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Radio Map Interpolation using Graph Signal
Processing

Alessandro Enrico Cesare Redondi

Abstract—Interpolating a radio map is a problem of great
relevance in many scenarios such as network planning, network
optimization and localization. In this work such a problem is
tackled by leveraging recent results from the emerging field of
signal processing on graphs. A technique for interpolating graph
structured data is adapted to the problem at hand by using
different graph creation strategies, including ones that explicitly
consider NLOS propagation conditions. Extensive experiments
in a realistic large-scale urban scenario demonstrate that the
proposed technique outperforms other traditional methods such
as IDW, RBF and model-based interpolation.

Index Terms—Radio Map Interpolation, Graph Signal Pro-
cessing, Fingerprinting Localization

I. INTRODUCTION

Many problems related to network design and optimization
require to rely on a radio map that contains, for each physical
location, what is the received signal strength from a particular
signal emitter (base stations for outdoor environments or
Wi-Fi access point in the case of indoor applications) [1].
However, the process of constructing an accurate radio map is
costly and time consuming, as it requires to perform many
measurements at different locations. Therefore, radio maps
are generally coarsely sampled and contain measurements
only in a discrete set of specific locations, typically the
most application-critical ones. While such an approach can be
effective in some scenarios, other applications may require a
finer radio map resolution. Such a case is well represented
by fingerprinting localization, a widely popular and cost-
effective localization technique. In fingerprinting localization,
a set of known anchors, such as base stations or access
points, transmit/receive radio signals to/from the object to
be located. The different signal strengths create a signal
fingerprint which is then compared to the ones contained into
a pre-stored radio map. Then, the location corresponding to
the closest fingerprint in the radio map is returned as the
estimated location of the target. It follows that the localization
error is inversely proportional to the radio map resolution.
To increase the accuracy of fingeprinting localization while
at the same time keeping low measurement costs, the radio
map is generally interpolated so that measurements for new
locations can be created starting from the existing ones. In
this paper, we study the problem of interpolating a radio map
using a technique named graph-based signal interpolation [2].
Such a technique differs fundamentally from traditional local
interpolation techniques generally applied to radio maps (e.g.,
Inverse Distance Weighting (IDW) [3], Radial Basis Functions
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(RBF) [4]) as it treats the radio signal strength measurements
as a signal defined over a graph. The graph G = (V, E) is
composed by nodes V , which represent the different phys-
ical locations, and weighted edges E, representing, e.g., the
distances between different locations: the radio map can be
therefore viewed as a signal defined over such a graph, where
each measurement is attached to a different node. Differently
from local interpolation methods, where the signal value at
an unknown location is obtained as a weighted average of
the signals or signal functions at neighbouring locations, the
graph-based interpolation methods used in this work captures
global information and predicts the value of all unknown
nodes at once by selecting a solution that matches the values
at known nodes. The solution is obtained leveraging not
only the relationships between known and unknown nodes
as done in traditional techniques such as IDW and RBF,
but also the ones among known nodes yielding to higher
interpolation accuracy. The rest of this paper is organized as
follows: Section II reviews the basics of graph-based signal
processing and describes an interpolation method for graph
signals. Section III illustrates how such interpolation methods
can be applied to the problem at hand, focusing in particular
on different graph creation strategies. Section IV compares
the proposed technique with existing methods for the problem
of fingerprinting localization in a realistic large-scale outdoor
urban scenario. Finally, Section V concludes the paper and
describes future work.

II. NOTIONS OF GRAPH SIGNAL PROCESSING (GSP)

A. Background on graph signals

Consider an undirected, connected and weighted graph G =
(V, E,W) consisting of a set of N verticesV , a set of edges E
and a weighted adjacency matrix W. Entry wi, j in W contains
the weight of the link connecting nodes i and j, where wi, j = 0
means absence of the link. A graph signal is any function
f : V → R defined over the vertices of the graph, which can
be represented as a vector f ∈ RN .

Let di be the degree of node i, that is the sum of link
weights connected to node i and define the degree matrix
D = diag(d1, d2, . . . , dN ). The normalized combinatorial
graph Laplacian is defined as L = I − D−1/2WD−1/2 with an
associated set of orthogonal eigenvectors U = (u1, u2, . . . , uN )
and eigenvalues (λ1, λ2, . . . , λN ). The Graph Fourier Trans-
form (GFT) of a graph signal f is defined as f̃ = UTf. Similarly
to classical Fourier transform, eigenvectors and eigenvalues of
L give a frequency interpretation of the graph signal.
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B. Interpolation of graph signals

In [5], an interpolation method based on the spectral decom-
position of a graph signal is proposed. The method builds on
a work by Pesenson [6] which describes how to reconstruct a
bandlimited (smooth) graph signal starting only from a subset
of nodes called the uniqueness set. The method starts by
dividing the set of graph vertices in a known set S, |S| = NS
(for which measurement (f)S are available) and unknown set
Sc , |Sc | = NSc (for which data should be interpolated),
N = NS + NSc . The method then computes the optimal cut-
off graph frequency ω∗

S
as the square root of the smallest

singular value of the matrix (L)2
Sc , defined as the submatrix

of L2 containing only the rows and columns corresponding to
the unknown set Sc . Such choice is proved in [5] to satisfy the
sufficient conditions provided by Pesenson for reconstructing
a graph signal from the uniqueness set. [6, Theorem 1.2 and
4.1]. Finally, reconstructed values for the unknown set are
computed by least-squares projection of the known nodes onto
the Paley-Wiener space of ω∗

S
-bandlimited signals defined

over the graph. Operatively, this is done according to the
following steps:

1) Compute the H∗ eigenvectors of L for which the asso-
ciated eigenvalues are less than ω∗

S
.

2) Define U∗H as the matrix containing such H∗ eigenvec-
tors, (U∗H )S as the submatrix containing only the rows
corresponding to the set S and (U∗H )Sc as the submatrix
containing only the rows corresponding to the unknown
set Sc .

3) Compute ĝ = (ĝ)S ∪ (ĝ)Sc , where (ĝ)S = D1/2(f)S and
(ĝ)Sc = (U∗H )Sc ((U∗H )T

S
(U∗H )S )−1(U∗H )T

S
(f)S

4) Retrieve the interpolated signal f̂ = D1/2ĝ.
As pointed out in [5], the complexity of the method is
O(H∗N2).

III. GRAPH CONSTRUCTION FOR RADIO MAP
INTERPOLATION

The problem of radio map interpolation can be defined as
it follows: assume K anchors (base stations, access points,
concentrators) are deployed in the area under analysis and let
sk (xi) be the measured signal strength received from the k-th
anchor at location xi = {xi, yi }, k = 1 . . . K . The radio finger-
print at location xi is defined as s(xi) = {s1(xi), . . . , sK (xi)}.
Let M be the set of location indexes where measurements
have been taken and a signal fingerprint is available. Given
s(xi), i ∈ M, radio map interpolation estimates the unknown
signal fingerprints ŝ(xj ) at new locations xj , j ∈ U .

In order to cast the radio map interpolation problem as a
graph signal interpolation problem, one needs to construct a
graph first. That means transforming the problem at hand into
a set of nodes and a set of weighted links between them.

For what concerns nodes in the graph, and referring to
Section II, let S =M and Sc = U . With such an assignment
nodes in the graph correspond to physical locations in the radio
map, which may or may not have an associated fingerprint
measurement.

The implicit assumption behind the graph interpolation
method explained in Section II is that the signal to be inter-

polated is “smooth” over the graph, i.e., nodes close to each
other (in terms of the weights of the links connecting them)
should have similar signal values. In our case it is reasonable
to assign the link weights wi, j to an inversely proportional
function of the physical distance between locations i and j:
two locations close in space are expected to have similar
fingerprints, therefore the weight of the link connecting them
should be high. Following this rationale, several options for
the link weights are possible:
• Inverse distance: a natural choice is the inverse of the

distance between the real-world locations xi and xj .

wi, j =



1
di, j

if di, j < dthr, di, j , 0
0 otherwise

(1)

The distance threshold dthr controls the level of connec-
tivity of the graph.

• Gaussian kernel weighting function: a common choice
widely used in the field of graph signal processing is the
following:

wi, j =




exp
(
−

d2
i, j

2σ2
d

)
if di, j < dthr

0 otherwise
(2)

• Physical distance and correlation coefficients: in this case
the edge weights are determined not only by the physical
distance between nodes, but also by the correlation coeffi-
cients ρi, j between the signal fingerprints s(xi) and s(xj )
at those nodes. Note that ρi, j can be computed only for
those couples of nodes where a fingerprint is available,
that is:

wi, j =




exp
(
−

d̃2
i, j

2σ2
d

)
· exp

(
−

(1−|ρi, j |)2

2σ2
c

)
if i, j ∈ M,

exp
(
−

d̃2
i, j

2σ2
d

)2
otherwise

(3)
where d̃i, j is the normalized distance between i and j, and
σd and σc are the parameters controlling the exponential
decay rate. As in (1) and (2), wi, j = 0 if d̃i, j is smaller
than a normalized distance threshold d̃thr.

• Non-line-of-sight (NLOS) correction: In NLOS scenarios,
such as outdoor urban environments, the presence of
obstacles greatly impacts on the propagation of radio
signals. In such cases, the smoothness assumption may be
invalid, as two close locations separated by an obstacle
may receive a very different signal strength. Therefore,
we propose the following correction to the edge weights
in (1)–(3):

w∗i, j = Ii, jwi, j, (4)

where Ii, j is an indicator function equal to 1 if locations
i and j are in line-of-sight and 0 otherwise. The effect of
the correction is to de-activate the graph links connecting
two locations in NLOS conditions. Section IV gives
details on how such a correction can be operatively
computed in urban scenarios.

Having defined nodes, edges and edge weights, the graph
signal f ∈ RK×NS is obtained with the fingerprints s(xi) mea-
sured over the set of known nodes S. The method described
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Fig. 1. Graphical representation of graph-based radio map interpolation.
White nodes represent location where signal fingerprints s(xi ) are available
(solid lines stemming from the nodes). Black nodes represents locations where
the radio map should be interpolated computing the unknown signal ŝ(x j )
(dashed lines). The width of the links represent weights wi, j and is inversely
proportional to the distance between the nodes.

in Section II can be used to retrieve the interpolated signal
f̂ ∈ RK×NSc , defined over the set of unknown nodes Sc . Figure
1 provides a graphical representation of the graph construction
process.

IV. EXPERIMENTAL RESULTS

We test the performance of graph-based radio map interpo-
lation in a real-life large-scale outdoor urban scenario. Specifi-
cally, we leverage the availability of an already deployed city-
wide low-power wireless sensor network composed of more
than 2500 sensor nodes scattered in a rectangular area of about
4 Km2. The area under interest is located in the historical
center of a city in northern Italy and therefore characterized by
severe NLOS propagation conditions. Sensor nodes operate the
Wireless M-Bus standard (EN 13757-4:2013) at the physical
and data link layer, using the N mode (long range, narrow-
band) at 169 MHz. The nodes are deployed statically, geo-
tagged with GPS and periodically broadcast packets containing
application specific sensor measurements. Such messages are
received by K data concentrators deployed in the area. The
coordinates xk of each concentrator are also known. For
each received message, the k-th concentrator estimates the
Received Signal Strength (RSS) sk (xi) from the i-th node.
This allows to construct, for each node location, a fingerprint
signal s(xi) which contains the RSSs computed by the different
concentrators. Note that a concentrator can be located outside
the communication range of a particular node, causing the
measurement for that node to be missing. We rely here on a
simple heuristic that replaces missing values in the fingerprints
with a small default value below the sensitivity threshold for
the technology under consideration, equal to -148 dBm.

A. Computing the NLOS indicator

To estimate the NLOS indicator function in (4) we leverage
the OpenStreetMap database, which provides free worldwide
geospatial data including street maps. In particular, we rely
on the Open Source Routing Machine (OSRM) project [7], a
service that exploits the OpenStreetMap database to compute
routing directions for several types of transportation modes
(cars, bikes, walking, etc.). Given two real-world nodes lo-
cations xi and xj , the OSRM service is queried asking for

walking directions and the corresponding output is processed
through a parsing script. The indicator Ii, j is set to 1 if
a straight walking path exists between the two locations.
Otherwise, if any obstacle blocks the path between xi and
xj , Ii, j is set to 0. Note that the complexity of the method
can be reduced focusing only on those location pairs (i, j) for
which di, j < dthr.

B. Radio Map Interpolation

To evaluate the quality of the proposed graph-based radio
map interpolation, the original set of fingerprints s(xi) is
divided in a training set (80% of the measurements) and a
test set (20% of the measurements). The training set is used
as the set of known measurements M, while the test set is
used to assess the performance of the method. Additionally,
we also estimate the fingerprints of the locations in the test
set using several traditional radio map interpolation techniques
such as Inverse Distance Weighting (IDW) [3], Radial Basis
Functions (RBF) [4] and Model-based Interpolation (MBI) [8].
IDW estimates the signal at an unknown location as a weighted
average of the signals at known locations. RBF approximates
the fingerprints as sum of weighted radial basis functions cen-
tered at known locations. MBI estimates the signal fingerprint
using the log-distance path-loss model, whose parameters are
learnt on the training data. For the graph-based interpolation,
we distinguish between the three different options of graph
construction, namely Inverse Distance (GBI_d), Gaussian ker-
nel (GBI_e) and distance with correlation coefficients (GBI_ρ)
with or without NLOS correction. All tested methods are
sensible to the input parameters: IDW requires to set the
power to the distance weights p, RBF requires to set the
standard deviation σr of the Gaussian basis functions and
graph-based techniques require to set the distance threshold
dthr and the parameters of the Gaussian functions σd and σc .
To perform a fair comparison we run extensive experiments
and we retrieve the parameters for which the best results were
obtained through linear search. For IDW this corresponds to
setting p = 2. For RBF, we set σr = 103 and for GBI
techniques we set dthr = 100m, σd = 35 and σc = 1.

For each interpolation technique, we compute the root
mean squared error (RMSE) between the estimated and actual
fingerprints, in dBm. The process is repeated 5 times, each
time changing the training and the test set, according to 5-
fold cross validation, and results are averaged.

Table I reports the RMSE obtained by the different methods.
As one can see, the model-based interpolation is the worst-
performing among all tested techniques. This is not surprising
considering that the simple log-distance path-loss model does
not capture the complex NLOS characteristics of the urban
propagation environment, including reflection, diffraction and
scattering. IDW and RBF perform almost at par, while graph-
based interpolation is the best-performing method. Among the
different tested graph construction techniques, the one using
both pyhsical distances between locations and correlation co-
efficients between the fingerprints at known locations performs
the best. Moreover, the proposed NLOS correction allows to
further improve the performance.
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TABLE I
RMSE FOR THE DIFFERENT INTERPOLATION TECHNIQUES [DBM]

IDW RBF MBI GBI_d GBI_d-NLOS GBI_e GBI_e-NLOS GBI-ρ GBI_ρ-NLOS
9.82 9.87 11.34 9.56 9.41 9.53 9.38 9.48 9.31

TABLE II
SUMMARY OF LOCALIZATION ERRORS [M]

None IDW RBF MBI GBI_d GBI_d-NLOS GBI_e GBI_e-NLOS GBI_ρ GBI_ρ-NLOS
min 54.5 47.8 45.3 53.8 50.8 50.2 46.7 46.1 47.8 42.7
max 478.0 472.3 465.7 467.1 469.9 466.6 471.8 468.0 472.5 464.2
avg 187.9 182.8 181.2 187.1 179.8 178.3 179.7 177.8 179.9 177.7
std 75.3 71.1 70.7 72.6 71.1 70.7 70.6 70.7 70.1 69.2
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Fig. 2. Average WKNN localization error for the different techniques

C. Fingerprinting Localization

In a second experiment, we compare the performance of
radio map interpolation techniques when applied to fingerprint
localization. The baseline technique used for the task at hand is
the weighted k nearest neighbor (WKNN) algorithm: given a
fingerprint captured at an unknown location and a database
of pre-stored fingerprints in known locations, the WKNN
computes the estimated location as a weighted average of the
locations corresponding to the k nearest fingerprints in signal
space. Weights are chosen to be inversely proportional to the
squared euclidean distance between fingerprints. For distance
computation, only the elements of the fingerprints containing
valid values (different from -148 dBm) are considered.

The original set of available fingerprints is divided in a
training set and test set in the same way as done in Section
IV-B. As a first test, fingerprint localization is performed
without radio map interpolation: the training set is used as
fingerprints database, and localization is performed for the
samples in the test set. Then, interpolation is performed using
the aforementioned interpolation techniques. The 4 Km2 area
is spatially sampled with a step of 50 m, producing a grid
of 40 × 40 new locations. For each location xj in the grid, a
fingerprint is interpolated and added in the database. Finally,
localization is performed for each sample in the test set and for
each technique, the average location error is computed. Again,
5-fold cross validation is performed and the corresponding

errors are averaged. Figure 2 shows the average error of the
different techniques when varying the number of neighbors k.
Fingerprint localization without radio map interpolation is the
worst-performing technique, as expected, and the model-based
interpolation does not improve much its performance. Better
results can be obtained with RBF and IDW interpolation. The
best performance is obtained by the proposed graph-based
interpolation approach. The three tested graph-construction
techniques perform almost at par when used without the NLOS
correction. When the correction is applied, an increase in the
localization performance is observed, with GBI_e and GBI_ρ
performing slightly better than GBI_d. The details of the
localization errors are reported in Table II for k = 10.

V. CONCLUSION

In this letter, a graph signal processing based technique for
interpolating radio maps is proposed. Different graph construc-
tion strategies are tested and experimental evaluations with
realistic data in a urban NLOS environment show that they
provide higher interpolation accuracy compared to existing
methods. Future works will focus on other radio technologies
and on indoor environments.
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