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Effective Block Sparse Representation Algorithm
for DOA Estimation with Unknown Mutual
Coupling

Qing Wang, Member, IEEE, Tongdong Dou, Hua Chen*,
Weiqing Yan, and Wei Liu, Senior Member, IEEE

Abstract—Unknown mutual coupling effect can degrade the
performance of a direction of arrival (DOA) estimation method.
In this letter, a new method is proposed for uniform linear
arrays (ULAs) to tackle this problem. Considering the sparse
representation exploiting the inherent structure of the received
data, the effective block sparse representation and the convex
optimization problem is constructed using the steering vector
parameterizing method. The proposed solution based on the /;-
SVD (singular value decomposition) can exploit the information
provided by the whole array and the Toeplitz structure of the
mutual coupling matrix (MCM) in the ULA. Simulation results
are provided to demonstrate its performance with unknown
mutual coupling in comparison with some existing methods.

Index Terms—Direction of arrival (DOA), block sparse repre-
sentation, mutual coupling, /;-SVD.

[. INTRODUCTION

ULTIPLE-INPUT Multiple-Output (MIMO) technique

is more attractive for increasing spectral and energy
efficiency in the wireless and mobile communications [1].
Meanwhile, the MIMO system has more degrees of freedom
and high spatial resolution than other systems in case of the
direction of arrival (DOA) estimation [2—4]. There is an issue
that must be considered in the MIMO system which the array
size has been given, increasing the number of antennas will
lead to the decrease of the array element spacing, and then
resulting in a stronger mutual coupling effect between the
antenna elements.

Mutual coupling can cause severe performance degrada-
tion for those conventional direction finding methods [5, 6].
Therefore, various array calibration techniques have been pro-
posed [7-11]. For a uniform linear array (ULA), the coupling
between neighboring elements is almost the same along the
array, so the number of parameters can be reduced, and the
mutual coupling matrix (MCM) can be modelled as a banded
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symmetric Toeplitz matrix [7]. And the method in [8] used
auxiliary arrays, exploiting the banded symmetric Toeplitz
matrix model for the mutual coupling effect, based on the
ESPRIT algorithm. The special structure of the MCM of a
ULA was also employed to parameterize the steering vector
for joint estimation of DOAs and MCM in [9]. With the help
of the auxiliary elements, the effect of mutual coupling can
be eliminated and the MUSIC and ESPRIT method can be
utilized directly to the angle estimation in bistatic MIMO radar
[10, 11].

Recently, sparse signal representation based methods have
been proposed to tackle spectrum estimation and array pro-
cessing problems [12-16, 18], outperforming many traditional
direction finding algorithms. To solve the more general source
localization problems, the [;-SVD method was derived in
[12], which can be used to tackle a wide variety of practical
signal processing problems. An efficient direction finding
method based on the separable sparse representation is derived
in [13], where it utilizes a separable structure for spatial
observation matrix to reduce the complexity. And a perturbed
sparse Bayesian learning-based algorithm is proposed to solve
the DOA estimation for off-grid signals in [15], which is a
more general case in practice. By using the sparse signal
reconstruction of monostatic MIMO array measurements with
an overcomplete basis, the SVD of the received data matrix can
be penalties based on the /;-norm [16]. In [17, 18], the sparse
signal reconstruction based method is considered for DOA
estimation with a coprime array, the over-complete representa-
tion is formulated for convex optimization problem design by
reconstructing the virtual uniform linear subarray covariance
matrix. In addition, the application of sparse reconstruction can
be devoted to the solution of the mutual coupling problem. For
example, it was applied in [14] to compensate for the mutual
coupling effect with the help of a group of auxiliary sensors
in a ULA.

In this paper, we propose a new block sparse signal rep-
resentation based DOA estimation method in the presence
of unknown mutual coupling effect and no auxiliary array
elements are required in the process. By constructing a new
over-complete block matrix based on the inherent structure of
the steering vector with mutual coupling, we can make full
use of the received data of the whole array and eliminate
the unknown mutual coupling effect. The resultant sparse
optimization problem for DOA estimation is transformed to
a convex optimization and then solved using the [;-SVD
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method.

Notation: []7 represents the matrix and vector transpose;
diag|-] stands for the diagonalization operation of matrix
blocks; ||-||, denotes the p-norm of a matrix; [-]arx n indicates
a matrix of M rows and N columns; the zero vector or zero
matrix is denoted by 0.

II. PROBLEM FORMULATION

Consider a ULA with M sensors with N far-field narrow-
band impinging signals s, (t), n =1,2,--- , N, where t is the
sample index, with ¢ = 1,2, .-- T Firstly, we formulate the
received data model for an ideal array without mutual coupling
as

x(t) = As(t) + n(t) (1)

In (1), x(t) = [z1(t),22(t), -, 20 (t)]T denotes the
M received antenna signals, and the array steering ma-
wix A = [a(6y),a(f2),- - ,a(0n)] with a(d,) =
[1,8(0,),--, B(0,)™~1" denoting the nth signals ideal s-
teering vector, where 3(6,) = exp(—j2mrA~!dsin6,), and
0, denotes the angle of arrival of the nth source, d is the
adjacent sensor spacing, and A is the signal wavelength.
s(t) = [s1(t),s2(t),--- ,sn(t)]" is the source signal vector,
and n(t) = [n1(t),na(t),- -+ ,nar(t)]7 is the independent and
identically distributed additive white Gaussian noise vector
with zero mean and covariance matrix oI, where o2 denotes
the power of noise and I is the identity matrix.

In practice, we have to consider the mutual coupling effect
between closely spaced antennas. In this case, the received
data model can be modified as

x(t) = CAs(t) + n(t) ()

where C is the MCM. For ULAs, the MCM can be modelled
as a banded symmetric Toeplitz matrix

B 1 ¢cT ... Cp_1 T
C1 1 C1 Cp—1 0
cp—1 v C1 1 c1 cp—1
cpo1 o c 1 e - oepo1
0 .
cp_1 cit 1 «c
L cp—1 a1 lyxm

3)
In (3), ¢, is a complex number and denotes the mutual
coupling coefficient between the mth and the (m+p)th sensor
with p = 0,1,--- P -1, m = 1,2,--- /M. P gives the
maximum distance between antennas over which the mutual
coupling effect cannot be ignored, which means that for the
mth sensor, it is affected by electromagnetic coupling coming
from the (m — P + D)th, --- , (m — 1)th, (m + L)th, --- ,
(m + P — 1)th sensors. For multiple snapshots, we can define
X = [x(1),x(2), - ,x(T)] € CM*Tand also define S and
N in a similar way. Then, we have

X =CAS+N 4)

ITII. THE PROPOSED METHOD

In this section, the proposed sparse representation method
for DOA estimation based on parameterization of the steering
vector and [1-SVD will be introduced.

A. Parameterization of the Steering Vector with Mutual Cou-
pling
According to the data model in Section II, the ideal steering

vector a(f) is distorted by the effect of mutual coupling in
practice, and it should be modified as

a(6) = Ca(0) ®)
According to (3), we can rewrite equation (5) as
a(g) = H(9)A(0)a(0) (©6)
where
P—1
H(0) = Z C|z|ﬂ(9)l 7
I=1—-P

A(O)=diag[p1, -, mup—1,1,--- ,Lvi, - ,vp_i]lmxm
(8)
and for k=1,2,--- ,P—1,
P—1 P—1 .
HO) — Y aBB)™ H0)— 3 )
_ =k _ I=P—k
Hk = H(O) k= H(0)
9

Since A () is a diagonal matrix and a(6) is a column vector,
(6) can be expressed by

a(g) = H(0)J(0)v(0) (10)
where
. -
B(0)
. o
B
J(0) = : (1D
o oM
L 80" vy

V(e):[lu’lv"'7,U'P—1717V17"'7I/P—1]T (12)
Hence, (2) can be changed to

From (10), we can see that H(6) is a scalar parameter related
to the mutual coupling coefficients and DOAs. It may take a
zero value for some very specific cases. However, in general, it
is not zero-valued and we assume H(6) # 0, 6 € [—90°,90°]
in the following discussion. Then, (13) can be further changed
to

(13)

x(t) = AjT's(t) + n(¥) (14)
where

A;= ['](91):'](62)3"' vJ(GN)] (15)
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H(01)v(01)
H(62)v(62) 0

HON)VON) 1 N@P-1)xN
(16)
Now, we can consider the distinct block columns of the matrix
Aj, e J(0,) € CMXQ as a new steering vector behaving
like a(f,), n=1,2,--- ,N, Q = 2P — 1, thus, Aj becomes
the new manifold matrix of the array with mutual coupling. T’
is a block diagonal matrix.

B. Block Sparsity Representatiom Using the 11-SVD Method

For the case of sparse reconstruction in direction finding
without mutual coupling, we first construct an over-complete
representation A = [a(6)).a(f}). - .a(dL)] € CV*C 1o
find the sparsest spectrum of the signal vector § € C&*!
to satisfy x = AS with respect to all possible DOAs © =
{65, 9=1,2,--- G}, where the ith row of § is nonzero and
equal to s, (t) if the DOA of signal n is 6} , G is the number of
all possible DOAs and the set © constitutes the sampling grid.
The formulation of the problem with additive white Gaussian
noise is given as follows

x=AS§+n (17)

An ideal measure of sparsity is the [p-norm constraint,
but it is a difficult and intractable combinatorial optimization
problem. According to [12], we use the /;-norm minimization
principle to relax the constraint, so the DOA estimation
problem can be formulated as

min ||8|]1, subject to ||x — A3||2 < &2 (18)

Now, let us consider the case with mutual coupling. With
(2) and (17), we can modify (18) as

min ||8|]1. subject to||x — CAZ||3 < & (19)

The above representation is no longer a convex optimization
problem due to the unknown mutual coupling parameter. In
order to reconstruct the signal spectrum from (19), we need
to construct a new over-complete matrix Aj in terms of a
sampling grid of all potential source locations as follows

where each M x @ block matrix J(¢;) has the same structure
as J(0). Mecanwhile, because of the matrix in (14), the
structure of the sparse signal vector is modified as below

(20)

§=T'8 1)

where I = diag[H(61)v(61), H(02)v(05), - -, H(05)v(05)] €

C%@*C s a block diagonal matrix, and the (Qi — Q + 1)th
to (Qi)th rows of § are of a nonzero value if the ith row of
§ is nonzero and H(6)) # 0. So the GQ x 1 signal vector
S has only a few nonzero blocks, each consisting of certain
() consecutive rows, i.e., 5 has a block-based sparse spatial
spectrum. Considering 7' samples of the received signal, we
have

X=A;S+N (22)

where X € CMxT A, & CMxCGQ and § =

[5(1),5(2),---,8(T)] € GQXT

As a result, we can apply the /3-norm for all samples and the
problem can be again transformed into a convex optimization
problem, as formulated below

min ||82|]1, subject to ||X — A;S||3 < &2 (23)
where 82 = st sk - 2T, and stz =

[|[sg(1),84(2),- - ,s4(T)]|]2. It is worth noting that s,4(t)
corresponds to the (Qg — @ + 1)th to (Qg)th rows of in the
tth snapshot.

When the number of data samples is large (I' > K), the
computational complexity of the above optimization process
will be very high. To reduce the complexity and also the
sensitivity to noise, we can apply singular value decomposition
(SVD) to the received data matrix X to reduce its dimension.
Denote the SVD of X by X = UAYV, and we further have

X = UgAsVE + UyAyVE (24)

where Ag and Ay are diagonal matrices whose diagonal
entries correspond to the N largest singular values and the
remaining M — N singular values, respectively. The unitary
matrices Ug and Vg correspond to the signal subspace, while
the unitary matrices Uy and V) correspond to the noise
subspace. Together we have U = [UsUy], V = [Vs V7,
and A = diag|/As Ay]. Then X. X can be reduced to

Xp = CASy + Np (25)

where Xp = XVs, S = SVg, and Np = NVg.
Then, in a similar way, we can define Sp = SVg =
[é_R(l)véR(Q)v T véR(N)]’ é% - [§l127 ‘§{227 T vgg]’ and ‘§§]2 -
[ISR((Qg—Q +1):Qg, :)||2, and arrive at the following
formulation with a much reduced dimension

min||82]1, subject to||Xp — AsSg|3 < €2 (26)

According to the knowledge of the distribution, we can
apply the [1-SVD method and the upper value of ||Ng||2
with a 99% confidence interval to select the regularization
parameter £ as described in [12]. As (26) shows, we have
applied the parameterized steering vector operation to the
manifold matrix of the array with mutual coupling. Thus, the
spatial spectrum of Sk is block sparse, which is related to
the constructed over-complete matrix. And the computational
complexity of solving (26) through the second-order cone
programming is O((NGQ)?). So we employ the recursive
grid refinement procedure [14] to reduce the calculation time.

Note that in our discussion, we have ignored the case of
H(6)= 0. This may happen for some specific combination
of angle and coupling coefficient values, which means the
array will not be able to receive the signal correctly for those
directions and as a result, the proposed method will fail.
However, H(6) is a continuous function for given coupling
coefficients, so the chance of H(#)= 0 has a measure of zero
and we can say in general the proposed solution is valid and
effective as demonstrated by the following simulation results.
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Algorithm in [7]
! === Algorithmn [11]
| —— Algorithm in [13]
1 — — Proposed algorithm

Spectrum(dB)
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Fig. 1. Spatial spectrum obtained by the proposed algorithm in comparison
with the algorithms in [8], [12] and [14].

IV. SIMULATION RESULTS

In this section, simulation results are provided to show the
performance of the proposed method. The number of far-
field narrowband signals is N= 2 with directions 01 and 05,
respectively, the number of the ULA elements is M= 10,
and the number of nonzero mutual coupling coefficients is
P= 4. The root mean squared error (RMSE) is adopted as a
performance index.

Firstly, we show the spectrum obtained by our method
and the methods in [8], [12] and [14] in Fig. 1, with S-
NR=5dB, snapshot number 7=200, and directions 6;= —15°,
and 6,=20°. The mutual coupling coefficients are c¢; =
0.4864 —0.47767, co = 0.2325+0.19147, and c3 = 0.1163 —
0.10897. We can see that only our method can identify the
directions of the sources correctly, while the methods in [8],
[12] and [14] exhibit a large deviation from the true values. In
particular, the method in [12] even led to a pseudo peak close
to 5° due to the lack of consideration of mutual coupling.

Secondly, the performance of the proposed method is tested
by comparing with the methods in [8], [12] and [14] at an
SNR varying from 0dB to 10dB and with 400 snapshots,
and directions 6;= —12.1°, and 6>,=15.9°. Fig. 2 shows
the RMSE versus SNR curves obtained by averaging 400
Monte-Carlo simulations. The mutual coupling coefficients
are ¢c; = 0.43301 — 0.3515, ¢ = 0.2618 + 0.21765, and
c3 = 0.1414 — 0.14145. And we used the adaptive grid
refinement approach to improve the measurement accuracy.
As shown in Fig. 2, the proposed method has the superior
resolution performance, that is because [12] suffers from lack
of effective solution to the mutual coupling problem, while the
method in [8] and [14] has given up the information received
by (2P — 1) sensors located at the two ends of the ULA.

The third simulation examines the performance of our
method at a snapshot number varying from 200 to 1000 with
200 Monte-Carlo experiments, and directions ;= —12.1°,
and #,=15.9°. The SNR is fixed at 20dB, and the mutual
coupling coefficients are c¢; = 0.5844 — 0.54765, co =
0.2625 + 0.1414j, and c3 = 0.1163 — 0.12895. As shown
in Fig. 3, again the proposed method has achieved the best
performance.

V. CONCLUSION

In this paper, a new method based on sparse representation
has been proposed to solve the DOA estimation problem in

Algorithm in [7]

4 —A— Algorithm in [11]
25 —— Algorithm in [13]
—6—Proposed algorithm
—>—cRs

RMSE(degrees)

5

I SR s a——
6 7 8 9 10

0

[ 1 2 3 4 5
SNR(dB)

Fig. 2. RMSE of DOA versus SNRs with snapshot number 7=400.

._A/A/A—A.———A———‘———‘_"

Algerithm in [7]
—&— Algorithm in [11]
1.2 —¥— Algorithm in [13]
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—p—cRB
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o

o i\s\@‘e\e\e—_e\s\
02
> b >

e s b

o S
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Snapshot

Fig. 3. RMSE of DOA versus snapshot number with SNR=20dB.

the presence of unknown mutual coupling for a ULA. The
proposed algorithm can be considered as a combination of
the parameterized steering vector and the [;-SVD method,
where the original non-convex problem with unknown mutual
coupling parameters was transformed into a block-sparsity
based convex problem by exploiting the banded symmetric
Toeplitz property of the mutual coupling matrix. As shown in
simulations, the proposed method has demonstrated a superior
performance over existing solutions.
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