
ar
X

iv
:1

70
1.

07
16

8v
1 

 [c
s.

IT
]  

25
 J

an
 2

01
7

X-duplex Relaying: Adaptive Antenna Configuration

Shuai Li∗, Mingxin Zhou∗, Jianjun Wu∗, Lingyang Song∗,

Yonghui Li†, and Hongbin Li∗

∗ School of Electronics Engineering and Computer Science,

Peking University, Beijing, China

(E-mail: shuai.li.victor, mingxin.zhou, just, lingyang.song, lihb@pku.edu.cn)

†School of Electrical and Information Engineering,

The University of Sydney, Australia

(E-mail: yonghui.li@sydney.edu.au)

Abstract

In this letter, we propose a joint transmission mode and transmit/receive (Tx/Rx) antenna configuration scheme

referred to as X-duplex in the relay network with one source,one amplify-and-forward (AF) relay and one destination.

The relay is equipped with two antennas, each of which is capable of reception and transmission. In the proposed

scheme, the relay adaptively selects its Tx and Rx antenna, operating in either full-duplex (FD) or half-duplex (HD)

mode. The proposed scheme is based on minimizing the symbol error rate (SER) of the relay system. The asymptotic

expressions of the cumulative distribution function (CDF)for the end-to-end signal to interference plus noise ratio

(SINR), average SER and diversity order are derived and validated by simulations. Results show that the X-duplex

scheme achieves additional spatial diversity, significantly reduces the performance floor at high SNR and improves

the system performance.

I. INTRODUCTION

Deployment of full-duplex (FD) into relay networks is a promising technology to increase the spectral

efficiency of wireless relay networks [1]. The FD relays can receive and transmit the signal simultaneously

over the same frequency which is contrary to the half-duplex(HD) relay systems requiring two orthogonal

channels. However, the performance of FD relaying is limited by self interference due to the signal leakage

at the FD relay node. Various approaches, including antennaisolation [2], analog cancellation [3], have been

developed to mitigate the self interference and improve theperformance of FD relay systems.

Adaptive mode selection between FD and HD is an effective wayto further improve the system per-

formance. The hybrid FD/HD relaying has been investigated and shown that it can effectively improve

spectral efficiency [4]. The outage probability performance of an optimal relay selection scheme with hybrid

relaying has been analyzed [5]. A joint relay and antenna selection scheme (RAMS) has been proposed
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and considerably improved the system performance [6]. The antenna switching has been introduced into

the full-duplex wiretap channel to enhance physical layer security and obtain the full secrecy diversity

order [8]. When the antennas at relay can be adaptively configured for transmission or reception, there are

four possible transmission modes including two HD and two FDmodes, as depicted in Fig. 1. Due to the

multi-path transmission of the signal leaked from the transmit antenna to the receive antenna at FD node,

the residual self interference (RSI) can be modeled as Rayleigh distribution with effective self interference

cancellation as [5]–[7]. In this case, the analysis becomesnon-trivial.

In this letter, we consider a relay system which consists of one source, one destination and one amplify-

and-forward (AF) relay. Given antennas capable of transmission or reception, the relay can dynamically

operate in four modes as shown in Fig. 1. We propose to configure the antennas based on minimizing

the symbol error rate (SER) of the system. The asymptotic cumulative distribution function (CDF) of the

end-to-end signal to interference plus noise ratio (SINR) at the destination is derived. Based on the CDF,

the asymptotic average SER and diversity order are derived and validated by numerical simulations. Results

show that the X-duplex scheme achieves additional spatial diversity, significantly reduces the performance

floor at high SNR and improves the system performance.

II. SYSTEM MODEL

In this paper, we consider a two-hop relay system with one source node (S), one AF relay node (R) and

one destination node (D), as shown in Fig. 1. The source S transmits the information to the destination

D with the help of the relay R, and all nodes operate at the samefrequency. The relay R is equipped

with two antennas, denoted by A and B, where each antenna is able to transmit/receive the signal. Based

on the instantaneous channel state information (CSI) and RSI, the relay adaptively chooses which antenna

to transmit/receive to optimize the system performance. For simplicity and without loss of generality, we

assume that Tx and Rx antenna at relay remain unchanged in onetime slot.

This system can operate in four modes, FD mode A, HD mode A, FD mode B and HD mode B. In FD

mode A, relay R set antenna A as Rx antenna and antenna B as Tx antenna. Relay R operates at FD mode,

i.e., antenna A receives and antenna B transmits signal simultaneously in one time slot. In HD mode A, the

Tx/Rx antenna is the same and relay R operates at HD mode: source S transmits the signal to relay in the

first half of one time slot and relay forwards the signal to destination D in the second half of one time slot.

In FD/HD mode B, the Tx/Rx antenna at relay is swapped compared with FD/HD mode A.

The channels between the source and relay are denoted ash1, h2 and the channels between the relay

and destination are denoted ash3, h4. The RSI channel from antenna B to antenna A is denoted ash1
SI ,

and the RSI channel from antenna A to antenna B ash2
SI . All the channels are assumed to follow block

Rayleigh fading, where each channel remains unchanged in one time slot and varies from one slot to another
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Fig. 1: System model

independently [5]–[7]. The SINR of each mode can be expressed as

γfda
=

X1PRγ4
X1 + PRγ4 + 1

, γhda
=

PSPRγ1γ4
PSγ1 + PRγ4 + 1

,

γfdb
=

X2PRγ3
X2 + PRγ3 + 1

, γhdb
=

PSPRγ2γ3
PSγ2 + PRγ3 + 1

, (1)

wherePS andPR are the transmit power of the source and relay.nR is the additive white Gaussian noise

(AWGN) with varianceσ2. γi = |hi|2/σ2, i ∈ {1, 2, 3, 4}, γj
SI = |hj

SI |2/σ2, j ∈ {1, 2}, X1 = PSγ1
PRγ1

SI+1
,

X2 =
PSγ2

PRγ2
SI+1

. The channel gainγi is modeled as exponential distribution with average meanλi and SNR

γj
SI follows Rayleigh distribution with average meanλj

R. In this paper, we assume the two RSI channels

identical due to the same self interference cancellation module in two FD modes,λ1
R = λ2

R. The CSIs ofhi

andhj
SI can be measured by standard pilot-based channel estimationand sufficient training, and transmitted

to the decision node through reliable feedback channels [4], [5]. We assume perfect CSI in this paper.

To optimize the system performance, the X-Duplex can be reduced to one of the four modes with different

antenna mode configurations. The average SER with link SINRγ can be written asSER = a1E[Q(
√
2a2γ)]



[9]. The optimal Tx/Rx mode and duplex mode is determined based on the minimal SER criterion.

mode = argmin
{

SER
}

= argmax {γ̃fda
, γ̃fdb

, γ̃hda
, γ̃hdb

} , (2)

where γ̃ is the end-to-end SINR of each mode. As the equivalent end-to-end SINR of HD mode can be

written asγ̃ =
√
γ + 1− 1 [4], the SINR of the X-Duplex relay system can be given as

γmax = max{γfda
, γfdb

,
√

γhda
+ 1− 1,

√

γhdb
+ 1− 1}. (3)

III. PERFORMANCE ANALYSIS

In this section, we derive the CDF of the X-duplex relay system and analyze the system performance,

including the average SER and diversity order.

A. Average SER Analysis

The average SER with link SINRγ can be computed as [9]

SER = a1E[Q(
√

2a2γ)] =
a1
√
a2

2
√
π

∞
∫

0

e−a2γ

√
γ

Fγ(γ)dγ, (4)

whereFγ(·) is the CDF ofγ, Q(·) is the Gaussian Q-Function [10],(a1, a2) denote the modulation formats.

Proposition 1: The asymptotic CDF of the end-to-end SINR of the X-duplex system γmax can be given

as

Pr(γmax < x) = (1− I1 + I2) · (1− I3 + I4) , (5)

I1 =
1

1 + η1x

[

β1
1K1(β

1
1)e

−C1x + η1xβ
1
2K1(β

1
2)e

−β1
3

]

,

I2 =
2η1(x

2 + x)

λ4PR(1 + η1x)
2

[

K0(β
1
1)e

−C1x −K0(β
1
2)e

−β1
3

]

,

I3 =
1

1 + η2x

[

β2
1K1(β

2
1)e

−C2x + η2xβ
2
2K1(β

2
2)e

−β2
3

]

,

I4 =
2η2(x

2 + x)

λ3PR(1 + η2x)
2

[

K0(β
2
1)e

−C2x −K0(β
2
2)e

−β2
3

]

,

β1
1 = 2

√

x+ x2

λ1λ4PSPR
, β1

3 = C1(x
2 + 2x) +

x+ 1

η1λ1PS
,

β2
1 = 2

√

x+ x2

λ2λ3PSPR
, β2

3 = C2(x
2 + 2x) +

x+ 1

η2λ2PS
,

β1
2 = 2

√

(x2 + 2x)
2
+ x2 + 2x+ 1

η1
(x+ 1)(x2 + 2x)

λ1λ4PSPR
,

β2
2 = 2

√

(x2 + 2x)
2
+ x2 + 2x+ 1

η2
(x+ 1)(x2 + 2x)

λ2λ3PSPR
,

whereη1 =
λ1
R
PR

λ1PS
, C1 = 1

λ1PS
+ 1

λ4PR
, η2 =

λ2
R
PR

λ2PS
, C2 = 1

λ2PS
+ 1

λ3PR
, K1(·), K0(·) are the first and zero

order Bessel function of the first and second kind [10].

Proof: The deviation is given in Appendix A.



SER ≈ a1
√
a2

2
√
π

{√

π

a2
−
√

π

η1
e

a2+C1
η1 Γ(

1

2
,
a2 + C1

η1
)−

√

π

η2
e

a2+C2
η2 Γ(

1

2
,
a2 + C2

η2
) +

√
π

η1 − η2
F3 − η1e

− 1
λ1PSη1 F(

3

2
, C1, µ1, η1)

−η2e
− 1

λ2PSη2 F(
3

2
, C2, µ

2
1, η2) +

η1e
− 1

λ1PSη1

η1 − η2
F2(

3

2
, C1, µ2) +

η2e
− 1

λ2PSη2

η1 − η2
F2(

3

2
, C2, µ

2
2) +

η1η2e
− 1

λ1PSη1
− 1
λ2PSη2

η1 − η2
F2(

5

2
, C2, µ3)

}

,

(6)

F(v, β, γ, t) = (2β)−
v
2Γ (v)D−v(

γ + t√
2β

)e
(γ+t)2

8β − 1

2
t2(2β)−

v
2−1Γ(v + 2)D−v−2(

γ + 5
3 t√

2β
)e

(γ+5
3
t)

2

8β , (7)

Proposition 2: The asymptotic average SER of the X-duplex systemγmax is given in (6).

In (6), µ1 = 2C1 + a2 +
1

λ1PSη1
, µ2

1 = 2C2 + a2 +
1

λ2PSη2
, µ2 = µ1 + C2,µ2

2 = µ2
1 + C1,µ3 = 2C1 +

2C2+a2+
1

λ1PSη1
+ 1

λ2PSη2
, F2(v, β, γ) = η1F(v, β, γ, η1)−η2F(v, β, γ, η2), F3 =

√
η1e

C1+C2
η1 Γ(1

2
, C1+C2

η1
)−

√
η2e

C1+C2
η2 Γ(1

2
, C1+C2

η2
), Γ(·) is the Gamma Function,Γ(a, x) is the incomplete Gamma Function,Dp(·) is

the Parabolic Cylinder Function [10].

Proof: The deviation is given in Appendix B.

When SNR goes infinite, the CDF of FD mode A approachesPr(γfda < x) = 1− 1
1+η1x

. With (4) and [10,

eq.(3.383.10)], the lower bound of the SER can be obtained asSERSNR→∞ =
a1

√
a2

2
√
πη1

e
1

η1
a2Γ(3

2
)Γ(−1

2
, 1
η1
a2).

Compared with FD mode, the X-duplex scheme reduces the errorfloor and achieves lower SER in the high

SNR region.

B. Diversity Order Analysis

According to [11, eq.(10.30)], whenz comes close to zero,K1(z) function converges to1
z
, and the value

of K0(z) is comparatively small. Therefore, at high SNR, the outage probability of X-duplex relay system

can be approximated as

Pout(x) = (1−e−C1x + η1xe
−β1

3

1 + η1x
) · (1−e−C2x + η2xe

−β2
3

1 + η2x
), (8)

when SNR goes infinite, the outage probability of X-duplex relay system comes to zero.

We assume the identical transmit power of source and relay,PS = PR = Pt and λ1 = λ2, λ3 =

λ4, λ
1
R = λ2

R, the finite SNR diversity order of X-duplex system can be derived with d(λ) = −∂ lnPout(λ)
∂ lnλ

=

− λ
Pout(λ)

∂Pout(λ)
∂λ

[6] as

dXD ≈ Pt · ∂[2(1 + η1x)M −M2]/∂Pt

(1 + η1x)
2− 2(1 + η1x)M +M2

,M = e−
2ρ1
Pt + η1xe

−
2ρ2
Pt , (9)

whereC3 = 1
λ1

+ 1
λ4

, ρ1 = C3x, ρ2 = C3(x
2 + 2x) + x+1

η1λ1
. At high SNR, with Taylor’s formulae−x ≈

1− x+ 1
2
x2 − 1

6
x3 + ..., we can derivedXD ≈ 1

Pt

1

Pt
(2ρ12+2η12x2ρ22+4η1xρ1ρ2)+o(Pt

−2)
1

Pt
2 (ρ1

2+η12x2ρ22+2η1xρ1ρ2)+o(Pt
−3)

. When SNR goes infinite,

dXD approaches two.



With (17), (18), (21) and Taylor’s formulae−x ≈ 1− x, the diversity order of HD mode A, FD mode A

and hybrid FD/HD scheme (HY) proposed in [4] can be derived as

dHDa
=

1

Pt

C3(x
2 + 2x) · e−C1(x

2+2x)

1− e−C1(x2+2x)
≈ 1− C3(x

2 + 2x)

Pt
, (10)

dFDa
=

1

Pt

C3
x

1+η1x
e−C1x

1− 1
1+η1x

e−C1x
≈

1− x
Pt
C3

1 + Ptη1

C3

≤ 1− x

Pt
C3, (11)

dHY ≈ 1− 1

Pt

(C3x)
2
+ η1x

(

C3(x
2 + 2x) + x+1

η1λ1

)2

C3x+ η1xC3(x2 + 2x) + η1x
x+1
η1λ1

. (12)

Remark 1. When SNR goes infinite, the diversity order of HD and HY schemeapproaches one. Thus, the

X-duplex relay achieves nearly double diversity order compared with HD mode and HY scheme at high

SNR.

IV. SIMULATION RESULTS

In this section, we present the performance of the X-duplex relay system. Without loss of generality, we

assume equal power allocationPS = PR, set all channel gainsλi to one, andη = η1 = η2. We consider

BPSK modulation and set the thresholdR0 as 2 bps/Hz.

Fig. 2 plots the numerical and analytical results of the outage probability and average SER performance of

the X-duplex relay system. The performance of pure FD or HD mode, HY [4], and RAMS [6] are plotted for

comparison. The simulated outage probability and SER curves tightly match with the expressions in (8), (6).

It can be observed that the proposed X-duplex considerably improves system performance and outperforms

the other schemes. In the medium SNR, the diversity order of X-duplex is higher than the pure FD or HD

mode, and HY scheme. At high SNR, the performance floor in FD mode and RAMS scheme caused by RSI

is significantly reduced in the X-duplex scheme. This is because the X-duplex benefits from the HD mode,

whose performance is irrelevant to RSI and improves with theincrease of transmit power, thus the impact

of the performance floor in FD mode on X-duplex relaying system is mitigated with the increase of SNR.

Fig. 3 compares the finite SNR diversity order of the X-duplexscheme with the conventional pure FD and

HD mode, RAMS and HY scheme. The diversity order of X-duplex scheme is higher than other schemes

and approaches two at high SNR, which is twice that of HD mode or HY scheme with fixed antennas,

which is consistent with remark 1. We can observe that the diversity order of FD mode and RAMS scheme

increases to the extreme point in medium SNR, where the influence of RSI on the SINR of FD mode is still

small and limited. The curve of RAMS approaches that of X-duplex as FD is more likely to be selected

in this region. As SNR continually increases, the impact of RSI on the FD mode gets more severe and

the diversity order of FD and RAMS gradually decreases. It isshown that the diversity order of FD mode

and RAMS decreases to zero at high SNR due to RSI, thus the performance floor exists at high SNR. By



0 5 10 15 20 25 30 35 40
Transmit power [dB]

10-6

10-4

10-2

100

O
ut

ag
e 

P
ro

ba
bi

lit
y

Simulated,XD
Analytical,XD

Simulated,FD
a

Simulated,HD
a

Simulated,FD
b

Simulated,HD
b

RAMS
HY

0 5 10 15 20 25 30 35 40
Transmit power [dB]

10-8

10-6

10-4

10-2

100

S
E

R

Simulated,XD
Analytical,XD

Simulated,FD
a

Simulated,HD
a

Simulated,FD
b

Simulated,HD
b

RAMS
HY

Fig. 2: Outage probability and average SER of X-duplex relaysystem versus the transmit power whenη= 0.01.

adaptively switching among the four modes, the X-duplex scheme significantly reduces the performance

floor and achieves additional spatial diversity.

V. CONCLUSIONS

In this letter, we proposed a joint transmission mode and Tx/Rx antenna configuration scheme for the

relay network where the relay is equipped with two antennas capable of transmission or reception. In the

proposed scheme, the relay adaptively configures its Tx/Rx antenna and duplex mode to minimize the SER.

The asymptotic average SER expression and diversity order were derived and validated by simulations. Both

analysis and simulations demonstrated that the X-duplex scheme improves the system performance, achieves

almost twice diversity order and significantly reduces the performance floor compared to conventional relay

schemes.

APPENDIX A: PROOF OFPROPOSITION1

First, the set{γmax < x} can be transformed into{γfda < x, γfdb < x, γhda < x2 + 2x, γhdb < x2 + 2x}.

As the probability of set{γfda < x, γhda < x2 + 2x} only contains the probabilities ofγ1, γ4, γ1
SI , which
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are independent fromγ2, γ3, γ2
SI in {γfdb < x, γhdb < x2 + 2x}. The probabilityP ∗ = Pr(γmax < x) can

be further written as

P ∗=Pr(γfda
< x, γhda

< x2 + 2x) ·Pr(γfdb
< x, γhdb

< x2 + 2x). (13)

DenotingP 1 = Pr(γfda < x, γhda < x2 + 2x), we can write

Pr(γfda
< x, γhda

< x2 + 2x) = 1− Pr(γfda
> x)

− Pr(γhda
> x2 + 2x) + Pr(γfda

> x, γhda
> x2 + 2x). (14)

The probabilityPr(γfda
> x) = Pr((X1 − x)(PRγ4 − x) > x2 + x) can be derived as

Pr(γfda
> x) =

1

λ4

∞
∫

x/PR

e
− 1

PSλ1
(x+ x2+x

PRγ4−x
)− 1

λ4
γ4

1 + η1(x + x2+x
PRγ4−x )

dγ4, (15)

at high SNR, we use the following approximation
1

1 + η1(x+ x2+x
PRγ4−x)

≈ 1

1 + η1x
(1− η1

1 + η1x

x2 + x

PRγ4 − x
), (16)

With [10, eq.(3.471.9)],Pr(γfda > x) is obtained. The probabilitiesPr(γhda > x2 + 2x) andPr(γfda > x)

can be derived as

Pr(γhda
> x2 + 2x)=β1

0K1(β
1
0)e

−C1(x
2+2x), (17)

Pr(γfda
> x) ≈ β1

1K1(β
1
1)

1 + η1x
e−C1x − α1K0(β

1
1)e

−C1x, (18)



whereβ1
0 = 2

√

(x2+2x)2+x2+2x
λ1λ4PSPR

, α1 = 2η1(x
2+x)

λ4PR(1+η1x)
2 .

The set{γfda > x, γhda > x2+2x} can be transformed into{γ4 > x
PR

, γ4 >
x2+2x
PR

, γ1 >
PRγ1

SI+1

PS
h(γ4), γ1 >

1
PS
g(γ4)} whereh(γ) = x+ x+x2

PRγ−x
, g(γ) = x2+2x+ (x2+2x)

2
+x2+2x

PRγ−x2−2x
. As the value ofγfda , γhda are positive

definite, we only consider the case whenx > 0. Therefore, the set{γfda > x, γhda > x2 + 2x} can be further

simplified as{γ4 > x2+2x
PR

, γ1 >
PRγ1

SI+1

PS
h(γ4), γ1 >

1
PS
g(γ4)}.

We define δ = 1
PS

[

(PRγ
1
SI + 1)h(γ2)− g(γ2)

]

. when δ > 0 , γ1
SI > xγ4+γ4

PRγ4−x2−2x
,when δ < 0 , 0 <

γ1
SI < xγ4+γ4

PRγ4−x2−2x
. Thus,Pr{γfda

> x, γhda
> x2 + 2x} splits into two sub-probabilities,L1 = Pr{γ4 > x2+2x

PR
, γ1 >

PRγ1
SI+1
PS

h(γ4), γ
1
SI > xγ4+γ4

PRγ4−x2−2x} and L2 = Pr{γ4 > x2+2x
PR

, γ1 > 1
PS

g(γ4), 0 < γ1
SI < xγ4+γ4

PRγ4−x2−2x}. With the

approximation in (16), and 1
γ4−x/PR

≈ 1
γ4−(x2+2x)/PR

at high SNR, [10, eq.(3.324.1)] and [10, eq.(3.462.20)],

L1, L2 can be derived as

L1=
β1
2

1 + η1x
K1(β

1
2)e

−β1
3 − α1K0(β

1
2)e

−β1
3 , (19)

L2= β1
0K1(β

1
0)e

−C1(x
2+2x) − β1

2K1(β
1
2)e

−β1
3 . (20)

With (17), (18), (19), (20), the probabilityP 1 is given as

P 1 = 1− 1

1 + η1x

[

β1
1K1(β

1
1)e

−C1x + η1xβ
1
2K1(β

1
2)e

−β1
3

]

+
2η1(x

2 + x)

λ4PR(1 + η1x)
2

[

K0(β
1
1)e

−C1x −K0(β
1
2)e

−β1
3

]

. (21)

Similarly P 2 = Pr(γfdb < x, γhdb < x2+2x) can be derived. With (13), proposition 1 is proved. Due to the

approximations used in (18), (19), the derived CDF (5) is an approximate and asymptotic expression and is

quite accurate at high SNR.

APPENDIX B: PROOF OFPROPOSITION2

After substituting (5) into (4) and adopting the approximation in the high SNR region thatK1(z) converges

to 1
z
, and that the value ofK0(z) is comparatively small [11, eq.(10.30)], which can be ignored for asymptotic

analysis. We can derive

SER ≈ a1
√
a2

2
√
π

∞
∫

0

e−a2x

√
x

{

1− e−C1x + η1xe
−β1

3

1 + η1x
− e−C2x + η2xe

−β2
3

1 + η2x

+
e−C1x−C2x + η1xe

−β1
3−C2x + η2xe

−C1x−β2
3 + η1η2x

2e−β1
3β

2
3

(1 + η1x)(1 + η2x)

}

dx. (22)

With [10, eq.(3.381.4)],S1 =
∞
∫

0

e−a2x√
x
dx = a2

− 1

2Γ(1
2
).

With [10, eq.(3.383.10)],S2 =
∞
∫

0

e−a2x−C1x
√
x(1+η1x)

dx is given as

S2 =
1

η1

∞
∫

0

e−(a2+C1)x

√
x( 1

η1
+ x)

dx =

√

π

η1
e

1
η1

(a2+C1)Γ(
1

2
,
a2 + C1

η1
). (23)



DenotingS3 =
∞
∫

0

η1x·e
−a2x−β1

3
√
x(1+η1x)

dx, when the SNR is high andx is around zero, approximation1
1+x

≈ e−x +

1
2
x2e−

5

3
x [6] is used, with [10, eq.(3.462.1)],S3 is given as

S3≈
∞
∫

0

η1
√
x(e−η1x +

1

2
η1

2x2e−
5
3 η1x)e−a2x−β1

3dx

= η1e
− 1

λ1PSη1
+

µ1
2

8C1 (2C1)
− 3

4Γ(
3

2
)D− 3

2
(

µ1√
2C1

)

+
1

2
η1

3e
− 1

λ1PSη1
+

µ2
2

8C1 (2C1)
− 7

4Γ(
7

2
)D− 7

2
(

µ2√
2C1

). (24)

Similarly, S4 =
∞
∫

0

e−a2x
√
x

e−C2x+η2xe
−β2

3

1+η2x
dx can be derived. For the last part denoted asS5 in (22), with some

mathematical manipulations, the value can be also derived.SubstitutingS1, S2, S3, S4, S5 into (22), (6) can

be obtained. Therefore, proposition 2 is proved.
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