
20 31 1 112 42 125 1 65 64 215 1 20 86 252 1 129 
21 32 2 32 43 126 1 192 65 219 1 18 87 253 1 1 
22 33 2 33 44 127 1 64 66 221 1 17 88 254 1 128 

 

TABLE IV 
LOOK-UP TABLE SIZES FOR SOME INTEGER (S4/8AEC-DA3/8AEC)32 CODES. 

Code 

Encoder Decoder 
LUT1 LUT1 LUT2 

Size Size Size # of Table 
Lookups 

(512, 480) 60 B 60 B 3.54 MB 1 ≤ nTL ≤ 20 
(544, 512) 64 B 64 B 3.82 MB 1 ≤ nTL ≤ 20 
(1024, 992) 124 B 124 B 7.19 MB 1 ≤ nTL ≤ 21 

(1056, 1024) 128 B 128 B 7.52 MB 1 ≤ nTL ≤ 21 
(2048, 2016) 252 B 252 B 14.58 MB 1 ≤ nTL ≤ 22 
(2080, 2048) 256 B 256 B 15.02 MB 1 ≤ nTL ≤ 22 
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