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Mobility and Popularity-Aware Coded Small-Cell Caching
Emre Ozfatura and Deniz Gündüz

Abstract—In heterogeneous cellular networks with caching
capability, due to mobility of users and storage constraints of
small-cell base stations (SBSs), users may not be able to download
all of their requested content from the SBSs within the delay
deadline of the content. In that case, the users are directed
to the macro-cell base station (MBS) in order to satisfy the
service quality requirement. Coded caching is exploited here to
minimize the amount of data downloaded from the MBS taking
into account the mobility of the users as well as the popularity of
the contents. An optimal distributed caching policy is presented
when the delay deadline is below a certain threshold, and a
distributed greedy caching policy is proposed when the delay
deadline is relaxed.

Index Terms—Heterogeneous cellular network, content
caching, user mobility.

I. INTRODUCTION

CACHING popular video contents at the network edge,
closer to the end users, is a promising method to cope

with increasing video traffic. In heterogeneous cellular net-
works, popular video files are stored at SBS caches to reduce
latency as well as backhaul traffic [1]–[3]. The goal in these
works is to maximize the hit rate, or equivalently, to minimize
the amount of data downloaded from MBSs under given SBS
cache capacity constraints. A common assumption is that a
user stays connected to the same set of SBSs during the whole
duration of video download. However, in ultra dense networks,
where there is a large number of operating SBSs with limited
coverage areas, it is indispensable to take user mobility into
consideration to meet the prescribed quality of service (QoS)
requirements [4].

Our aim in this paper is to provide a caching policy,
which, for given video popularity profile and user mobility
patterns, minimizes the average amount of data downloaded
from the MBS. We adopt the delayed offloading scheme in
heterogeneous networks; that is, each video content request
has a deadline, and if the mobile user cannot download all the
fragments of the content from the SBSs it has connected to by
the deadline, the remainder of the request is satisfied by the
MBS [5]. We consider maximum distance separable (MDS)
coding for storing the video contents in the SBS caches. To
the best of our knowledge, [6] is the only work that considers
mobility-aware caching with delayed offloading. The goal in
[6] is to minimize the probability of a request being served
by the MBS. In this work, as in [7], we assume that the MBS
serves the remaining fragments as MDS coded packets at a
higher cost. Hence, unlike [6], our goal is to minimize the
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amount of data downloaded from the MBS. We show that,
if the request deadline is below a certain threshold there is
an optimal distributed solution. If the request deadline does
not meet this condition, we introduce a sub-optimal greedy
caching policy.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a heterogeneous network that consists of one MBS
and N SBSs, SBS1, . . . , SBSN, with disjoint coverage areas.
A mobile user (MU) is served by only one SBS at any
particular time. We consider a video library V = {v1, . . . , vK }
consisting of K distinct video files, each of length B bits,
indexed according to their popularity profile, i.e., file vk is the
kth most popular file with request probability pk . Further, we
assume that video files are encoded by rateless MDS coding
[3], so that a video file can be retrieved when B parity bits
are collected in any order, from any SBSs.

We consider equal-length time slots, whose duration cor-
responds to the minimum time that a MU remains in the
coverage area of a SBS. Therefore, although a MU cannot
connect to more than one SBS during one time slot, it may
stay connected to the same SBS over several consecutive time
slots. We assume that SBSn is capable of transmitting Rn bits
within a time slot to a MU within its coverage area, and it has
a storage capacity of Cn bits. Due to the QoS requirement, a
video file must be downloaded within T time slots once it is
requested. Thus, if a MU is not able to collect B bits from
SBSs in T slots, the remaining bits are provided by the MBS
at a higher cost.

We define the mobility path of a user as the sequence of
small-cells visited over T time slots after requesting a video
file. For instance, for T = 5, SBS1, SBS2, SBS2, SBS3, SBS4 is
a possible mobility path. We remark that the MU may remain
connected to the same SBS more than one time slot, and can
connect to at most T different SBSs. Hence, there is a finite
number of distinct mobility paths, denoted by M . We denote
the mth mobility path by Im, and its realization probability by
qm. Realization probabilities can be obtained from empirical
observations, or via modeling mobility paths as random walks
on a Markov chain.

Our aim is to minimize the expected amount of data
downloaded from the MBS for given SBS storage capaci-
ties C , {Cn}Nn=1, data transmission rates R , {Rn}Nn=1,
video popularity profiles P , {pk}Kk=1, and mobility paths
with realization probabilities IT , {(Im, qm)}Mm=1. Let XT ={

xn,k
}N,K
n=k=1 denote the caching policy over T time slots, where

xn,k indicates the number of parity bits for file vk stored in
SBSn. A caching policy is feasible if

∑K
k=1 xn,k ≤ Cn, ∀n. The

average amount of data downloaded from the MBS is denoted
by dav(XT , IT ), or simply by dav .

Let dk,m denote the amount of coded data downloaded from
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the MBS for video vk following mobility path Im. For given
C,R,P, IT , and caching policy XT , we have

dk,m = max

{
B −

(
N∑
n=1

min
{

xn,k, RnSm,n
})
, 0

}
, (1)

where Sm,n denotes the total number of time slots the MU
connected to SBSn in mobility path Im. Then, taking the
average over all mobility paths and video files, dav can be
written in terms of dk,m as dav =

∑M
m=1

∑K
k=1 qmpkdk,m. Our

goal is to find the optimal feasible caching policy X?T that
minimizes dav , formulated as follows:

P1: min
XT

dav

subject to:
K∑
k=1

xn,k ≤ Cn, ∀n. (2)

xn,k ≥ 0, ∀n, k . (3)

In order to avoid the max operator in Eqn. (1), problem P1 is
reformulated as follows. We treat dk,m as decision variables,
and add the following constraint:

dk,m ≥ max

{
B −

(
N∑
n=1

min
{

xn,k, RnSm,n
})
, 0

}
. (4)

We note that, for a given feasible caching policy the objective
function is monotonically increasing with dk,m; hence, for the
optimal solution, constraint (4) must be satisfied with equality.
The equivalent optimization problem is obtained as follows.

P2: min
XT ,DT

dav

subject to:
K∑
k=1

xn,k ≤ Cn, ∀n, (5)

N∑
n=1

min
{

xn,k, RnSm,n
}
+ dk,m ≥ B, ∀k,m, (6)

dk,m ≥ 0, ∀k,m, (7)

where DT ,
{
dk,m

}K,M
k=m=1. Notice that constraints (6) and (7)

together imply constraint (4). Recall that a MU cannot connect
to more than T different SBSs. Hence, for each (k,m) pair,
constraint (6) can be replaced by at most 2T linear constraints.
To clarify, let T = 4 and N = 6, and consider the mobility path
Im = {SBS1, SBS1, SBS2, SBS2}. For this specific mobility
path and file vk , (6) can be written as

min
{

x1,k, 2R1
}
+min

{
x2,k, 2R2

}
+ dk,m ≥ B. (8)

Equivalently, (8) can be replaced by the following set of linear
constraints:

x1,k + x2,k + dk,m ≥ B, (9)
x1,k + 2R2 + dk,m ≥ B, (10)
2R1 + x2,k + dk,m ≥ B, (11)
2R1 + 2R2 + dk,m ≥ B. (12)

Consequently, the initial optimization problem P1 can be cast
into a linear optimization problem. However, the number of
constraints are exponential in time constraint T . In the next
subsection we show that, under a certain assumption on T , P1
can be solved in a distributed manner.

III. DISTRIBUTED SOLUTION

In this section, we consider the case T ≤ Tmin ,
B

Rmax
,

where Rmax is the maximum data rate across all the cells,
i.e., Rmax , max {R1, . . . , RN }. This special case is also in-
strumental in highlighting the distinction between our problem
formulation and that of [6], whose goal is to minimize the
probability of downloading any data from the MBS. We note
that, with the formulation of [6], when T < Tmin all caching
policies are equivalent since it is not possible to collect B bits
in T slots. While [6] ignores the mobility paths when T < Tmin,
each caching policy will induce a different dav . Hence, an
optimal caching policy XT in [6] may lead to a suboptimal
dav . Instead, we present the optimal caching algorithm that
minimizes dav when T ≤ Tmin. We also propose a greedy
caching policy, for T > Tmin.

A. Optimal Distributed Solution

When T ≤ Tmin, (1) simplifies to

dk,m = B −
N∑
n=1

min
{

xn,k, RnSm,n
}
. (13)

Then, our objective dav can be rewritten as:

dav = B −
M∑
m=1

K∑
k=1

N∑
n=1

qmpk min
{

xn,k, RnSm,n
}

︸                                          ︷︷                                          ︸
,d̃av

. (14)

Note that minimizing dav is equivalent to maximizing d̃av ,
which denotes the average amount of data downloaded from
the SBSs. We change the order of the summations in (14):

d̃av =
N∑
n=1

K∑
k=1

pk
M∑
m=1

qm min
{

xn,k, RnSm,n
}

︸                                     ︷︷                                     ︸
,d̃av,n

, (15)

we observe that the optimal caching policy can be obtained
via maximizing d̃av,n, defined above, for each SBSn separately.
Let Xn

T denote the caching policy for SBSn. For SBSn, we have
the following optimization problem:

P3: max
Xn
T

d̃av,n

subject to:
K∑
k=1

xn,k ≤ Cn . (16)

xn,k ≥ 0, ∀k . (17)

If we group the mobility paths according to the time spent in
cell SBSn, d̃av,n can be written as

d̃av,n =
K∑
k=1

T∑
t=1

∑
m:Sm,n=t

pkqm min
{

xn,k, tRn

}
︸                                      ︷︷                                      ︸

,d̃k
av,n

. (18)

The term min
{

xn,k, tRn

}
can be expanded as follows:

min
{

xn,k, tRn

}
=

t−1∑
i=0

max
{
min

{
xn,k − iRn, Rn

}
, 0

}
, (19)
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Algorithm 1: Algorithm for optimal distributed caching
(γ-based policy)

Input : R,C,{γn}Nn=1
Output: Xγ

T
1 for n=1,. . . ,N do
2 xn,k ← 0, k ∈ {1, . . . ,K};
3 while Cn > 0 do
4 γn

ḱ, t́
← max γn;

5 xn,ḱ ← xn,ḱ +min(Cn, Rn);
6 γn ← γn \

{
γn
ḱ, t́

}
;

7 Cn ← Cn − Rn;
8 end
9 end

and d̃k
av,n can be rewritten as:

d̃k
av,n =

T∑
t=1

∑
m:Sm,n≥t

pkqm max
{
min

{
xn,k − (t − 1)Rn, Rn

}
, 0

}
.

(20)
Equivalently,

d̃k
av,n =

T∑
t=1

γnk,t max
{
min

{
xn,k − (t − 1)Rn, Rn

}
, 0

}
, (21)

where γn
k,t
, pkP(Sm,n ≥ t). We observe that for each k, d̃k

av,n

is a monotonically increasing piecewise linear function of xn,k ,
and its slope is γn

k,t
for xn,k ∈ ((t − 1)Rn, tRn). Consequently,

the objective function in P3 is the sum of N monotonically
increasing piecewise linear functions, and sum of its variables
are bounded by constraint (16). Accordingly, it is maximized
by maximizing the variable that corresponds to the linear
function with the maximum slope. We propose Algorithm 1 to
maximize the objective function that follows a straightforward
procedure using γn

k,t
values for each SBSn. The algorithm

starts with increasing the variable xn,k that corresponds to the
maximum slope, until the slope of d̃k

av,n changes, then it again
searches for the maximum slope, and repeats this process until
the sum of the variables satisfies (16) with equality. From
a computational point of view, proposed algorithm sorts the
elements of set Γn ,

{
γn
k,t

: k = 1, . . . ,K; t = 1, . . . ,T
}

for
each n ∈ N. Since |Γn | = KT , the complexity of Algorithm 1
is O(NKT log(KT)). The optimality of the algorithm follows
from the fact that γn

k,t
≤ γn

k,t−1 for any (k, t) pair, which implies
that d̃k

av,n is a concave function for each k. The caching policy
constructed according to Algorithm 1 is called the γ-based
policy, and denoted by Xγ

T . We note that when T ≤ Tmin, Xγ
T

is the optimal policy, i.e., Xγ
T = X?

T .

B. Distributed Greedy Cache Allocation Scheme

When T > Tmin it is not possible to predict the performance
of Xγ

T , or ensure that dav(Xγ
T , IT ) ≤ dav(Xγ

Tmin
, ITmin ). We

note that Xγ
Tmin

is the γ-based caching policy explained
above for Tmin. However, we know that for any T > Tmin,
dav(Xγ

Tmin
, IT ) ≤ dav(Xγ

Tmin
, ITmin ). Hence, our aim is to

provide a greedy distributed caching policy Xg
T that performs

Algorithm 2: Greedy algorithm for storage reallocation
Input : C,R, IT , P,X?

Tmin

Output: Xg
T

1 for n=1,. . . ,N do
2 ∆+

k
,∆−

k
← NULL : k ∈ {1, . . . ,K}, Vred ← {};

3 V+ ← {},V− ← {};
4 xmax = max

{
xn,1, . . . , xn,K

}
;

5 while xmax > 0 do
6 ḱ = max

{
k : xn,k ≥ xmax

}
;

7 if ḱ < V− then
8 V− ← V− ∪

{
ḱ
}
, calculate ∆−

k
;

9 end
10 if ḱ + 1 < V+ then
11 V+ ← V+ ∪

{
ḱ + 1

}
, calculate ∆+

k
;

12 end
13 xmax ← xmax − Rn;
14 end
15 ∆+max ← max∆+,∆−max ← max∆−;
16 if ∆+max > |∆−max | then
17 ḱ ← maxk ∆+k , k̀ ← maxk ∆−k ;
18 ∆+

k̀
,∆+

ḱ
← NULL;

19 xn,ḱ ← xn,ḱ + Rn, xn,k̀ ← xn,k̀ − Rn;
20 Go back to line 3
21 end
22 end

better than Xγ
Tmin

, i.e., dav(Xg
T , IT ) ≤ dav(Xγ

Tmin
, IT ). Our

proposed method to construct Xg
T consists of two steps. In

the first step, we obtain the optimal caching policy X?
Tmin

by
executing Algorithm 1. In the second step, we follow a greedy
method for cache reallocation for each cell separately, which
is performed by Algorithm 2. Assume that we are reallocating
the cache for SBSn, Algorithm 2 first identifies candidate
video files for cache capacity increment and reduction. In
this identification process, the main criteria is the popularity
of the video files, e.g., if there are several video files that
have been allocated the same cache capacity, then the most
popular file among those is a candidate for cache capacity
increment, whereas the least popular one is a candidate for
cache capacity reduction. Accordingly, let V+ and V− denote
the sets of indices of the video files that are candidates for
cache capacity increment and reduction, respectively. After
identification of a candidate file vk , we calculate ∆−

k
if k ∈ V−,

or ∆+
k

if k ∈ V+, whose initial values are is NULL. ∆+
k

and ∆−
k

denote the amount of change in dav when the cache
capacity of video file vk is increased by Rn, or decreased
by Rn

1, respectively. In the last step, algorithm compares
the values of ∆+max , maxk ∆+k and ∆−max , maxk ∆−k . The
condition ∆+max > |∆−max | implies that dav can be reduced via
storage capacity reallocation. Then, the algorithm performs
the following task, storage capacity of video file vk , where
∆+
k
= ∆+max , is increased by Rn, and the storage capacity of

1Storage reallocation can be done with smaller sizes to improve the
performance of the policy with a cost of complexity; however, due to limited
space, we do not study this tradeoff in this letter.
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(c) C = 300 (files) and T = 5.

Fig. 1: The average amount of data served by the MBS (normalized by the file size) for different values of: (a) normalized
cache size C, (b) delay deadline T , and (c) data transmission rate R = 1/Tmin.

video file vk where ∆−
k
= ∆−max is decreased by Rn.

IV. NUMERICAL RESULTS

For numerical simulations we consider K = 1000 files
in the library, and assume that their popularities follow a
Zipf distribution with parameter 0.56 [8]. There are 16 SBSs
located in a 2D square grid. We fix the transmission rate of
each SBS to R, according to parameter Tmin, i.e., R = 1/Tmin

file per slot. We consider the following Markov mobility
model: a MU connected to SBSn remains connected to the
same SBS with probability fn, or connects to one of the
neighboring SBSs with equal probability. In the experiment,
we consider f4 = f13 = 0.4, f7 = f9 = 0.5, and for the
all other SBSs fn = 0.3. As a performance benchmark, we
also consider the N most popular policy, which simply caches
the most popular N files at each SBS. We remark that, when
T > Tmin the value of T has no impact on the performance of
the N most popular policy since it caches the files as a whole.
On the other hand, when T ≤ Tmin, the value of dav decreases
linearly with increasing T .

In the first experiment, we set Tmin = 2, T = 5 and consider
the normalized SBS cache sizes (as portion of the entire file
library) 10%, 20%, 30%, 40%, 50%. The greedy algorithm Xg

T
provides up to 40% further reduction in the amount of data
downloaded from the MBS compared to γ-based policy Xγ

T
as depicted in Fig. 1(a). We also observe that the gap between
the performances of Xγ

T and Xg
T widens with increasing cache

sizes. Finally, note that the N most popular policy performs
quite poorly in general as it ignores the mobility patterns.

In the second experiment, we set C = 300, Tmin = 2, and
the delay deadline T takes values from 2 to 6 time slots.
Performance of the caching policies for different T values are
plotted in Fig. 1(b). The key observation from the figure is that,
although the average portion of the video file downloaded from
the MBS monotonically decreases with increasing T under
policy Xg

T and Xγ
Tmin

, this is not the always the case for
Xγ
T . Note that Xγ

T mainly depends on the sojourn statistics,
P(Sm,n ≥ t), over all possible paths, and when T > Tmin

those statistics might be misleading because in certain paths
the MU might collect all the parity bits before connecting to
SBSn. In that case, storage capacity of the popular files might

be increased due to sojourn statistics even though it is not
required.

In the third experiment we set T = 5, C = 300, and
the transmission rate takes values 1/2, 1/3, 1/4, 1/5, 1/6 file
per slot, which correspond to Tmin values of 2, 3, 4, 5, 6 slots
respectively. Although it is expected that the MBS usage
decreases with the increasing transmission rate, Fig 1(c) illus-
trates that after a certain point the amount of data downloaded
from the MBS increases with the transmission rate under
all policies. This is because, Tmin decreases when the rate
increases and the difference between Tmin and T widens, as a
result of which the performance becomes worse.

V. CONCLUSIONS

In this letter, we studied mobility and popularity aware
content caching for a heterogeneous network with MDS-
coded caching at the SBSs. Assuming a maximum download
time requirement T , for each request, we first defined the
threshold Tmin on T , below which some bits of the request
must be downloaded from the MBS. Then, we obtained the
optimal distributed caching policy when T ≤ Tmin, called
the γ-based policy, which minimizes the amount of data that
need to be downloaded from the MBS. Then, we utilized
the parameter Tmin and the γ-based policy for T = Tmin to
obtain a greedy caching policy for T > Tmin. Consequently,
we showed how to design a coded caching policy according
to Tmin and performed various simulations to demonstrate that
the utilization of Tmin improves the performance significantly.
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