
ar
X

iv
:1

80
4.

00
27

4v
1

 [
cs

.I
T

]
 1

 A
pr

 2
01

8
1

Adaptive Group Shuffled Decoding for LDPC Codes
Tofar C.-Y. Chang, Member, IEEE and Yu T. Su, Senior Member, IEEE

Abstract—We propose new grouping methods for group shuf-
fled (GS) decoding of both regular and irregular low-density
parity check cods. These methods are independent of the check-
to-variable message formula used. Integer-valued metrics for
measuring the reliability of each tentative variable node (VN)
decision and the associated likelihood of being corrected are
developed. The metrics are used to determine the VN updating
priority so the grouping may vary in each iteration. We estimate
the computation complexity needed to adaptively regroup VNs.
Numerical results show that our GS algorithms improve the
performance of some existing GS belief-propagation decoders.

Index Terms—LDPC codes, belief propagation, group shuffled
decoding, adaptive decoding schedule.

I. INTRODUCTION

Conventional belief-propagation (BP) based algorithms for

decoding low-density parity check (LDPC) codes update all

variable nodes (VNs) and check nodes (CNs) in parallel [1].

The group shuffled (GS) BP algorithm [2] partitions the VNs

into groups and performs group-wise parallel decoding serially

which in effect divides a decoding iteration into several sub-

iterations. A GSBP decoder can thus pass newly updated

messages obtained in a sub-iteration to the neighboring groups

in the ensuing sub-iterations and achieve faster convergence

with reduced parallel decoding complexity. The GSBP al-

gorithm generalizes the original shuffled BP algorithm [2]

or the column-based layer BP decoder [3] by allowing a

group to contain more than one VN. Some improved GSBP

algorithms have been proposed to further improve the decod-

ing performance [4]–[6]. A variation of the GSBP approach

which greedily selects the ‘best’ edge(s) for updating is the

class of informed dynamic scheduling based BP decoders

[7], [8]. However, the greedy search requires high computing

complexity and some VNs may never or seldom be updated.

One of the basic ideas of our GS decoding schedule is to

prioritize the updates of the VNs which most probably have

erroneous tentative decisions and are likely to be corrected.

Early-updating such VNs enables us to invert an incorrect

tentative local decision, avert potential error propagation, and

strengthen the reliability of the passed messages. This concept

is an extension of those inspire the algorithms presented in

[7],[8]. We not only determine the set of VNs with the most

unreliable tentative decision but also evaluate and compare the

impact/benefit of updating these VNs. In this letter, we develop

a set of simple binary/integer based rules that dynamically

re-group VNs in each iteration for GS decoding. As will be

seen, the improved performance comes at the expense of extra

integer and binary operations (against the conventional GSBP

decoders) and provides additional complexity-performance

trade-offs in designing a BP decoding schedule.

The rest of this letter is organized as follows. In Section II,

we define the basic system parameters and give a brief review

of the standard GSBP decoding algorithm. In Section III, we

introduce our adaptive GSBP (AGSBP) algorithm and two

adaptive grouping approaches. Numerical results are presented

in Section IV, and the complexity of the AGSBP algorithms

are also analyzed in the same section. Finally, conclusion

remarks are drawn in Section V.

II. GROUP SHUFFLED BP DECODING

A binary (N , K) LDPC code C is a linear block code of

rate R = K/N described by an M×N parity check matrix H

which has dv(n) ones in the nth column and dc(m) ones in the

mth row. H can be viewed as a bipartite graph with N VNs

corresponding to the encoded bits and M CNs corresponding

to the parity-check functions represented by the rows of H .

The conventional GSBP algorithm [2] divides the VNs into G
groups of equal size N/G = NG according to their natural

order, i.e., if we define Gi = {n|i ·NG ≤ n < (i+1) ·NG−1}
where i = 0, 1, . . . , N − 1, then VN vn belongs to the ith VN

group if n ∈ Gi. In each GSBP decoding iteration, groups

are sequentially processed and the VNs belonging to the same

group are updated in parallel.

A binary codeword u = (u0, u1, · · · , uN−1) is BPSK-

modulated and transmitted over an zero-mean AWGN channel

with noise variance σ2. The corresponding received and binary

decoded sequences are denoted by r = (r0, r1, · · · , rN−1) and

û = (û0, û1, · · · , ûN−1). We define mv
n→m as the variable-

to-check (V2C) message from the nth VN vn to the mth

CN cm and mc
m→n as the check-to-variable (C2V) message

from cm to vn. Let N (m) be the index set of VNs which

are connected to cm and M(n) be that of CNs connected

to vn in the code graph. N (m)\n is the set N (m) with n
excluded;M(n)\m is similarly defined. We further define the

sign function sgn(x) = 1 if x > 0, sgn(x) = −1 if x < 0, and

takes the value 1 or −1 equally likely if x = 0. We assume that

the log-domain BP decoding is used. When processing the ith
VN group, the C2V messages mc

m→n, ∀m ∈ M(n), n ∈ Gi
are computed by

mc

m→n =
∏

n′∈N (m)\n

αn′→m · φ





∑

n′∈N (m)\n

φ(βn′→m)



 (1)

where φ(x) = − log[tanh(x/2)], αn′→m = sgn(mv

n′→m
),

and βn′→m = |mv

n′→m
|. The V2C messages mv

n→m, ∀ m ∈
M(n), n ∈ Gi, are updated via

mv

n→m =
2rn
σ2

+
∑

m′∈M(n)\m

mc

m′→n, (2)

the total log-likelihood ratio (LLR) of vn is

Ln =
2rn
σ2

+
∑

m∈M(n)

mc

m→n. (3)

http://arxiv.org/abs/1804.00274v1

2

III. ADAPTIVE GROUPING AND AGSBP DECODING

A. General Adaptive GSBP Decoder

Let the index set of the updated VNs (in an iteration) be

denoted by V and its complement by Vc = ZN \ V , where

ZN , {0, 1, . . . , N−1}. Suppose l is the iteration counter and

lmax is the maximum iteration number, then a generic AGSBP

decoding algorithm can be described by Algorithm 1.

Algorithm 1 Adaptive Group Shuffled BP Algorithm

Initialization Set the iteration counter l = 0.

Step 1 Set Vc = ZN and V = G = ∅. Let l ← l + 1.

Step 2 Perform an adaptive grouping method (e.g.,

Algorithms 2 or 3) to form G.

Step 3 Propagate mc
m→n and then update mv

n→m∀m ∈
M(n), n ∈ G.

Step 4 Let V ← V ∪ G and Vc ← Vc \ G. If Vc = ∅, go to

Step 5; otherwise, go to Step 2.

Step 5 If a valid codeword is obtained or l = lmax, stop

decoding; otherwise, go to Step 1.

Note that the VNs are grouped sequentially and the grouping

is likely to vary in each iteration. Once a new VN group is

determined by Step 2, we update the C2V and V2C messages

associated with the VNs belong to this group by Step 3 before

searching for the next VN group for updating.

B. Adaptive VN Grouping Methods

We now present integer-valued metrics for selecting VNs

from Vc. The selected VNs have the least reliable tentative

decisions and the highest probability of being corrected if

updated.

Using the syndrome (checksum) vector s = (s0, s1, · · · ,
sM−1) = û · HT (mod 2), we define an integer-valued

unreliability index

En = Ωn





∑

m∈M(n)

sm



 , (4)

where

Ωn(x) =

⌊

x

dv(n)
· dvmax

⌋

(5)

and dvmax = maxn d
v(n). When C is a regular code, (4)

becomes the flipping function of Gallager’s BF decoding

algorithm [1] and is equal to the number of unsatisfied check

nodes (UCNs) associated with VN vn. We further define

Fn =
∑

m∈M(n)

qmnsm, (6)

where

qmn =

{

1, if max
n′∈N (m)

En′ = En and En ≥ η

0, otherwise
(7)

and η is a numerically-optimized integer. (6) counts the

number of UCNs connected to VN vn for which it is a local

En-maximizing VN. This function is similar to the reliability

metric used in the parallel weighted BF decoder [9]. As a bit

decision associated with a large Fn is likely to be incorrect,

we consider the VNs in Vc with the largest Fn as the ones

which have the least reliable decision.

Let ⊕ denote the exclusive or (XOR) operation

and Icm→n be the pre-computed sign bit of the

C2V message to be sent from cm to vn, i.e.,

Icm→n , bsgn(mc
m→n) =

⊕

n′∈N (m)\n bsgn(mv

n′→m
),

where bsgn(x) = [1− sgn(x)] /2. We need another integer-

valued indicator

An = Ωn





∑

m∈M(n)

Icm→n ⊕ bsgn(Ln)



 , (8)

where the argument of Ωn(·) counts (predicts) the number of

future incoming messages whose signs are different from that

of the total LLR of vn. The normalized count An is then used

to quantify the force of driving a bit decision to change after

updating, as a larger An implies that the decision of vn may

have a higher probability of being flipped. It is thus reasonable

to conjecture that, among these local Fn-maximizing VNs,

the VNs which are most likely to be corrected after receiving

related CN messages are the ones which have the largest An.

The VN selection procedure is summarized below.

Algorithm 2 Adaptive Grouping Method I

Initialization Set G = ∅.
Step 1 ∀n ∈ Vc, compute Fn, and find F ∗ = maxn∈Vc Fn.

If F ∗ = 0, stop and output G = Vc.

Step 2 Let S = {n|Fn = F ∗, n ∈ Vc} and compute An for

all n ∈ S.

Step 3 Find A∗ = maxn∈S An and form the candidate set

G̃ = {n|An = A∗, n ∈ S} .

Step 4 Select n∗ arbitrarily from G̃ and add n∗ to G. Then,

remove all n ∈ N (m),m ∈ M(n∗) from G̃.

Step 5 If G̃ = ∅, stop and output G; otherwise, go to Step 4.

In Step 1, we compute the Fn’s of those un-updated VNs. If

all the resulting Fn’s are zero, i.e., F ∗ = 0, we conclude that

they are reliable and put these VNs in the same group. When

F ∗ > 0, we suspect that some incorrect decisions may still

exist in Vc. Thus in Step 2 and Step 3, we collect the VNs

with largest Fn value and select the ones having maximum

An to form a tentative set G̃. In Step 4, we randomly select

one index from G̃, say n∗, to join G and remove it along with

the indices of the VNs which are connected with those CNs

linked to vn∗ (i.e.,M(n∗)) from G̃. The purpose of removing

these VNs is to prevent potential mutual erroneous message

exchanges. Step 4 is repeated until G̃ is emptied.

Since finding maxn′∈N (m) En′ for each UCN (sm = 1) in

(7) requires extra computational effort, a simple alternative is

to use (4) as the reliability metric directly. Moreover, as the

sign of the a V2C message from a VN is likely to be the same

as that of its LLR value in later iterations, we have

Icm→n =
⊕

n′∈N (m)\n

bsgn(mv

n′→m)

≈
⊕

n′∈N (m)\n

bsgn(Ln′) (9)

3

and therefore

An ≈ Ωn





∑

m∈M(n)

⊕

n′∈N (m)

bsgn(Ln′)



 = En, (10)

which indicates that the VNs with the largest En may have

the highest probability of being corrected as well. By adopting

(4) and (10), we obtain a simplified version of Algorithm 2.

Algorithm 3 Adaptive Grouping Method II

Initialization Set G = ∅.
Step 1 Compute En for all n ∈ Vc.

Step 2 Let E∗ = maxn∈Vc En. If E∗ < δ, stop and output

G = Vc; otherwise, set G̃ = {n|En = E∗, n ∈ Vc}.
Step 3 Select n∗ arbitrarily from G̃ and add n to G. Then,

remove all n where n ∈ N (m),m ∈ M(n∗) from G̃.

Step 4 If G̃ = ∅, stop and output G; otherwise, go to Step 3.

The integer reliability threshold δ in Step 2 is numerically

optimized through simulation. No matter whether Algorithms

2 or 3 is used as the grouping method in Step 2 of the AGSBP

algorithm (Algorithm 1), the set of parameters, {An, Fn, En}
is immediately updated once any related message is renewed.

The selection of next G is based on the updated information

and therefore the group partition and the corresponding group

sizes for different iterations may not be the same.

IV. NUMERICAL RESULTS

We present the frame error rate (FER) performance of the

conventional GSBP algorithm and AGSBP algorithms with

the proposed grouping methods in decoding MacKay’s (1008,

504) regular LDPC code (504.504.3.504 [10], dv(n) = 3),

(806, 272) regular code (816.1A4.845 [10], dv(n) = 4), and

WiFi (1944, 972) quasi-cyclic (QC) LDPC code [11]. The

frame size is assumed to be equal to the codeword length,

hence FER is the same as the codeword error probability.

AGSBP-I and AGSBP-II in the following figures denote the

AGSBP algorithms that use Adaptive Grouping Method I and

II (Algorithm 2 and 3), respectively. For further decoding

complexity reduction, we also consider the min-sum (MS)

approximation [12] of the C2V updating formula (1). We

denote the MS-based GS algorithms with the conventional

grouping method by GSMS. Similarly, the MS-based adaptive

group shuffled decoders using proposed grouping methods I

and II are denoted by AGSMS-I and AGSMS-II, respectively.

Table I lists the optimized parameters used for AGSBP and

AGSMS algorithms in decoding different codes.

A. Numerical Examples

Figs. 1 and 2 respectively plot the FER performance of

the (1008, 504) and (806, 272) regular MacKay codes using

various GS algorithms with lmax = 25. For the (1008, 504)

code, the AGSBP-I and AGSBP-II algorithms achieve about

0.3 dB and 0.25 dB gains against the conventional GSBP

decoder at FER ≈ 10−5. The AGSMS algorithms outperform

the GSMS decoder as well. When decoding the (806, 272)

code, the AGSBP-I algorithm gives a 0.25 dB gain against the

TABLE I
PARAMETER VALUES USED FOR AGSBP/AGSMS ALGORITHMS

Code
AGSBP-I AGSBP-II AGSMS-I AGSMS-II

η δ η δ

MacKay (1008,504) 1 1 1 2

MacKay (816,272) 1 2 2 2

WiFi (1944,972) 1 4 6 6

1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50
1E-6

1E-5

1E-4

1E-3

0.01

0.1

FE
R

Eb/N0 (dB)

MacKay (1008,504) Regular Code
 GSBP (G=N)
 AGSBP-I AGSBP-II
 GSMS (G=N)
 AGSMS-I AGSMS-II

Fig. 1. FER performance of Mackay’s (1008, 504) regular LDPC code using
various GS decoding algorithms.

conventional GSBP decoder at FER ≈ 10−5. The AGSBP-II

algorithm outperforms the GSBP one by 0.2 dB at the same

FER. Furthermore, the decoding gains of both AGSMS-I/-II

over the GSMS decoder are about 0.3 dB at FER ≈ 10−5.

Fig. 3 presents the FER performance of various algorithms

in decoding the length-1944 WiFi code where lmax = 50.

The performance of the local girth based GSBP (LGSBP)

[5], informed fixed scheduling based GSBP (IFSGSBP) [6]

algorithms, and their MS-based variants (denoted by LGSMS

and IFSGSMS) is also shown in Fig. 3 for reference purpose.

To limit the implementation parallelism, we set the constraint

for the WiFi code that the group size determined by our

grouping methods be less than 1944/3=648 VNs. Simulation

results show that the AGSBP algorithms yield about 0.25

dB performance gain over the GSBP, IFSGSBP, and LGSBP

algorithms at the FER ≈ 2×10−6. Moreover, by applying our

grouping methods, AGSMS algorithms also offer improved

performance against the GSMS, IFSGSMS, and LGSMS al-

gorithms.

B. Complexity Analysis

All GSBP (GSMS) algorithms discussed, including our

AGSBP (AGSMS) decoder, need the same basic computing

complexity. For our AGSBP and AGSMS algorithms, extra

computation is needed whenever Steps 2 of Algorithm 1

is activated. Ωn(x) can be obtained by using a look-up

table since dv(n), dvmax are known and x is an integer.

The computation of En can be done by having each UCN

sending a triggering signal to the counter associated with

its connected VNs. The UCN number of an ungrouped VN

can then be accumulated (added), so the number of required

additions is (at most)
∑

m:sm=1 d
c(m). The AGSBP-II and

4

2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1 MacKay (816,272) Regular Code
 GSBP (G=N)
 AGSBP-I AGSBP-II
 GSMS (G=N)
 AGSMS-I AGSMS-II

FE
R

Eb/N0 (dB)

Fig. 2. FER performance of Mackay’s (816, 272) LDPC code using various
GS decoding algorithms.

1.00 1.25 1.50 1.75 2.00 2.25 2.50
1E-6

1E-5

1E-4

1E-3

0.01

0.1

1 Wi-Fi (1944,972) Irregular QC Code
 GSBP (G=N) LGSBP (G=N)
 IFSGSBP (G=N)
 AGSBP-I AGSBP-II
 GSMS (G=N) LGSMS (G=N)
 IFSGSMS (G=N)
 AGSMS-I AGSMS-II

FE
R

Eb/N0 (dB)

Fig. 3. FER performance of IEEE 802.11 (1944, 972) rate-1/2 LDPC code
using various GS decoding algorithms.

AGSMS-II decoders need to find E∗ which requires |Vc| − 1
comparisons, where |·| denotes set cardinality. For the AGSBP-

I and AGSMS-I algorithms, besides En, they also have to

compute Fn, An and find F ∗ and A∗. Given En, we need
∑

m:sm=1[d
c(m) − 1] comparisons to find maxn′∈N (m)En′

for all UCNs; see (7). As for Fn, it can be computed in a

way similar to that of computing En, and finding F ∗ requires

another |Vc| − 1 comparisons. To compute An and find A∗,

we need
∑

n∈S [d
v(n)−1] additions and |S|−1 comparisons.

Computing checksums and the XOR operations in (8) are

omitted for they involve binary operations only.

Shown in Table II is the basic computational complexity

per iteration in decoding MacKay’s (1008, 504) code. The

corresponding extra average per-iteration computational com-

plexity at some selected iterations for the proposed algorithms

to decode the same code are listed in Table III. The complexity

is evaluated at specific SNRs and iterations. Note that the

operations listed in Table II are real-number operations while

those shown in Table III are integer based; in fact, each integer

addition is only a simple ‘add one’ (accumulation) operation.

TABLE II
BASIC COMPLEXITY (×103) OF GSBP AND GSMS ALGORITHMS

Addition/Subtraction Comparison φ(·)-Operation

GSBP 18.144 0 18.144

GSMS 6.048 12.096 0

TABLE III
SIMULATED AVERAGE EXTRA CONDITIONAL COMPLEXITY (×103) FOR

AGSBP AND AGSMS DECODERS (AD: ADDITION; CP: COMPARISON)

SNR Iter.
AGSBP-I AGSBP-II AGSMS-I AGSMS-II

AD CP AD CP AD CP AD CP

5 0.31 5.16 0.13 4.97 0.65 6.89 0.19 3.85
2.75 10 1.85 13.8 0.95 14.6 3.97 21.2 0.52 4.87
dB 15 4.75 26.0 1.91 22.7 7.04 33.2 1.13 6.46

20 4.71 27.3 1.90 24.1 8.33 37.3 1.18 6.82

5 0.18 4.13 0.09 3.97 0.35 6.04 0.12 3.38
3.0 10 1.83 13.3 1.02 14.5 3.34 18.5 0.42 4.46
dB 15 3.71 21.1 1.92 22.4 6.67 31.0 1.10 6.34

20 3.04 19.6 1.56 21.2 7.16 33.5 1.29 6.84

V. CONCLUSION

We have developed new VN grouping methods for use

in GS decoding of LDPC codes. The proposed methods

employ integer based metrics to sequentially select the VNs for

updating and can be applied to both BP and MS based decod-

ing algorithms. The extra binary/integer computational efforts

needed for the adaptive VN grouping methods are evaluated.

We present some numerical behaviors of the proposed AGSBP

and AGSMS decoding algorithms and demonstrate that both of

them are able to provide improved performance in comparison

with some known grouping methods in decoding either regular

or irregular LDPC codes.

REFERENCES

[1] R. G. Gallager, Low-density parity-check codes, Cambridge, MA: MIT
Press, 1963.

[2] J. Zhang and M. P. C. Fossorier, “Shuffled iterative decoding,” IEEE

Trans. Commun., vol. 53, no. 2, pp. 209-213, Feb. 2005.
[3] D. Hocevar, “A reduced complexity decoder architecture via layered

decoding of LDPC codes”, in Proc. IEEE Workshop SIPS, 2004, pp.
107-112.

[4] C.-Y. Chang, Y.-L. Chen, C.-M. Lee, and Y. T. Su, “New group shuffled
BP decoding algorithms for LDPC codes,” in Proc. IEEE Int. Symp.

Inform. Theory, Seoul, Korea, 2009, pp. 1664-1668.
[5] A. Manada, K. Yoshida, H. Morita, and R. Tatasukawa, “A grouping

based on local girths for the group shuffled belief propagation decoding,”
IEEE Commun. Lett., vol. 20, no. 1, pp. 2133-2136, Nov. 2016.

[6] C. A. Aslam, Y. L. Guan, K. Cai, and G. Han, “Informed fixed
scheduling for faster convergence of shuffled BP decoding,” IEEE

Commun. Lett., vol. 21, no. 1, pp. 32-35, Jan. 2017.
[7] X. Liu, Y. Zhang, and E. Cui, “Variable-node-based dynamic scheduling

strategy for belief-propagation decoding of LDPC codes,” IEEE Com-

mun. Lett., vol. 19, no. 2, pp. 147-150, Feb. 2016.
[8] X. Liu, Z. Zhou, R. Cui, and E. Liu, “Informed decoding algorithms

of LDPC codes based on dynamic selection strategy,” IEEE Trans.

Commun., vol. 64, no. 4, pp. 1357-1366, Apr. 2016.
[9] X. Wu, C. Zhao, and X. You, “Parallel weighted bit-flipping decoding,”

IEEE Commun. Lett., vol. 11, no. 8, pp. 671-673, Aug. 2007.
[10] D. J. C. MacKay, Encyclopedia of sparse graph codes [Online]. Availi-

ble: http://www.inference.phy.cam.ac.uk/mackay/codes/data.html
[11] IEEE 802.11 Wireless LANs WWiSE Proposed: High Throughput Exten-

sion to the 802.11 Standard, IEEE 11-04-0886-00-000n, 2004.
[12] M. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity iterative

decoding of low-density parity check codes based on belief propagation,”
IEEE Trans. Commun., vol. 47, pp. 673-680, May 1999.

http://www.inference.phy.cam.ac.uk/mackay/codes/data.html

	I Introduction
	II Group Shuffled BP Decoding
	III Adaptive Grouping and AGSBP Decoding
	III-A General Adaptive GSBP Decoder
	III-B Adaptive VN Grouping Methods

	IV Numerical Results
	IV-A Numerical Examples
	IV-B Complexity Analysis

	V Conclusion
	References

