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Energy Efficiency in Cell-Free Massive MIMO with

Zero-Forcing Precoding Design
Long D. Nguyen, Trung Q. Duong, Hien Q. Ngo, and Kamel Tourki

Abstract—We consider the downlink of a cell-free massive
multiple-input multiple-output (MIMO) network where numer-
ous distributed access points (APs) serve a smaller number of
users under time division duplex operation. An important issue
in deploying cell-free networks is high power consumption, which
is proportional to the number of APs. This issue has raised
the question as to their suitability for green communications in
terms of the total energy efficiency (bits/Joule). To tackle this,
we develop a novel low-complexity power control technique with
zero-forcing precoding design to maximize the energy efficiency of
cell-free massive MIMO taking into account the backhaul power
consumption and the imperfect channel state information.

I. INTRODUCTION

Cell-free massive multiple-input multiple-output (MIMO)

has been considered as a potential technology in 5G com-

munication, for its ability to offer uniformly good service

to all users [1]. In cell-free massive MIMO, a number of

single-antenna users are randomly located in a wide network

area, and are coherently served by numerous low power and

distributed access points (APs) [1], [2]. Cell-free massive

MIMO can be implemented with simple linear processing

such as conjugate beamforming (CB) [1], [3] and zero-forcing

(ZF) [3]. The CB technique is very simple, and has low

backhaul requirements [1], [2]. However, it suffers from high

inter-user interference. By contrast, ZF processing has higher

implementation complexity with higher backhaul requirement,

but it can deal with the inter-user interference [3].

By exploiting a massive number of APs in large-scale

networks, energy efficiency (EE) performance in terms of

bits/Joule is a major figure-of-merit which has been neglected

in most of previous works on cell-free networks [1], [2].

It is therefore of paramount importance to design precoding

techniques improving the EE performance of cell-free massive

MIMO. The largest proportion of total utilized energy is

exploited at APs for data transmission power, power con-

sumption of circuit and the power consumption via backhaul

network [4]. Hence, it is critical to meet the ratio of green

transmitted bits and total power consumption as a definition

of EE performance. Furthermore, the transmitted bits need

to satisfy the quality-of-service (QoS) which guarantees the

minimum spectral efficiency.

In this paper, we consider a low-complexity ZF precoding

design which handles the inter-user interference in cell-free

massive MIMO. By our proposed process, the EE maxi-

mization problem is low-complexity and only forms as a

This work was supported in part by the U.K. Royal Academy of Engineer-
ing Research Fellowship under Grant RF1415\14\22 and by U.K. EPSRC
under Grant EP/P019374/1.

L. D. Nguyen, T. Q. Duong, and H. Q. Ngo are with Queen’s University
Belfast, Belfast, U.K. (email: {lnguyen04, trung.q.duong, h.ngo}@qub.ac.uk)

Kamel Tourki is with France Research Center, Huawei Technologies Co.
(e-mail: kamel.tourki@huawei.com)

power allocation problem. We formulate an EE maximization

problem with multiple constraints where we propose simple

path-following algorithms. Our proposed algorithms only need

a few iterations to converge to a locally optimal solution.

Notation: Boldface upper and lowercase letters denote ma-

trices and vectors, respectively. The transpose complex con-

jugate and conjugate-transpose of matrix XXX are respectively

represented by XXXT , XXX∗ and XXXH . IIIM stands for the identity

matrix of size M ×M . ||xxx||2 = 〈x,x〉 is the squared norm of

x. diag(xxx) defines a diagonal matrix with elements of xxx on its

diagonal. diag(XXX) denotes a vector of diagonal elements of XXX .

xxx[:,j] and xxx[i,:] represent the jth column and ith row of matrix

XXX . A Gaussian random vector with mean x̄xx and covariance

RRRxxx is denoted by xxx ∼ CN (x̄xx,RRRxxx).

II. SYSTEM MODEL AND FORMULATION PROBLEM

A. System Model

We consider a cell-free massive MIMO downlink where

K single-antenna users are served by M randomly deployed

single-antenna APs in the same time-frequency resource. A

central processing unit (CPU) connects to all the APs via a

backhaul network for exchanging the network information, i.e.

the channel estimates, precoding vectors, and power control

coefficients.

Suppose that gmk is the channel between the mth AP and

the kth user. As in [3], we adopt the following channel model

gmk =
√
βmkhmk, where βmk represents the large-scale

fading while hmk ∈ CN (0, 1) is the small-scaling fading. We

assume the channel is reciprocal, i.e., the channel coefficients

for uplink and downlink transmissions are the same. The

channel matrix between all APs and users is denoted by

GGG ∈ CMxK . We further assume M ≫ K [1].

The transmission from the APs to the users is done via

time-division duplex protocol (TDD). Focus on the downlink

performance, each coherence interval of length τ symbols is

divided into two phases: uplink training and downlink payload

data transmission. In the first phase, all users synchronously

send pilot sequences to the APs. Then, from the received pilot

signals, each AP estimates the channels to all users. In the

second phase, the APs use the channel estimates to precode

and beamform data to all users.

1) Uplink training: Let τu be the length of coherence inter-

val slot for the uplink training (in samples), and ϕϕϕk ∈ Cτu×1

be the pilot sequence assigned for the kth user, k = 1, . . . ,K .

We assume that all pilot sequences are mutually orthonormal,

i.e., ϕϕϕH
k ϕϕϕj = 0 for k 6= j and ||ϕϕϕk||2 = 1, which requires

τu ≥ K .

The pilot signal received at the mth AP is

yyym =
√
ρrτu

K
∑

k=1

gmkϕϕϕk +nnnm, (1)

http://arxiv.org/abs/1704.03288v1


2

where ρr is the normalized uplink power and nnnm ∼
CN (0, IIIτu) is additive noise. The mth APs uses the received

pilots (1) and the minimum mean squared error (MMSE)

technique to estimate the channel gmk. Let us denote ĝmk

be the channel estimation of gmk, then ĜGG ∈ CMxK is the

matrix channel estimation of GGG. Let g̃mk = gmk − ĝmk be the

channel estimation error. With the MMSE channel estimation

scheme, ĝmk and g̃mk are independent [3], and

ĝmk ∼ CN (0,
ρrτuβ

2
mk

1 + ρrτuβmk
),

g̃mk ∼ CN (0, βmk −
ρrτuβ

2
mk

1 + ρrτuβmk
).

2) Downlink Payload Data Transmission: The transmitted

signal of mth AP to users is given by

xm =
√
ρf

K
∑

k=1

f̄mksk, (2)

where ρf is the downlink power of each AP. f̄mk are the

precoding coefficients, satisfying E{||xm||2} ≤ ρf , and sk,

where E{|sk|2} = 1, is the symbol intended for the kth user.

The received signal at the kth user is given by

yk =

M
∑

m=1

gmkxm + nk, (3)

where nk ∈ CN (0, 1).
3) Zero-Forcing Precoding Design: We use ZF precoding

for the downlink transmission. If the APs have perfect knowl-

edge of the channel state information (CSI), the inter-user

interference can be eliminated by ZF technique.

With ZF processing, f̄mk in (2) can be expressed as [3]

f̄mk =
√
ηkbmk, m = 1, ...,M , k = 1, ...,K, (4)

where ηk, k = 1, . . . ,K are the power control coefficients, and

bmk is the (m, k)th element ofBBB, whereBBB = ĜGG
∗
(ĜGG

T
ĜGG

∗
)−1 ∈

CMxK . Let F̄FF be the precoding matrix whose (m, k)th element

is f̄mk. Then, the precoding matrix F̄FF can be represented as

F̄FF = BBBPPP , (5)

where PPP is a diagonal matrix with [PPP ]kk =
√
ηk, k = 1, ...,K .

Similarly to [3], the received signal at the kth user is

yk =
√
ρfggg

T
[:,k]F̄FFsss+ nk

=
√
ρf (ĝgg[:,k] + g̃gg[:,k])

TBBBPPPsss+ nk

=
√
ρf

√
ηksk +

√
ρf g̃gg

T
[:,k]BBBPPPsss+ nk. (6)

The first term of (6) is the desired signal while the second term

is the interference caused by the channel estimation error.

Since the channel estimation is taken into account, we have

to look at the spectral efficiency which includes the channel

estimation overhead. Let ηηη = [η1, . . . , ηK ]T . Then, the spectral

efficiency of the kth user using ZF precoding is given by

rk(ηηη) = (1− τu
τ
) log2

(

1 +
ρfηk

1 + ρf
∑K

i=1 γkiηi

)

, (7)

where γki is the ith element of γγγk is given by

γγγk = diag{E
(

BBBHE(g̃gg∗[:,k]g̃gg
T
[:,k])BBB

)

}. (8)

Hence, the sum spectral efficiency is

r(ηηη) =

K
∑

k=1

rk(ηηη). (9)

To satisfy the power constraint at each AP, i.e.,

E{||xm||2} ≤ ρf , we have

K
∑

i=1

θmiηi ≤ 1,m = 1, ...,M, (10)

where θmi is the ith element of θθθ[m,:] with θθθ[m,:] =

diag
{

E
(

(ĜGG
T
ĜGG

∗
)−1ĝggT[m,:]ĝgg

∗
[m,:](ĜGG

T
ĜGG

∗
)−1
)}

.

The total power consumption for the downlink transmission

is given by [4]

Ptotal = Pcir +

M
∑

m=1

Pm +

M
∑

m=1

Pbh,m, (11)

where Pcir denotes the static circuit power consumption, Pm =
αmρfN0(

∑K
i=1 θmiηi) + Pc,m where αm is the reciprocal of

drain efficiency of the power amplifier at the mth AP, N0 is

the noise power, and Pc,m is the internal power of circuit

components requirement. In addition, Pbh,m represents the

power consumption of backhaul link which is used to transfer

the data from the mth AP to the CPU. This power consumption

can be modelled as

Pbh,m = P0,m +B · r(ηηη) · Pbt,m, (12)

where P0,m is fix power consumption for the mth backhaul

link, B is the bandwidth of system, and Pbt,m is the traffic-

dependent power in (Watt/bit/s). For convenience, we define

P̄fix = Pcir +
∑M

m=1(Pc,m + P0,m) as the total power con-

sumption which is independent of {ηk}.

B. Formulation problem

The EE maximization problem is formulated as:

max
ηηη

B· r(ηηη)
Ptotal(ηηη)

(13a)

s.t. rk(ηηη) ≥ r̄k, k = 1, ...,K, (13b)

K
∑

k=1

θmkηk ≤ 1,m = 1, ...,M, (13c)

ηk ≥ 0 , k = 1, ...,K, (13d)

where the constraint (13b) represents the QoS requirement for

each user. The constraint (13d) makes sure that all the power

control coefficients are positive.

The objective function in (13a), which is the ratio of the sum

throughput and the total power consumption, represents the

energy-efficient in bits/Joule. Note that the energy efficiency

(13a) can be rewritten as

EE =
1

ρfN0

∑
M
m=1

αm(
∑

K
i=1

θmiηi)+P̄fix

B·r(ηηη) +
∑M

m=1 Pbt,m

. (14)
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Without loss of generality, maximizing EE is equivalent to

minimizing the first term of the denominator of (14). As a

result, the optimization problem (13) is equivalent to maximize

B· r(ηηη)
ρfN0

∑M
m=1 αm(

∑K
i=1 θmiηi) + P̄fix

, s.t.(13b), (13c), (13d).

(15)

In the next section, we provide the solution of problem for two

cases: perfect and imperfect channel estimation at the APs.

III. MAXIMIZING EE WITH PERFECT CHANNEL

ESTIMATION (PCE)

Assuming perfect channel estimation, which is reasonable in

the cases where the coherence interval is large (corresponding

to the scenarios with low terminal mobility), we have ĝmk =
gmk or g̃mk = 0, and thus, the second term in (6) is removed.

From (15), the EE maximization problem can be rewritten

as

max
ηηη

B
∑K

k=1(1− τu
τ ) log2(1 + ρfηk)

ρfN0

∑M
m=1

(

αm(
∑K

i=1 θmiηi)
)

+ P̄fix

(16a)

s.t. (13b), (13c), (13d). (16b)

We can see that the objective function in (16a) is a ratio of

concave and affine functions while the constraints in (16b)

are convex. Therefore, the problem (16) can be solved by

Dinkelbach’s algorithm for fractional programming [5], which

find the optimal value as λ > 0 such that zero is the optimal

value of the following convex program

max
ηηη,λ

B

K
∑

k=1

(1 − τu
τ
) log2(1 + ρfηk)− λPtotal(ηηη) s.t. (16b).

(17)

The algorithm solves (17) using Dinkelbach’s method follows

[6].

IV. MAXIMIZING EE WITH IMPERFECT CHANNEL

ESTIMATION (IPCE)

In practice, the CSI cannot be exactly estimated. Applying

MMSE estimation, the element of vector in (8) with E(g̃̃g̃g∗kg̃̃g̃g
T
k )

is a diagonal matrix in which the mth component is given by

(βmk − ρrτuβ
2

mk

1+ρrτuβmk
).

Therefore, the EE maximization problem is given by

max
ηηη

B
∑K

k=1(1 − τu
τ ) log2(1 + ρfηk/(1 + ρf

∑K
i=1 γkiηi))

∑M
m=1

(

αmρfN0(
∑K

i=1 θmiηi)
)

+ P̄fix

(18a)

s.t. log2(1 +
ρfηk

1 + ρf
∑K

i=1 γkiηi
) ≥ r̃k, k = 1, ...,K,

(18b)

(13c), (13d), (18c)

where r̃k = τ
τ−τu

r̄k. Clearly, the numerator of the objective

function in (18) is no longer concave so the Dinkelbach’s

algorithm cannot be applied. We next propose an efficient

procedure for solving (18), which needs to solve only a few

quadratic convex programs.

Following the fact that the function f(x, t) = ln(1+1/x)
t is

convex in x > 0, t > 0 (which can be proved by examining

its Hessian), the following inequality for all x > 0, x̄ > 0,

t > 0 and t̄ > 0 holds [7]:

ln(1 + 1/x)

t
≥ f(x̄, t̄) + 〈∇f(x̄, t̄), (x, t) − (x̄, t̄)〉

= 2
ln(1 + 1/x̄)

t̄
+

1

t̄(x̄ + 1)
− x

(x̄+ 1)x̄t̄
− ln(1 + 1/x̄)

t̄2
t. (19)

By replacing 1/x with x and 1/x̄ with x̄, (19) can be

rewritten as
ln(1 + x)

t
≥ a− b

x
− ct, (20)

where a = 2 ln(1+x̄)
t̄ + x̄

t̄(x̄+1) > 0, b = x̄2

t̄(x̄+1) > 0, and

c = ln(1+x̄)
t̄2 > 0.

Finally, by exploiting the fact that function x2/t is convex

in x > 0 and t > 0, we obtain
x2

t
≥ 2

x̄x

t̄
− x̄2

t̄2
t, ∀ x > 0,

x̄ > 0, t > 0, t̄ > 0.

Treating ηk as a new variable η2k, problem (18) is equiv-

alent to the following quadratically constrained optimization

problem:

max
ηηη

B

ln 2
(1 − τu

τ
)F (ηηη) (21a)

s.t. ρfη
2
k ≥ (2r̃k − 1)(1 + ρf

K
∑

i=1

γkiη
2
i ), k = 1, ...,K,

(21b)

K
∑

k=1

θmkη
2
k ≤ 1,m = 1, ...,M, ηk ≥ 0 , ∀k, (21c)

where

F (ηηη) ,

∑K
k=1 ln(1 + ρfη

2
k/(1 + ρf

∑K
i=1 γkiη

2
i ))

Ptotal(ηηη)
.

Let ηηη(n) be a feasible point for the constraints in (21).

The use of the inequality (20) for x = xk = ρfη
2
k/(1 +

ρf
∑K

i=1 γkiη
2
i ), t = Ptotal(ηηη), x̄ = x

(n)
k = ρf (η

(n)
k )2/(1 +

ρf
∑K

i=1 γki(η
(n)
i )2 and t̄ = t(n) = Ptotal(ηηη

(n)) yields

F (ηηη) ≥ F (n)(ηηη), (22)

where

F (n)(ηηη) ,

K
∑

k=1

[

a
(n)
k − b

(n)
k

ρfη2k
− b

(n)
k ρf

K
∑

i=1

[
2γkiη

(n)
i

ρf (η
(n)
k )2

ηi

− γki(η
(n)
i )2

(ρf (η
(n)
k )2)2

ρfη
2
k] −c

(n)
k Ptotal(ηηη)

]

, (23)

and 0 < a
(n)
k , 2

ln(1 + x
(n)
k )

t(n)
+

x
(n)
k

t(n)(x
(n)
k + 1)

, 0 < b
(n)
k ,

(x
(n)
k )2

t(n)(x
(n)
k + 1)

, and 0 < c
(n)
k ,

ln(1 + x
(n)
k )

(t(n))2
, k = 1, . . . ,K .

The proof of (22) follows the proof in [8]. The initial point

ηηη(0) can be easily determined because the constraints in (21)

are convex.
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V. NUMERICAL RESULTS

In this section, numerical results are provided to evaluate

the EE performance of the considered cell-free massive MIMO

system and highlight the advantage of our proposed optimiza-

tion solutions. We consider an area of 1x1 km2 with wrapped-

around technique to avoid the boundary effects. All APs and

users are distributed randomly within the area. The coefficient

βmk models the large-scale fading as COST Hata model [3]

βmk = 10−13.6−3.5 log
10

(dmk)+Xmk/10, (24)

where dmk is the distance between the mth AP and the

kth user in kilometers. The quantity 10(Xmk/10) represents

the shadowing effect with Xmk ∼ N (0, σ2
shad

). We choose

σshad = 8 dB, the carrier frequency fc = 1.9 GHz, and

bandwidth B = 20 MHz. Furthermore, we choose τ = 200
and τu = K samples. The maximum transmit power of each

AP (ρf ) and user (ρr) are 200 and 100 mW. The noise power

at the receivers is N0 = 290 x κ x B x NF , where κ
and NF are Boltzmann constants and noise figure at 9 dB,

respectively. The power consumption parameters are provided

similarly as in [9], [10]. The drain efficiency of amplifier is

set as αm = 1/0.388. The internal circuit power and the static

circuit power are chosen as Pcm = 0.2 W and Pcir = 9 W.

For backhaul power consumption, we choose the fixed power

backhaul link and the traffic dependent backhaul power as

P0,m = 0.2 W and Pbt,m = 0.25 W/(Gbits/s), respectively.
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Fig. 1: The average EE performance versus the number of APs (M). K = 16.

For comparison, we also provide the case without power

control, i.e., when each AP uses its power transmission such

that all power coefficients (ηk) equal to 1/(max
{m}

(
∑K

k=1 θmk)).

The QoS constraint is set to be equal to the spectral efficiency

in this case.

As can be clearly seen from Fig. 1, our proposed scheme

outperforms the equal power allocation in terms of EE per-

formance for both PCE and IPCE cases. For the case without

power control, the optimal performance can be achieved at

M = 80 whereas with our proposed algorithms, the optimal

performance can be achieved at M = 40 and M = 60 for PCE

and IPCE, respectively. It is interesting to see that the use of

more APs beyond these optimal points does not improve the

EE performance as the power consumption level also increase

with the number of APs.

In Fig. 2, we demonstrate the network EE performance

between different schemes versus the transmit power at each

AP from 0.2 to 2.2 W. The EE performance increases notice-

ably with ρf when ρf is small (< 1 W), and saturates when

the transmit power is greater than 1 W. The reason comes

from the fact that when the transmit power is high, we are in

interference-limited regimes and domination of transmission

power, and hence, we cannot improve the system performance

by simply increasing the transmitted power.
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Fig. 2: The average EE performance versus the transmit power at AP (ρf ). M = 100,

K = 16, r̄k = r = 1 bits/s/Hz.

VI. CONCLUSION

We have proposed new algorithms with low complexity for

maximizing the energy efficiency of zero-forcing precoding

in the downlink transmission of cell-free massive MIMO

while satisfying per-user QoS constraints and per-AP transmit

power constraint. In addition, for the case of imperfect CSI,

the pathfollowing algorithm has introduced which are more

tractable and applicable than the Dinkelbachs approach (i.e.,

only suitable for perfect CSI). The numerical results have

demonstrated the effectiveness of the power control algo-

rithms, compared with no power control.

REFERENCES

[1] H. Q. Ngo, A. Ashikhmin, H. Yang, E. Larsson, and T. Marzetta,
“Cell-free massive MIMO versus small cells,” IEEE Trans. on Wireless

Commun., 2015 (in press).
[2] G. Interdonato, H. Q. Ngo, E. G. Larsson, and P. Frenger, “How much

do downlink pilots improve cell-free massive MIMO?” in Proc. IEEE

GLOBECOM, Washington DC, USA, Dec. 2016, pp. 1–7.
[3] E. Nayebi, A. Ashikhmin, T. L. Marzetta, and H. Yang, “Cell-free

massive MIMO systems,” in Proc. 49th Asilomar Conference on Signals,

Systems and Computers, California, USA, Nov. 2015, pp. 695–699.
[4] B. Dai and W. Yu, “Energy efficiency of downlink transmission strategies

for cloud radio access networks,” IEEE J. Sel. Areas Commun., vol. 34,
no. 4, pp. 1037–1050, April 2016.

[5] W. Dinkelbach, “On nonlinear fractional programming,” Management

Science, vol. 13, no. 7, pp. 492–498, Jul. 1967.
[6] L. D. Nguyen, T. Q. Duong, D. N. Nguyen, and L.-N. Tran, “Energy

efficiency maximization for heterogeneous networks: A joint linear
precoder design and small-cell switching-off approach,” in Proc. IEEE

GlobalSIP, Washington DC, USA, Dec. 2016, pp. 1–5.
[7] H. Tuy, Convex Analysis and Global Optimization (second edition).

Springer, 2016.
[8] L. D. Nguyen, H. D. Tuan, and T. Q. Duong, “Energy-efficient signalling

in QoS constrained heterogeneous networks,” IEEE Access, vol. 4, pp.
7958–7966, 2016.

[9] E. Björnson, L. Sanguinetti, J. Hoydis, and M. Debbah, “Optimal design
of energy-efficient multi-user MIMO systems: Is massive MIMO the
answer?” IEEE Trans. Wireless Commun., vol. 14, no. 6, pp. 3059–3075,
Jun. 2015.

[10] J. Zuo, J. Zhang, C. Yuen, W. Jiang, and W. Luo, “Energy-efficient
downlink transmission for multicell massive DAS with pilot contamina-
tion,” IEEE Trans. Veh. Technol., vol. 66, pp. 1209–1221, Feb. 2017.


	I Introduction
	II System Model and Formulation Problem
	II-A System Model
	II-A1 Uplink training
	II-A2 Downlink Payload Data Transmission
	II-A3 Zero-Forcing Precoding Design

	II-B Formulation problem

	III Maximizing EE with perfect channel estimation (PCE)
	IV Maximizing EE with imperfect channel estimation (IPCE)
	V Numerical Results
	VI Conclusion
	References

