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GfcLLL: A Greedy Selection Based Approach for

Fixed-Complexity LLL Reduction
Jinming Wen and Xiao-Wen Chang

Abstract—The LLL lattice reduction has been widely used to
decrease the bit error rate (BER) of the Babai point, but its
running time varies much from matrix to matrix. To address
this problem, some fixed-complexity LLL reductions (FCLLL)
have been proposed. In this paper, we propose two greedy
selection based FCLLL algorithms: GfcLLL(1) and GfcLLL(2).
Simulations show that both of them give Babai points with lower
BER in similar or much shorter CPU time than existing ones.

Index Terms—Integer least squares problem, fixed-complexity
LLL reduction, success probability, GfcLLL.

I. INTRODUCTION

In MIMO detection and some other applications, we need

to estimate an unknown parameter vector x̂ ∈ Z
n from

y = Ax̂+ v, v ∼ N (0, σ2I), (1)

where y ∈ R
m is an observation vector, A ∈ R

m×n is a full

column rank model matrix and v ∈ R
m is a noise vector.

A common method to estimate x̂ is to solve the following

ordinary integer least squares (ILS) problem:

min
x∈Zn

‖y −Ax‖22, (2)

whose solution is the maximum likelihood estimator of x̂.

Since (2) is NP-hard, for some real-time applications, a sub-

optimal solution, which can be produced quickly, is computed

instead of solving (2). One often used suboptimal solution is

the ordinary Babai point xB, produced by the Babai’s nearest

plane algorithm [1]. It is shown in [2] that the LLL reduction

algorithm [3] can always increase the success probability of

xB which is the probability of xB = x̂.

In communications, the parameter vector x̂ is often subject

to a box constraint (after some transformations), i.e.,

x̂ ∈ B := {x : l ≤ x ≤ u, x ∈ Z
n}. (3)

In this situation, one can first use the LLL reduction to get

the LLL-aided ordinary Babai point, then round it into the

constraint box B to get an estimate of x̂.

The LLL reduction is useful to improve the accuracy of

the Babai points for both unconstrained and box-constrained

cases [2] [4]. However, its running time varies much from

matrix to matrix even for a fixed dimension. Moreover, it
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was shown in [5] that in the MIMO context, the worst-case

computational cost of the LLL reduction for reducing A is not

even bounded by a function of n. This may cause problems

for real-time communications applications, where limited and

known run-time is essential [6], from the implementation

point of view. To address this issue, some so called fixed-

complexity LLL (FCLLL) reduction algorithms have been

proposed [6]–[8]. For a given A, an FCLLL algorithm is to

get a reduced matrix of A that is close to the LLL reduced

matrix of A in a computational cost more or less fixed for

matrices with the same dimensions. For the FCLLL algorithms

in [6]–[8], the number of sweeps or the number of tests

of the Lovász condition is fixed, while for the new FCLLL

algorithms to be proposed in this paper, the number of column

permutations is fixed. Note that an FCLLL algorithm may

have different numbers of arithmetic operations for different

matrices with the same dimensions. However, the difference

is small. Moreover, there is an upper bound on the complexity

in terms of number of arithmetic operations, which is truly

fixed for the same dimensions.

In this paper, we will propose a new approach for FCLLL

reduction. Unlike existing approaches, which use predefined

traversal order for selecting two consecutive columns for size

reductions and permutation, our new approach uses a traversal

order based on a greedy selection strategy. It is motivated

by increasing the success probability of the Babai point.

Two greedy selection strategies are proposed for this purpose,

leading to two FCLLL algorithms GfcLLL(1) and GfcLLL(2),

respectively. The first strategy was originally proposed in [9]

for computing the full LLL reduction and the other one is

new and more effective. The greedy approach takes more data

communication time to find the columns to do size reductions

and column interchanges than approaches with fixed traversal

order. However, simulations show that both GfcLLL(1) and

GfcLLL(2) can produce Babai points with lower bit error rate

(BER) than the FCLLL algorithms proposed in [6]–[8], with

similar or much less CPU time.

The rest of this paper is organized as follows. In Section II,

we introduce the LLL and FCLLL reductions. In Section III,

we present our new algorithms. In Section IV, we do some

simulations to show the effectiveness and efficiency of the new

algorithms. Finally we summarize this paper in Section V.

II. BACKGROUND

In this section, we first introduce the LLL reduction and the

success probability of the Babai point which is the motivation

for our new algorithm, then we briefly review some recent

FCLLL algorithms which will be used for comparisons later.
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Let A in (1) have the following QR factorization

A = [Q1
n
, Q2
m−n

]

[

R

0

]

, (4)

where [Q1,Q2] ∈ R
m×m is orthogonal and R ∈ R

n×n is

upper triangular. Define ỹ = QT
1 y and ṽ = QT

1 v, then (1)

can be transformed to

ỹ = Rx̂+ ṽ, ṽ ∼ N (0, σ2I). (5)

The ordinary Babai (integer) point xB ∈ Z
n found by the

Babai nearest plane algorithm [1] is defined as

cn = ỹn/rnn, xB

n = ⌊cn⌉,

ci = (ỹi−
n
∑

j=i+1

rijx
B

j)/rii, x
B

i = ⌊ci⌉, i = n−1, . . . , 1.
(6)

The ordinary Babai point xB ∈ Z
n can be used as an

estimator of x̂, and its success probability is (see [2])

P (R) := Pr(xB = x̂) =

n
∏

i=1

φ(rii), (7)

φ(rii) =

√

2

π

∫ |rii|/(2σ)

0

exp(−
1

2
t2)dt. (8)

With the QR factorization (4), the LLL reduction algorithm

[3] reduces R to R̄ via Q̄
T
RZ = R̄, where Q̄ ∈ R

n×n is

orthogonal, Z ∈ Z
n×n is unimodular (i.e., det(Z) = ±1) and

R̄ ∈ R
n×n is an upper triangular matrix satisfying

|r̄ik| ≤
1

2
|r̄ii|, i = 1, 2, . . . , k − 1, (9)

δr̄2k−1,k−1 ≤ r̄2k−1,k + r̄2kk, k = 2, 3, . . . , n, (10)

where δ is a constant satisfying 1/4 < δ ≤ 1.

Define ȳ = Q̄
T
ỹ, v̄ = Q̄

T
ṽ, ẑ = Z−1x̂, then (5) can

be transformed to ȳ = R̄ẑ + v̄, v̄ ∼ N (0, σ2I). Using

(6), we can obtain its Babai point zB. Then we get the LLL-

aided ordinary Babai point xLB = ZzB, which can be used to

estimate x̂. If x̂ ∈ B (see (3)), after obtaining xLB, we round

it to the nearest point in B, leading to the box-constrained

LLL-aided Babai point.

The LLL algorithm in [3] starts with column 2 of R and

ends with column n of R. When the reduction processes at

column k, it first performs size reductions on rik for i = k−1:
−1:1, and then checks if (10) holds. If so, the column index

increases by 1; otherwise it permutes columns k−1 and k of

R and the column index decreases by 1. One does not know

exactly how many iterations are required to finish the reduction

process (here the number of iteration means the number of

tests on (10) [7]). The FCLLL algorithm in [6], to be referred

to as fcLLL, is a modification of the LLL algorithm. It always

goes from column 2 to column n and never comes back in the

process. But it repeats the process J times, where J is a fixed

positive integer, resulting in L = J(n− 1) iterations.

A modification of fcLLL, referred to as EfcLLL, was given

in [7]. EfcLLL does only size reductions on the super-diagonal

entries of R. Like the LLL algorithm [3], both fcLLL and

EfcLLL start the iterations from the second column and finish

at the last column of R. Different from this traversal strategy,

the most recent FCLLL, referred to as EnfcLLL, was proposed

in [8]. It uses a novel two-stage column traversal strategy.

III. NEW FCLLL REDUCTION ALGORITHMS

As explained in Section II, both fcLLL and EfcLLL start

the iterations from the second column and finish at the last

column which may not be effective in increasing the success

probability of the Babai point in fixed time. EnfcLLL uses a

different traversal strategy and can improve the performance

significantly. But like the previous ones, its traversal order is

still fixed in advance. Let us use an extreme case to explain

why a fixed order, which ignores the particularity of a channel

matrix, may not work well sometimes. Suppose we are allowed

to do only one column permutation, then it is obvious that the

order-fixed algorithms are unlikely to produce the best result.

The idea of our approach is that at each step, we choose

two consecutive columns to do size reduction and permutation

so that we get highest improvement of the success probability

of the Babai point.

Given an upper triangular matrix R, suppose that for any

specific k, (10) is not satisfied after rk−1,k is size reduced, i.e.

δr2k−1,k−1 >

(

rk−1,k −

⌊

rk−1,k

rk−1,k−1

⌉

rk−1,k−1

)2

+ r2kk.

(11)

After the size reduction on rk−1,k (i.e., applying a unimodular

matrix to R from right so that (9) holds), permutation of the

two columns and triangularization, we obtain R̄ which satisfies

r̄k−1,k = rk−1,k − ⌊rk−1,k/rk−1,k−1⌉rk−1,k−1,

r̄k−1,k−1 =
√

r̄2k−1,k + r2kk, (12)

|r̄kk | = |rk−1,k−1rkk/r̄k−1,k−1|.

Note that the above operations decrease |rk−1,k−1| and in-

crease |rkk|. Then by (7),

P (R̄)

P (R)
=

φ(r̄k−1,k−1)φ(r̄kk)

φ(rk−1,k−1)φ(rkk)
:= Tk.

In [2] it is proved that Tk > 1. Ideally we wish to find k such

that Tk is the largest, then perform size reduction, column

permutation and triangularization. However, computing φ(ζ)
(see (8)) involves numerical integrations and is expensive.

Instead we will look at other more efficient greedy strategies.

In the following, we propose two different greedy selection

strategies to choose two columns of R to do reduction at each

step. The first greedy selection strategy is to find

j = argmax
k

{T
(1)
k : T

(1)
k =

|rk−1,k−1|

|r̄k−1,k−1|
, (11) holds}.

If the above j does not exist, R is essentially LLL reduced as

it can become LLL reduced after performing size reductions.

Otherwise, we perform a size reduction on rj−1,j , permute

columns j − 1 and j of R, and triangularize R by a Givens

rotation. After that, we update T
(1)
j , T

(1)
j−1 (if j > 1) and T

(1)
j+1

(if j < n) (note that other T
(1)
j ’s are not changed), and start the

next iteration. This greedy selection strategy is to find a pair of

columns which can reduce the larger one of the two diagonal

elements most significantly and it was first proposed in [9] for

computing the LLL reduction in solving an ILS problem for

GPS applications. Later the same strategy was used in [10] and

[11]. One problem with this strategy is |rk−1,k−1|/|r̄k−1,k−1|
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is invariant with respect to scaling of R(:, k − 1 : k), but the

success probability of the Babai point changes by scaling.

The second greedy selection strategy is to find

j = argmax
k

{T
(2)
k : T

(2)
k =

1

|rkk|
−

1

|r̄kk|
, (11) holds}.

Note that in the LLL reduction, after columns k−1 and k
are permutated, |rkk| will increase, and 1/|rkk| will decrease.

This strategy is to find columns j − 1 and j such that 1/|rjj |

decreases most. We can rewrite T
(2)
k as

T
(2)
k =

|rk−1,k−1| − |r̄k−1,k−1|

|rk−1,k−1rkk|
,

which is a relative gap between |rk−1,k−1| and |r̄k−1,k−1|
(note that the denominator is the determinant of the lattice

{R(k−1 : k, k−1 : k)x|x ∈ Z
2}). Like Tk, T

(2)
k is variant

with respect to scaling of R(:, k − 1 :k). Our numerical tests

indicate that the two columns found by maximizing T
(2)
k are

more likely to the same as those found by maximizing Tk than

those found by maximizing T
(1)
k .

For the sake of convenience, when (11) does not hold, we

set T
(i)
k = 0 for i = 1, 2. In our algorithms, we suppose the

maximum number of column permutations (denoted by N ) is

given. The description of our algorithms is as follows:

Algorithm 1 GfcLLL(i)

1: compute the QR factorization (4), set swap = 0, Z = In;

2: compute T
(i)
k for k = 2 : n;

3: for j = 1 : N do

4: find j such that T
(i)
j = max2≤k≤n T

(i)
k ;

5: if T
(i)
j > 0 then

6: perform size reduction on rj−1,j and update Z;

7: permute columns j − 1 and j of R and triangularize

R, and update Z and Q;

8: update T
(i)
j , T

(i)
j−1 if j > 1, and T

(i)
j+1 if j < n− 1;

9: else

10: break;

11: end if

12: end for

Like J in [6] and [7], and Nmax in [8], N depends on

applications. By using sone techniques similar to that for

showing the LLL algorithm is a polynomial time algorithm in

[3], we can derive a complexity result for GfcLLL(i), which

depends on N . Then for any specific application which has a

fixed complexity requirement, we can find N .

IV. SIMULATIONS

In this section, we compare the efficiency and effectiveness

of GfcLLL(i) with existing FCLLL algorithms. As the box-

constrained Babai points found by applying fcLLL and EfcLL

are the same and fcLLL is slower than EfcLLL, we do not

compare GfcLLL(i) with fcLLL. Two greedy LLL algorithms

were proposed in [12] and one is faster than the other one.

For comparison, we modified the faster one by fixing the

number of column permutations so that it became an FCLLL

algorithm, and refer it to as GfcLLL-WM. In the tests, we

took the parameter δ = 1. All of the tests were performed

with MATLAB 2016b on a desktop computer with Intel(R)

Xeon(R) CPU E5-1603 v4 working at 2.80 GHz.

For a fixed dimension, a fixed type of QAM and a fixed

Eb/N0, we randomly generated 103 complex channel matrices

A whose entries independently and identically follow the

standard complex normal distribution. For each generated

matrix, we randomly generated 103 complex signal vectors

x̂ and 103 complex Gaussian noise vectors v, resulting in 106

instances of complex linear models. Each complex instance

was then transformed to an instance of the real model (1).

To compare GfcLLL(i) with other FCLLL algorithms, we

control the number of column permutations each algorithm

performs so that they have similar costs. We first fix the

number of sweeps J for EfcLLL. For any channel matrix,

we record the number of column permutations performed

by EfcLLL, which is denoted by K . Then for the same

channel matrix, we set the number of column permutations for

EnfcLLL, GfcLLL-WM and GfcLLL(i) as ⌊0.35K⌉, ⌊0.7K⌉
and ⌊0.7K⌉, respectively. Our simulations indicate that the

above choices usually make the CPU time taken by our

GfcLLL(i) less than those taken by other algorithms.

Figures 1 and 2 show the average BER (over 106 instances)

versus Eb/N0 = 2 : 2 : 30 for the 8 × 8 complex MIMO

systems with 4-QAM for J = 1 and J = 2, respectively.

Similarly, Figures 3 and 4 show the corresponding results for

the 16×16 complex MIMO systems with 16-QAM for J = 1
and J = 2, respectively.
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Fig. 1: BER versus Eb/N0 = 2 : 2 : 30 for the 8 × 8 MIMO

system with 4-QAM, J = 1

Tables I and II respectively display the total CPU time of

computing reductions for the 1000 8×8 and 16×16 complex

channel matrices with J = 1, 2.

TABLE I: Total CPU time for 1000 8× 8 channel matrices

J LLL EfcLLL EnfcLLL GfcLLL-WM GfcLLL1 GfcLLL2

1 2.5333 0.3124 0.2783 0.2473 0.2392 0.2380

2 2.7438 0.5735 0.4315 0.4214 0.4061 0.4175

From Figures 1–4 and Tables I and II, we can see that

the box-constrained Babai points aided by GfcLLL(i) (i =
1, 2) have lower BER than those aided by existing FCLLL

reductions, while the former cost less than the latter. Thus our
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Fig. 2: BER versus Eb/N0 = 2 : 2 : 30 for the 8 × 8 MIMO

system with 4-QAM, J = 2
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Fig. 3: BER versus Eb/N0 = 2:2 :30 for the 16× 16 MIMO

system with 16-QAM, J = 1
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Fig. 4: BER versus Eb/N0 = 2:2 :30 for the 16× 16 MIMO

system with 16-QAM, J = 2

TABLE II: Total CPU time for 1000 16×16 channel matrices

J LLL EfcLLL EnfcLLL GfcLLL-WM GfcLLL1 GfcLLL2

1 9.4890 0.6705 0.6488 0.5325 0.5058 0.5257

2 9.1026 1.1286 1.0107 0.8390 0.8135 0.8204

proposed GfcLLL(i) (i = 1, 2) are more efficient and effective.

We also observe that GfcLLL(2) gives better performance than

GfcLLL(1) with similar cost. The simulation results also show

that GfcLLL(i) can decrease the BER of the box-constrained

Babai points significantly by performing a small number of

permutations after the QR factorization.

In the above tests, EnfcLLL performed about a half number

of permutations performed by GfcLLL(i). In our simulations

we found that if we set the same number of permutations for

both EnfcLLL and GfcLLL(i), the former is still worse than

the latter in decreasing the BER of the box-constrained Babai

points (note that in this case, the CPU time used by EnfcLLL

is much higher than those by GfcLLL(i)).

V. SUMMARY

We have proposed two greedy selection based FCLLL

algorithms: GfcLLL(1) and GfcLLL(2). Simulations showed

that both result in the box-constrained Babai points with lower

BER in shorter CPU time than existing FCLLL algorithms and

GfcLLL(2) is more effective than GfcLLL(1).
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