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Analysis of Proportional Fair Scheduling
Under Bursty On-Off Traffic

Fei Liu, Janne Riihijärvi, and Marina Petrova

Abstract—Proportional fair scheduling (PFS) has been adopted
as a standard solution for fair resource allocation in modern
wireless cellular networks. With the emergence of heterogeneous
networks with widely varying user loads, it is of great importance
to characterize the performance of PFS under bursty traffic,
which is the case in most wireless streaming and data transfer
services. In this letter, we provide the first analytical solution
to the performance of PFS under bursty on-off traffic load. We
use the Gaussian approximation model to derive a closed-form
expression of the achievable user data rates. In order to further
improve the accuracy of our baseline analytical solution for multi-
cell networks, we design a hybrid approximation by employing
multi-interference analysis. The simulation results verify that our
model guarantees extremely low data rate estimation error,which
is further insensitive to changes in session duration, traffic load
and user density.

Index Terms—Proportional fair scheduling, bursty on-off traf-
fic, data rate estimation, multi-interference analysis.

I. I NTRODUCTION

Opportunistic scheduling provides an effective mechanism
to improve transmission performance by exploiting channel
fluctuations in multiuser wireless communication networks[1].
Among various scheduling schemes, proportional fair schedul-
ing (PFS) has been widely adopted since it provides an excel-
lent balance between high throughput and user fairness [2].
Thus performance analysis of PFS is important to provide
guidelines for its optimization and application. In particular,
analytical results can be used for admission control, radio
resource management, network planning, and so on [3].

There have been several related works in the literature which
focus on the performance analysis of PFS under saturated
traffic, where the active user set is static because users always
have data to transmit. We can broadly classify the existing
approaches into two major groups according to their analytical
models of user data rates. The first group is designed for
the single-cell network based on either symmetric relative
fluctuation of user channels [4] or Gaussian approximation
of instantaneous data rates [2]. The second group considers
stochastic signal-to-interference-plus-noise ratio (SINR) dis-
tribution of each user in multi-cell networks and computes
throughput with the conditional probability distributionof the
scheduled SINR under PFS. The stochastic SINR model in [5]
is carefully designed using multi-interference analysis (MIA)
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and achieves more accurate estimation of user throughput in
multi-cell networks compared to the single-cell analysis.

Compared to the saturated traffic model, the bursty traffic
model is more realistic especially for the analysis of dynamic
service quality. It is important for modeling the increasing
web usage which is becoming dominant in mobile networks
nowadays. The packet-level performance has been investigated
in [6] by using processor sharing methodology. However,
their analytical results are limited to the scenarios wherethe
relative fluctuations of user channels are symmetric. On the
other hand, high speed streaming services, such as video on
demand (VOD) and video conferencing, have become more
popular recently. The wireless transmission of these service
types can be modeled as bursty on-off traffic at session
level, which has not yet been considered for the performance
analysis of PFS. Therefore, in this letter, we present the first
analytical solution for the performance of PFS under bursty
on-off traffic. We derive a closed-form expression of user
data rates based on GA. In order to improve the accuracy
of analytical results in multi-cell networks, we then design a
hybrid approximation model by carefully combining GA and
MIA approaches. We compare the analytical performance of
PFS with the results obtained from simulations to verify the
accuracy of our models.

II. SYSTEM MODEL

We consider a downlink network containing multiple base
stations (BSs). We denote the BS in the considered cell asb
and the set of user terminals associated to it as

Ub = {u |u = 1, 2, . . . , |Ub| } . (1)

In each transmitted frame, the BS distributes resource
blocks (RBs) to the associated users with PFS [7]. The PFS
considered in this paper uses the data rate-based scheduling
metric, i.e., the ratio between the instantaneous and long-
term averaged user data rate. We assume flat fading channels
such that the RBs within the considered bandwidth undergo
identical Rayleigh fading. Without loss of generality, we focus
on the performance analysis of PFS with one certain RB. Thus,
the instantaneous received power of the reference signal (RS)
at useru from BS b is modeled as

Pu,b = pbLu,b‖hu,b‖
2, (2)

wherepb is the RS transmit power of BSb, Lu,b is the channel
gain of path loss and shadow fading, andhu,b is the normalized
Rayleigh fading gain of useru from BS b which is modeled
as a circularly symmetric complex Gaussian random variable
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with mean value 0 and covariance 1. Thus,Pu,b is a random
variable with the exponential distribution and its mean value
is given as

pu,b = E [Pu,b] = pbLu,b. (3)

This can be estimated by the detection of RS-received-power
(RSRP) which is the average power of the symbols that carry
cell-specific RSs [7]. A user reports RSRPs to its serving
BS for channel quality detection. Thus, the BSs can make
system decisions, such as for resource allocation and inter-
cell handover, according to the reported information.

The total instantaneous received RS power of useru is

Pu=Pu,b+
∑

i∈Iu

Pu,i+σN , (4)

where Iu is the interfering BS set of useru, including |Iu|
independent inter-cell interferers, andσN is the noise power.
The mean value of the total received power is denoted aspu =
E [Pu], which can be estimated according to the received signal
strength indicator (RSSI). The feedback of RSRPs and RSSIs
from user terminals can be used to estimate the probability
distributions of user SINRs [5]. The instantaneous SINR is
expressed as

Φu=
Pu,b

∑

i∈Iu

Pu,i+σN
. (5)

The data traffic is modeled as a semi-Markov on-off process
that is assumed to be the independent and identically distribu-
ted (i.i.d.) among users. We assume that users can fully utilize
the link capacity during session periods, and hence they always
have data to transmit when they are active underon states. We
use Pareto distribution for modeling the duration of theon state
and exponential distribution for the duration of theoff state,
which are denoted as follows [8]:

Fon (d) = 1−

(
β

d

)α

, d ≥ β, (6)

Foff (d) = 1− exp (λd) , d > 0. (7)

Here parametersα, β andλ decide the characteristics of the
on-off duration distributions. Accordingly, the mean durations
of the two states are given as

Don =
αβ

α− 1
, and (8)

Doff = λ−1. (9)

The traffic load is defined as the duty cycle of the on-off
process, which can be calculated as

ρ =
Don

Don +Doff
=

[

1 +
α− 1

αβλ

]−1

. (10)

Specifically, whenρ = 1, the traffic in the system is saturated.

III. A NALYSIS OF PFS USING GA

Under bursty on-off traffic, the active user set is dynamic
due to the constant changes of user states. However, it keeps
steady within the session duration which is still relatively
much larger than the RB scheduling period. Thus, we can
calculate the achievable date rate of a user under every possible
combinations of the active users and their corresponding prob-
abilities. The average throughput of the user is the weighted
sum of these data rates in terms of the probabilities, which is
calculated as

Ru (Ub, ρ) = ruρ
∑

u∈(V⊆Ub)

[
Gu (V)

|V|
ρ|V|−1(1− ρ)|Ub|−|V|

]

,

(11)
whereru is the average data rate of useru while it is scheduled
alone,Gu (V) is the PFS performance gain over the round-
robin (RR) scheduling under saturated traffic when useru is
active along with other users inV. When the total number of
users is high, the computational complexity of (11) is large
sinceGu (V) is different for each subsetV that satisfiesu ∈
(V ⊆ Ub). Therefore, it needs to be calculated independently
for each of the2(|Ub|−1) possible cases.

With the aim of tractable analysis,Gu (V) can be approx-
imated so that the effect ofV on Gu (V) is only through the
number of users in it. To this end, the instantaneous user data
rates are modeled with the Gaussian distribution in [2]. An
alternative approach is assuming that the normalized ratesare
i.i.d and linear in SINR [6]. The former one is referred to as
GA and is adopted in this paper due to its higher estimation
accuracy for multi-cell networks, which is compared with the
latter one below.

The performance gain of PFS over RR under saturated
traffic is estimated with GA as

G̃u (Ub) = 1 +
σu

ru

∫ 1

0

zd
[
F(0,1) (z)

]|Ub|, (12)

whereF(0,1) (z) is the cumulative distribution function (CDF)
of the standard normal distribution,σu is the standard devia-
tion of the user data rate.ru andσu are calculated according
to (3) and (4) in [2].

Denoting the integral in (12) asL (N), i.e.,

L (N) =

∫ 1

0

zd
[
F(0,1) (z)

]N
, (13)

the estimated performance gain in (12) is rewritten as

G̃u (Ub) = 1 +
σu

ru
L (|Ub|) . (14)

Substituting this into (11), we solve the closed-form expres-
sion of user throughput as

R̃u (Ub, ρ) = ruρ
∑

u∈(V⊆Ub)

[

G̃u (V)

|V|
ρ|V|−1(1− ρ)

|Ub|−|V|

]

= ru

|Ub|∑

n=1

[(
|Ub| − 1
n− 1

)
1 + σur

−1
u L (n)

n
ρn(1− ρ)

|Ub|−n

]

=
ru
|Ub|

[

1− (1− ρ)
|Ub|

]

+
σu

|Ub|
l (|Ub| , ρ) , (15)
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Fig. 1. Error of the GA-based data rate
estimation under bursty on-off traffic.
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Fig. 2. Error of the GA-based data rate
estimation under saturated traffic.
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Fig. 3. Error of estimated data rate with
the model in [6].

wherel (N, ρ) represents

l (N, ρ) =

N∑

n=1

[(
N
n

)

ρn(1− ρ)
N−n

L (n)

]

. (16)

Specially, under saturated traffic, i.e.,ρ = 1, we have

l (N, 1) = L (N) . (17)

The average data rate with RR scheduling is calculated as

R∗
u (Ub, ρ) =

ru
|Ub|

[

1− (1− ρ)
|Ub|

]

. (18)

According to (15) and (18), we obtain the performance gain
of PFS over RR under bursty on-off traffic as

g̃u (Ub, ρ) = 1 +
σu

ru
l (|Ub| , ρ)

[

1− (1− ρ)
|Ub|

]−1

. (19)

Specially, whileρ = 1, i.e., under saturated traffic,

g̃u (Ub, 1) = G̃u (Ub) . (20)

We use system-level simulations to evaluate the accuracy of
the GA-based data rate estimation. The network configurations
are identical with those in [5], and the scenario is analogous to
the urban area of Berlin. The average number of user terminals
per cell is 20 and they are uniformly randomly distributed over
the cell areas. We setα = 1.5 andβ = 10 s for the on state,
and thusDon = 30 s. λ is set according to the test traffic load
ρ. The error of the GA-based data rate estimation is presented
in Fig. 1. When the traffic load is low, the estimation error is
very small. However, it increases significantly with the traffic
load. We calculate the estimation error with various numbers
of users per cell under saturated traffic as shown in Fig. 2. The
GA-based approach results in larger deviation when there are
more users. The chance ofon state is large when the traffic
load is high in the busty traffic scenario. Therefore, more
users are likely to be active simultaneously and the estimation
error increases in Fig. 1. The error of the estimated data rate
by using the model in [6] is also presented in Fig. 3. This
model results in worse estimation performance that has both
an underestimation bias and much larger deviation compared
to the GA-based analysis.

IV. A NALYSIS OF PFS USING HYBRID APPROXIMATION

In order to remedy the shortcomings of GA under heavy
traffic load and improve the estimation accuracy in multi-
cell networks, we use the more accurate analytical model
in [5]. This model is developed based on the multi-interference
analysis and outperforms GA in terms of estimation accuracy
under saturated traffic. Different from the GA model, MIA
calculates the performance gain of a subsetV considering
the specific users in it instead of only the number of users.
Therefore, it cannot be extended directly for bursty traffic
analysis due to the combinatorial complexity problem that
we explained after (11). We design a hybrid approximation
(HA) by using MIA in the saturated traffic case (ρ = 1) and
combining it with the GA-based estimation under bursty traffic
(ρ < 1).

Before formulating the HA model, we briefly introduce
MIA. It considers multiple independent interference signals
separately. The CDF and probability distribution function
(PDF) of instantaneous user SINR under Rayleigh fading
channel are derived in [5] as

FΦu
(φ) =P {Φu < φ}

=1− exp

[

−
φσN

pu,b

]
∏

i∈Iu

(
pu,i
pu,b

φ+ 1

)−1

, (21)

fΦu
(φ) = [1− FΦu

(φ)]

[

σN

pu,b
+

∑

i∈Iu

(

φ+
pu,b
pu,i

)−1
]

,

φ > 0. (22)

Based on this stochastic SINR model, we calculate the average
user data rate under saturated traffic with MIA as

Ru (Ub) =
∫ ∞

0

r (φ)fΦu
(φ)

∏

v∈(Ub/u)

FΦv

(

r−1

(
r (φ)Rv (Ub)

Ru (Ub)

))

dφ,

(23)

wherer (φ) is the data rate mapping function which is based
on the Shannon capacity as in the GA-based estimation [2].

By combining the GA- and MIA-based approaches, we
design a hybrid approximation (HA) as follows. We denote
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ĝu (Ub, ρ) = 1 + (1− ρ) η̃u (Ub, ρ) + ρ
η̃u (Ub, ρ)

η̃u (Ub, 1)
︸ ︷︷ ︸

(a)

[
Gu (Ub)− 1

]

︸ ︷︷ ︸

(b)

. (25)
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Fig. 4. Error of the estimated data rate with HA under bursty on-off traffic.
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the increment part of the estimated performance gain in (19)
as η̃u (Ub, ρ), i.e.,

g̃u (Ub, ρ) = 1 + η̃u (Ub, ρ) . (24)

We consider a hybrid strategy which uses the GA-based
results under low traffic load and the MIA-based ones under
high traffic load. In this way, the inaccuracy of GA can be
remitted while the number of active users is high. Thus, the
proposed HA model is formulated as in (25), whereGu (Ub)
is the performance gain calculated by MIA under saturated
traffic, i.e.,

Gu (Ub) = Ru (Ub) /R
∗
u (Ub, 1) . (26)

In (25), the performance increment estimated by GA, i.e.,
η̃u (Ub, ρ), is weighted by(1− ρ). Item (a) is a ratio of
the performance increment between unsaturated and saturated
traffic, while item (b) is the performance increment estimated
by MIA under saturated traffic. The combination of (a) and
(b) is weighted byρ.

Specifically, we have the limiting values as

ĝu (Ub, ρ)|ρ→0 = g̃u (Ub, ρ) , and (27)

ĝu (Ub, 1) = Gu (Ub) . (28)

Thus, HA yields identical results under extremely low and
high traffic load with GA and MIA models, correspondingly.

The simulation results of our HA model are shown in
Fig. 4. It achieves significant improvement in terms of data

rate estimation accuracy, especially under high traffic load.
In addition, the HA model is tested with more transient
session periods, i.e.,Don = 6 s. In comparison with the case
whereDon = 30 s, the estimation errors vary only slightly,
indicating that the accuracy of the HA model is not sensitive
to the change of session duration. We further investigate the
estimation accuracy withρ = 0.5 since the estimation error
is larger under median traffic load as shown in Fig. 4. The
simulation results with various numbers of users are presented
in Fig. 5. The estimation error is always within±5% with
various numbers of users per cell, which is a significant
reduction in comparison with the pure GA-based approach.
Thus, the HA model is much more accurate for practical
applications.

V. CONCLUSIONS

In this letter, we derived the first analytical solution for
estimating user data rates of PFS under bursty on-off traffic.
We used Gaussian approximation to solve the closed-form
expression of user data rates. The simulation results show that
GA-based analysis is accurate under low traffic load. However,
the estimation accuracy declines significantly as the number
of active users increases. In order to improve the accuracy
of data rate estimation in multi-cell network, we developeda
hybrid approximation by employing MIA combined with GA
as the traffic load increases. The simulation results verifythat
this approach increases the estimation accuracy significantly.
The errors of the analytical results are lower than5% and are
shown to be insensitive to changes in session duration, traffic
load and user density.
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