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Abstract—This paper considers wireless-powered cooperative
jamming (CJ) to secure communication between a transmitter
(Tx) and an information receiver (IR), in the presence of an
energy receiver (ER) which is termed as a potential eavesdrop-
per. The full-duplex jammer harvests energy from the Tx’s
information signal and transmits jamming signal at the same
time, where the jamming signal not only confounds the ER
(potential eavesdropper) but also charges the ER. Our goal is
to maximize the secrecy information rate by jointly optimizing
the power allocation at the Tx and jammer while maintaining the
harvested energy requirement of the ER. The studied problem
is non-convex and we propose the optimal solution based on
the Lagrange method. Simulation results show that the proposed
scheme significantly outperforms the benchmark schemes.

Index Terms—Physical layer security, simultaneous wireless
information and power transfer (SWIPT), power allocation,
cooperative jamming (CJ).

I. INTRODUCTION

Recently, physical layer security has been investigated ex-

tensively to secure wireless communications. For the main

methods of physical layer security, artificial noise (AN) and

cooperative jamming (CJ) are very promising. For the former

case, the AN signal is transmitted into the null space of the

desired signal to degrade the wiretap channel [1]. While for

the later the external jammer transmits the jamming signal to

combat against eavesdropping [2].

On the other hand, wireless information and power transfer

becomes an appealing solution to prolong the lifetime of

energy-constraint nodes. However, the energy receivers (ERs)

are usually deployed relatively closer to the transmitter (Tx),

thus the information receivers (IRs) are easily eavesdropped

by the ERs. A handful of works have considered the physical

layer security by wireless energy transfer [3]–[7]. For instance,

in [4], the hybrid base station first charges the energy-free

source and then performs CJ when the source transmits

information to the multiple destinations. In [5], multiple

wireless-powered jammers were used to secure two-hop relay

networks by designing the beamforming matrices. The authors

in [6] conducted wireless power transfer for the jammer and

analyzed the throughput. An “accumulate-and-jam” protocol

was proposed in [7] where the jammer was powered by the

source and secrecy performance metrics were investigated by

Markov chain. Note that the above works require a dedicated

energy signal to power the jammer.
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South China University of Technology, Guangzhou 510641, China (e-mail:
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Fig. 1: System model of the self-powered secrecy SWIPT.

In this paper, we consider the secrecy communication in an

orthogonal frequency division multiplexing (OFDM) based si-

multaneous wireless information and power transfer (SWIPT)

system, which consists of one Tx, one IR, one ER (potential

eavesdropper) and one friendly jammer as shown in Fig. 1. We

assume that the Tx has constant energy and the jammer has no

embedded power supply thus needs to harvest energy from the

Tx. The Tx, IR and ER are equipped with a single-antenna,

while the friendly jammer has two antennas, one for harvesting

energy from the Tx’s information signal to the IR and the other

for transmitting jamming signals to the ER simultaneously

by the full-duplex capability. By assuming that the jamming

signal can be cancelled at the IR but cannot be removed

at the ER (potential eavesdropper), we jointly optimize the

transmit power of the Tx and jammer over subcarriers (SCs)

to maximize the secrecy rate of the IR while satisfying the

energy requirement of the ER. Optimal solution is derived to

solve the non-convex optimization problem. Simulation results

show that the huge superiority of the proposed method over

conventional schemes.

Compared with the works of wireless-powered CJ [4]–[7],

the differences of our paper are three-fold: 1) We consider a

secure SWIPT system where a full-duplex jammer is wireless-

powered by the information signals sent to the IR. There is no

need for dedicated energy signal as in other related works; 2)

By adopting the cancellation mechanism of jamming signal at

the IR, the secrecy performance of the system can be greatly

enhanced; 3) Optimal power allocation of the Tx and jammer

are adapted over SCs to explore frequency flexibility.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider an OFDM-based secrecy SWIPT network con-

sisting a Tx, an IR, an ER (potential eavesdropper) and

a jammer as shown in Fig. 1. The Tx, IR, and ER are

equipped with a single-antenna, while the jammer is equipped

with two antennas with one for energy harvesting and the

other for transmitting jamming signal. That is, when the Tx

http://arxiv.org/abs/1702.05622v1


2

transmits information-bearing signal to the IR, the ER harvests

energy and may intercept the information. Meanwhile, the

jammer uses one antenna to harvest energy from the same

information-bearing signal and the other antenna to transmit

jamming signal simultaneously by using the harvested energy,

thanks to the full-duplex capability. Here it is assumed perfect

isolation between the two antennas at the jammer such that

self-interference cancellation is perfect. Note that a small

time lag is needed at the initial frame for such a full-duplex

system, which can be negligible if the whole duration of the

transmission frame is long enough. It is worth noting that

the jamming signal from the jammer not only jams the ER

(potential eavesdropper) but also acts as a source to power

the ER. We assume that the system has N SCs. The channel

power gains on SC n from the Tx to IR, ER and jammer are

denoted as hI,n, hE,n and hJ,n, respectively, and the channel

power gains from the jammer to IR and ER are denoted as

gI,n and gE,n.

Assume that the total transmit power of the Tx is P and the

power transmitted by the Tx and jammer on SC n are denoted

as pn and qn, respectively. In addition, we consider that there

is a peak power constraint on pn and qn, i.e., 0 ≤ pn ≤ p̄,

0 ≤ qn ≤ q̄ for n = 1, · · · , N . The total transmit power

constraint at the Tx can be given by

N
∑

n=1

pn ≤ P. (1)

As the energy-free jammer is powered by the information

signal sent from the Tx, the transmit power qn of the jammer

is constrained by

N
∑

n=1

qn ≤ ζ

N
∑

n=1

pnhJ,n, (2)

where ζ is energy conversion efficiency and we assume that

ζ = 1 for convenience in the next.

The harvested power at the ER comprises of two compo-

nents with one from the Tx and the other from the jammer,

which should satisfy the minimum requirement Q:

N
∑

n=1

(pnhE,n + qngE,n) ≥ Q. (3)

We assume that the jamming signal transmitted by the

jammer can be cancelled at the IR but cannot be removed at

the ER. This can be practically justified by the similar method

in [8]: A large set of random sequences (jamming signals)

with Gaussian distribution are pre-stored at the jammer and

their indices are the keys. The jammer randomly selects a

sequence (jamming signal) and sends its key to the IR over

each SC n. The key can be sent in a secret manner via channel

independence and reciprocity. As the random sequence is only

known at the IR, any potential eavesdropper cannot access the

random sequence at each SC. With this scheme, the achievable

information rate of the IR and ER on SC n can be respectively

given by

rn = log2

(

1 +
pnhI,n

σ2

)

, ren = log2

(

1 +
pnhE,n

σ2 + qngE,n

)

.

(4)

Then the secrecy rate on SC n is given by

Rn = [rn − ren]
+ =

{

rn − ren, if qn ≥ An

0, otherwise,
(5)

where [·]+ , max(0, ·) and An ,

[

σ2(hE,n−hI,n)
hI,ngE,n

]+

.

We consider the instantaneous secrecy rate maximization

by jointly optimizing the transmit power of the Tx and

jammer while maintaining the energy harvesting requirement

of the ER. The optimization problem can be mathematically

formulated as:

(P1) : max
{pn,qn}

N
∑

n=1

Rn (6a)

s.t. (1) − (3),

0 ≤ pn ≤ p̄, 0 ≤ qn ≤ q̄, ∀n. (6b)

(P1) is non-convex since the rate expression (5) is non-

concave in the power variables. However, it is easy to verify

that (P1) satisfies the so-called time-sharing condition, and

thus (P1) has zero duality-gap. This means that (P1) can be

solved optimally by the Lagrange duality method. In next

section, we apply the Lagrange duality method to solve (P1).

III. OPTIMAL ALGORITHM

At first, the lagrangian of (P1) is expressed as

L({pn}, {qn}, λ, β, µ) =

N
∑

n=1

Rn + λ

(

P −

N
∑

n=1

pn

)

(7)

+ β

( N
∑

n=1

pnhJ,n −

N
∑

n=1

qn

)

+ µ

( N
∑

n=1

(pnhE,n + qngE,n)−Q

)

,

where λ, β and µ are the non-negative dual variables

associated with the corresponding constraints (1), (2) and (3),

respectively. Then, the dual function g(λ, β, µ) of (P1) is

defined as

max
0≤p≤p̄,0≤q≤q̄

L({pn}, {qn}, λ, β, µ). (8)

The dual problem is thus given by

min
λ≥0,β≥0,µ≥0

g(λ, β, µ). (9)

With a given set of {λ, β, µ}, the maximization problem in

(8) can be decomposed into N parallel subproblems all having

the same structure and each for one SC. By dropping the index

n for brevity, each subproblem is given by

L(p, q) = R− λp+ β(phJ − q) + µ(phE + qgE). (10)

In the next, we jointly optimize p and q in two different cases

depending on R ≥ 0 or R = 0 in (5).

When q ≥ A: We define f1(p, q) , ∂L
∂p

, f2(p, q) , ∂L
∂q

and χ(·) is the real nonnegative root of f1(p, q) = 0 and/or

f2(p, q) = 0. Then the optimal solution (p, q) in this case is

given by the following proposition.

Proposition 1: The optimal solution of (P1) with q ≥ A is

given by
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If f1(0, A) ≤ f1(0, q̄) ≤ 0,

p = 0, q =

{

A, if −β + µgE < 0
q̄, otherwise.

If f1(0, q̄) ≥ f1(0, A) ≥ 0










p = p̄, q = χ(f2(p̄, q)), if f1(p̄, A) ≥ 0
(p, q) = χ(f1(p, q), f2(p, q)), if f1(p̄, q̄) ≤ 0
(p, q) = argmax

(p,q)∈Υ1

L(p, q), otherwise,

where Υ1 is denoted as

Υ1 =

{

(p, q) = χ(f1(p, q), f2(p, q)), A ≤ q ≤ χ(f1(p̄, q))
p = p̄, q = χ(f2(p̄, q)), χ(f1(p̄, q)) ≤ q ≤ q̄.

If f1(0, A) ≤ 0 ≤ f1(0, q̄)










(p, q) = argmax
(p,q)∈Υ2

L(p, q), if f1(p̄, q̄) ≤ 0

(p, q) = argmax
(p,q)∈Υ3

L(p, q), otherwise,

where Υ2 and Υ3 are given by

Υ2 =







p = 0, q =

{

A,−β + µgE < 0
χ(f1(0, q)), otherwise.

A ≤ q ≤ χ(f1(0, q))

(p, q) = χ(f1(p, q), f2(p, q)), χ(f1(0, q)) ≤ q ≤ q̄.

Υ3 =











p = 0, q =

{

A,−β + µgE < 0
χ(f1(0, q)), otherwise.

A ≤ q ≤ χ(f1(0, q))

(p, q) = χ(f1(p, q), f2(p, q)), χ(f1(0, q)) ≤ q ≤ χ(f1(p̄, q))
p = p̄, q = χ(f2(p̄, q)), χ(f1(p̄, q)) ≤ q ≤ q̄.

Proof: Please refer to Appendix A.
When q < A: R = 0 in this case, thus (10) becomes a linear

function of p and q. Hence, the optimal solution is given by

p =

{

0, if − λ+ βhJ + µhE < 0,

p̄, otherwise.
q =

{

0, if − β + µgE < 0,

A, otherwise.

Obtaining the optimal p and q in each region, and we can

select the (p∗, q∗) which achieves the largest value of L(p, q)
in (10) as the optimal solution with given dual variables.

Finally, we update the dual variables using ellipsoid method

due to the fact that P −
∑N

n=1 pn,
∑N

n=1 pnhJ,n −
∑N

n=1 qn
and

∑N
n=1

(

pnhE,n+ qnhE,n

)

−Q are the subgradients of λ,

β and µ, respectively.

IV. NUMERICAL RESULTS

We set up N = 64 SCs, the noise power σ2 = −60 dBm

and the pass-loss exponent is 3. The peak power constraints

p̄ = q̄ = 2P/N . The Tx, jammer, and IR are on one straight

line and the distance from the Tx to IR is 20 m. The jammer

moves from the Tx to the IR, and the distance between the

Tx and jammer is denoted as d1. Besides, we assume that

the distance from the Tx to ER is 10 m with 30 degrees.

For comparison, we introduce three benchmark schemes: the

jamming signal cannot be cancelled at both IR and ER (a

near-optimal solution is obtained by block-coordinate descent

method), without jammer, and the equal power allocation

(EPA) applied at both Tx and jammer.

Fig. 2 demonstrates the secrecy rate versus the harvested

energy constraint Q with the total transmit power of Tx set
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Fig. 2: Secrecy rate versus required harvested power, with P = 30 dBm.
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Fig. 3: Secrecy rate versus the total transmit power and d1, with Q = 100µW.

as P = 30 dBm and d1 = 10 m. First, for all schemes,

the secrecy rate is observed to decrease with Q. It is also

observed that the proposed scheme outperforms the other

three benchmark schemes significantly. The EPA shows good

performance with small energy requirement while becomes

infeasible when Q becomes larger (Q > 0.7 mW). Moreover,

the scheme without jammer has the worst performance which

has almost zero secrecy rate. This is because that the ER

is located nearly to the Tx and thus possesses much better

channel gains compared with the IR, thus the secrecy is unable

to be guaranteed.

Fig. 3 illustrates the secrecy information rate versus the the

total transmit power P with the harvested energy requirement

Q = 100 µW and d1 = 10 m. It also shows that the proposed

optimal scheme achieves considerable gain compared with

the other three benchmark schemes. When d1 varies, the

performance of the proposed scheme and EPA are observed

to decrease with the distance d1. This may be because that

the jamming signals become weaker as the harvested energy

of the jammer will decrease with a longer distance d1 even

if the channel gains from the jammer to the IR increases.

Besides, the proposed scheme with AN cancellation at IR can

achieve positive secrecy rate over a wide range compared with

the scheme “IR&ER NoCancel”, which also demonstrates the

superiority of the proposed scheme.

V. CONCLUSION

This paper studied optimal power allocation in secure

OFDM-based SWIPT system with the help of a wireless-
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powered friendly jammer. The joint power allocation of the

Tx and jammer were optimized to maximize the secrecy rate

while satisfying the harvested power constraint. We derived the

optimal solution to solve the considered non-convex problem.

Finally, the superiority of the proposed scheme was verified

by the numerical results.

APPENDIX A

PROOF OF PROPOSITION 1

As we define that

f1(p, q) ,
hI

ln 2(σ2 + phI)
−

hE

ln 2(σ2 + qgE + phE)

− λ+ βhJ + µhE , (11)

f2(p, q) ,
phEgE

ln 2(σ2 + qgE + phE)(σ2 + qgE)
− β + µgE .

(12)

We can easily prove that (11) is a monotonic decreasing

function with p, thus we have f1(p̄, q) ≤ f1(p, q) ≤ f1(0, q).
In addition, f1(p, q) is a monotonic increasing function of q in

[A, q̄]. There are three cases about the sign of f1(0, q) which

will be discussed in the following.

Case I: f1(0, A) ≤ f1(0, q̄) ≤ 0. In this case, f1(p, q) ≤
f1(0, q) ≤ f1(0, q̄) ≤ 0, thus p = 0. Therefore, f2(0, q)
becomes a linear function of q, thus the optimal q can be

given by

q =

{

A, if − β + µgE < 0,

q̄, otherwise.
(13)

Case II: f1(0, q̄) ≥ f1(0, A) ≥ 0. In this case, f1(0, q) ≥
f1(0, A) ≥ 0. In order to figure out the sign of f1(p, q), there

are three subcases for f1(p̄, q) as follows:

• Case II-i: f1(p̄, q̄) ≥ f1(p̄, A) ≥ 0. In this subcase,

f1(p, q) ≥ f1(p̄, q) ≥ f1(p̄, A) ≥ 0, thus the optimal so-

lution of p is p = p̄. Then the solution is q = χ(f2(p̄, q))
which can be found by the bisection over [A, q̄].

• Case II-ii: f1(p̄, A) ≤ f1(p̄, q̄) ≤ 0. In this sub-

case, f1(p̄, q) ≤ f1(p̄, q̄) ≤ 0. The solution is

χ(f1(p, q), f2(p, q)). We can first eliminate p in f2(p, q)
and then find the optimal q by numerical search over

[0, q̄].
• Case II-iii: f1(p̄, A) ≤ 0 ≤ f1(p̄, q̄). In this subcase,

f1(p̄, q) is not always positive or negative. We have

f1(p̄, q) ≥ 0 when q ≥ χ(f1(p̄, q)) and f1(p̄, q) < 0
otherwise. Therefore:

Region 1: A ≤ q < χ(f1(p̄, q)). At this region,

f1(p̄, q) < 0. Similar to Case II-ii, the optimal solution

(p, q) at this region is given by χ(f1(p, q), f2(p, q)).
Region 2: χ(f1(p̄, q)) ≤ q ≤ q̄. At this region, f1(p, q) ≥
f1(p̄, q) ≥ 0. Similar to Case II-i, we have p = p̄ and

q = χ(f2(p̄, q)) which can be found over [χ(f1(p̄, q)), q̄].
The optimal solution can be found via a simple search

over Υ1 which defined as a set consisting the optimal

solutions of the above two regions of case II-iii.

Case III: f1(0, A) ≤ 0 ≤ f1(0, q̄). In this case, f1(0, q)
is not always positive or negative. We can easily get that

f1(0, q) ≤ 0 when q ≤ χ(f1(0, q)) and f1(0, q) > 0
otherwise.

• Case III-i: f1(p̄, A) ≤ f1(p̄, q̄) ≤ 0. In this subcase,

f1(p̄, q) ≤ f1(p̄, q̄) ≤ 0. According to the sign of

f1(0, q), we obtain the optimal p and q in the following

two regions.

Region 1: A ≤ q ≤ χ(f1(0, q)). In this region, f1(p, q) ≤
f1(0, q) ≤ 0 and the optimal p is given by p = 0. Similar

to Case I, the optimal q is given by

q =

{

A, if − β + µgE < 0,

χ(f1(0, q)), otherwise.
(14)

Region 2: χ(f1(0, q)) ≤ q ≤ q̄. In this region, f1(0, q) ≥
0. Similar to Case II-ii, the optimal solution is given by

χ(f1(p, q), f2(p, q)).
Therefore, we define Υ2 consisting the optimal solutions

of the above two region and the optimal solution of this

case can be given by a simple search over Υ2.

• Case III-ii: f1(p̄, A) ≤ 0 ≤ f1(p̄, q̄). In this subcase,

similar to f1(0, q), f1(p̄, q) is not always positive or

negative. Since f1(p̄, q) ≤ f1(0, q), we can easily have

χ(f1(p̄, q)) ≥ χ(f1(0, q)). In the following, We jointly

optimize p and q in the following three regions.

Region 1: A ≤ q ≤ χ(f1(0, q)). In this region, f1(p, q) ≤
f1(0, q) ≤ 0, thus the optimal p is given by p = 0, and

the optimal q is given by (14).

Region 2: χ(f1(0, q)) ≤ q ≤ χ(p̄, q)). In this region,

f1(0, q) ≥ 0 and f1(p̄, q) ≤ 0. Similar to Case II-ii, we

have χ(f1(p, q), f2(p, q)) as the solution of this region.

Region 3: χ(f1(p̄, q)) ≤ q ≤ q̄. In this region, f1(p, q) ≥
f1(p̄, q) ≥ 0. Similar to Case II-i, we have p = p̄ and q =
χ(f2(p̄, q)) which can be obtained over [χ(f1(p̄, q)), q̄].
As a result, the optimal solution of Case III-ii can be

found over Υ3 which consisting the three solutions given

in the above regions.
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