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Abstract—In the context of location verification systems
(LVSs), this work proves that knowledge of a legitimate user’s
transmit power has no effect on the optimal performance of
an RSS-based LVS. Specifically, we prove that the detection
performance of a generalized likelihood ratio test (GLRT), where
the unknown transmit power is estimated, is identical to that of a
differential likelihood ratio test (D-LRT). Our analysis also proves
the asymptotic optimality of D-LRT for an RSS-based LVS with
unknown transmit power. These results are important for real-
world deployments of LVSs, since D-LRT incurs a significantly
lower implementation cost relative to GLRT.

Index Terms—Physical layer security, location verification,
generalized likelihood ratio test, received signal strength.

I. INTRODUCTION

Location-based technologies and services (e.g., geographic
routing protocols, location-based access control protocols, and
location-based key generation) are becoming widely used
in emerging wireless networks [1–5]. Meanwhile, current
mainstream positioning systems, such as the now ubiquitous
WiFi positioning systems and GPS, are highly vulnerable
to location-spoofing attacks due to their openness and wide
public availability. Against this background, the deployment of
a location verification system (LVS), which provides methods
to guarantee the reliability of the location information (e.g.,
[6–10]), is of growing importance. The main purpose of an
LVS is to verify ( based on signal observations) whether the
claimed location of a user is consistent with his true position.

The LVS based on received signal strength (RSS) is of
particular interest due to the simplicity in acquiring RSS
observations [11]. However, a challenging issue to address in
an RSS-based LVS is that the transmit power of a legitimate
user (who reports his true location) may be unknown for a
range of reasons - automatic power-saving functionality at
battery exhaustion being one example [12]. In addition, from
the perspective of designing an RSS-based LVS, whether we
should set the legitimate user’s actual transmit power to be a
known (i.e. public) or unknown variable is another challenging
issue. This is due to the fact that if the transmit power is an
unknown variable, a malicious user (who spoofs his claimed
location) will not have to meet any specific signal value at the
receiving base station (BS). This, in turn, begs the question
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as to whether, in such a case, there remains any benefit to an
RSS-based LVS. These two issues, which are the focus of this
work, turn out to have a rather surprising answer - the known
or unknown legitimate user’s transmit power does not matter.

Considering the case in which the legitimate user’s power
is unknown, both the null and alternative hypothesis are
composite. That is, the likelihood functions depend on the
unknown transmit powers of the legitimate and malicious
users. In this first case, the location verification is a composite
binary detection problem with unknown transmit powers at all
elements of the observation vector, for which the generalized
likelihood ratio test (GLRT) is known to be asymptotically
optimal (e.g., [13]). In the GLRT, the transmit powers have to
be estimated first, which means that the complexity of the
GLRT is high (from a signal processing perspective) [14].
However, we note that the above composite binary detection
problem can also be solved by the likelihood ratio test (LRT)
based on differential observations (D-LRT). In the D-LRT,
the transmit powers are removed by differencing, and thus
D-LRT is of lower complexity relative to the GLRT. In the
second case, where the legitimate user’s power is publicly
known, the likelihood functions are completely determined
in both the null hypothesis and alternative hypothesis. This
is due to the fact that the malicious user will optimize his
transmit power accordingly (otherwise he becomes easier to
be detected as shown in [9]) and this optimized transmit power
can be determined by the BS as well. For the second case, the
binary detection problem can be solved by LRT, which is the
uniformly most powerful test.

The main contribution of this work is to formally prove that
the D-LRT is exactly equivalent (exactly the same detection
performance) to the GLRT, a conclusion that is independent
of localization error on the true location of the legitimate or
malicious user. It is well known that GLRT is asymptotically
optimal (e.g., [13]) for the composite binary detection prob-
lem. As such, our proof indirectly demonstrates the asymptotic
optimality of D-LRT. This rather counter-intuitive result pro-
vides useful guidelines for real world RSS-based LVSs, due
to the lower complexity of the D-LRT solution. With the aid
of [9], this work also proves that the detection performance
of RSS-based LVSs is independent of whether the legitimate
user’s transmit power is unknown or publicly known.

II. SYSTEM MODEL

We now outline the system model and state the assumptions
adopted in this work. We denote the null hypothesis (i.e., the
user is legitimate) and the alternative hypothesis (i.e., the user
is malicious) by H0 and H1, respectively. The composite log-
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normal RSS observation model is given by [11, 15]{
H0 : y = θ01N + u+w,

H1 : y = θ11N + v +w,
(1)

where y is the N × 1 original RSS observation vector, θ0
presents the unknown transmit power of the legitimate user,
θ1 presents the unknown transmit power of the malicious user,
and 1N is the N×1 vector with all elements set to unity. In (1),
each element of u is given by ui = p− 10γ log10

(
dc
i

d

)
, i =

1, 2, . . . , N , where p is a reference received power correspond-
ing to a reference distance d, γ is the path loss exponent, dci is
the Euclidean distance from the i-th BS to the legitimate user’s
claimed location (also his true location). Each element of v is
given by vi = p− 10γ log10

(
dt
i

d

)
, where dti is the Euclidean

distance from the i-th BS to the malicious user’s true location.
We first note that in practice the malicious user’s true location
cannot be known, which in turn means that the vector v is
also unknown. However, following the methodology adopted
in [9], we also note that the optimal location (in terms of
leading to the minimum detection errors) for the malicious user
to launch location spoofing attacks can be determined under
some practical constraints (e.g., the malicious user should be
on a specific road section). In this work we consider the
worst-case scenario, where the malicious user is actually at
the optimal location. Such a circumstance leads to the vector
v being known due to the fact that the BS can determine this
optimal location. In the log-normal RSS observation model,
the measurement is in dB and the noise w in (1) is widely
assumed to be a normal random variable with zero mean and
covariance matrix R [11, 15]. As such, y under H0 conditional
on θ0 follows a multivariate normal distribution, which is

f (y|θ0,H0) = N (θ01N + u,R). (2)

In addition, y under H1 also follows a multivariate normal
distribution, i.e., f (y|θ1,H1) = N (θ11N + v,R).

III. GENERALIZED LIKELIHOOD RATIO TEST (GLRT)
BASED ON ORIGINAL RSS OBSERVATIONS

When the transmit powers in the observation model are
unknown, the binary detection problem in the RSS-based LVS
becomes a composite hypothesis test, for which the GLRT is
asymptotically optimal [13]. As such, in this section we first
consider the GLRT.

The binary decision rule embedded in the GLRT based on
the original observations obtained from (1) is given by

Λ (y) ,
f
(
y|θ̂1,H1

)
f
(
y|θ̂0,H0

) D1

≥
<
D0

λR, (3)

where Λ (y) is the likelihood ratio of y, λR is the threshold
corresponding to Λ (y), θ̂0 and θ̂1 are the maximum-likelihood
estimations of θ0 and θ1, respectively, and D0 and D1 are
the binary decisions that infer whether y is from H0 or H1,
respectively. We note that the specific value of λR can be set
by using different strategies or optimization frameworks, e.g.,
through predetermining a false positive rate [13], to minimize

the Bayesian average cost (e.g., the total error rate that is the
sum of the false positive rate and miss detection rate) [13], or
to maximize the mutual information between the system input
and output [16]. Following (3), we present the variant of the
decision rule embedded in the GLRT based on y in Lemma 1.

Lemma 1: The binary decision rule of the GLRT based on
y is given by

T(y)
D1

≥
<
D0

ΓR, (4)

where T(y) is the test statistic given by

T(y) , cTR−1

(
y − yTR−11N

1T
NR−11N

1N

)
, (5)

ΓR is the threshold corresponding to T(y) given by

ΓR , lnλR +
1

2
cTR−1e, (6)

and the definitions of c and e are given by

c =

(
v − u− (v − u)TR−11N

1T
NR−11N

1N

)
, (7)

e =

(
v + u− (v + u)TR−11N

1T
NR−11N

1N

)
. (8)

Proof: We first derive the closed-form expressions for
θ̂0 and θ̂1. Based on (2), the log likelihood function of y
conditioned on θ0 under H0 is

ln f (y|θ0,H0) = −1

2
ln |R| − N

2
ln(2π)

− 1

2
(y−θ01N−u)TR−1(y−θ01N−u).

Then, the first derivative of ln f (y|θ0,H0) with respect to θ0
can be derived as

∂ ln f (y|θ0,H0)

∂θ0
=

∂ ln f (y|θ0,H0)

∂ (θ01N )

∂ (θ01N )

∂θ0

= −θ01
T
NR−11N + (y − u)TR−11N . (9)

The second derivative of ln f (y|θ0,H0) with respect to θ0 is
derived as −1T

NR−11N , which is less than zero due to the
fact that R is a positive-definite symmetric matrix. As such,
θ̂0 is derived in a closed-form expression, which is given by

θ̂0 =
(y − u)TR−11N

1T
NR−11N

. (10)

Following a similar procedure, we also derive θ̂1 as

θ̂1 =
(y − v)TR−11N

1T
NR−11N

. (11)

We then obtain the likelihood ratio conditioned on θ̂0 and θ̂1
in the log domain as

ln Λ (y) =
(
(θ̂1 − θ̂0)1N + v − u

)T

R−1y

− 1

2

(
(θ̂1−θ̂0)1N+v−u

)T

R−1
(
(θ̂1 + θ̂0)1N+v+u

)
.

(12)
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Substituting (10) and (11) into (12), we obtain

lnΛ (y)=cTR−1
(
y− yTR−11N

1T
NR−11N

1N

)
− 1

2
cTR−1e. (13)

Following (13), we obtain the desired result in Lemma 1 after
some algebraic manipulations.

Theorem 1: The false positive and detection rates of GLRT
based on y are given by

αR = Q
(
lnλR + 1

2c
TR−1c

√
cTR−1c

)
, (14)

βR = Q
(
lnλR − 1

2c
TR−1c

√
cTR−1c

)
, (15)

where Q[x] = 1√
2π

∫∞
x

exp(−t2/2)dt.
Proof: In order to obtain the false positive and detection

rates, we have to derive the distributions of the test statistic
T(y) under both H0 and H1. We first derive the covariance
matrix of T(y), which is the same for H0 and H1 due to the
fact that the covariance matrix of y under H0 and H1 is the
same. To this end, we first define z as

z =
yTR−11N

1T
NR−11N

. (16)

The variance of z is derived as

σ2
z =

1T
NR−11N

(1T
NR−11N )2

=
1

1T
NR−11N

. (17)

Denoting the covariance of (y−z1N ) as G, the (i, j)-th (i, j =
1, 2, . . . , N ) element of G is given by

Gij = σ2
z +Rij − Cov(yi, z)− Cov(yj , z), (18)

where Rij is the (i, j)-th element of R. In (18), Cov(yk, z)
is the covariance of yk and z, which is derived as (k = i, j)

Cov(yk, z) =
1T
N (R−1)TR(:, k)√

Rkkσ2
z

, (19)

where R(:, k) denotes the k-th column of R. Since R is
a positive-definite symmetric matrix, we have (R−1)TR =
R−1R = IN (IN is the N×N identity matrix), which results
in 1T

N (R−1)TR(:, k) = 1. As such, defining Rkk = σ2
R, we

have Cov(yk, z) = 1/σRσz , which is not dependent on k.
Therefore, we obtain G = R+ ξ1N×N , where ξ is

ξ =
1

1T
NR−11N

−
2
√
1T
NR−11N

σR
, (20)

and 1N×N is the N ×N matrix with all elements set to unity.
With the definition z, following (5) the test statistic can be
rewritten as T(y) = cTR−1(y − z1N ), and therefore the
covariance matrix of T(y) is given by

cTR−1G
(
cTR−1

)T
= cTR−1c+ ξcTR−11N×N

(
cTR−1

)T
. (21)

As per the definition of c given in (7), we have

cTR−11N =

(
(v−u)T − (v−u)TR−11N

1T
NR−11N

1T
N

)
R−11N =0.

As such, with regard to the second term in (21) we have

ξcTR−11N×N

(
cTR−1

)T
= ξ

(
cTR−11N

)
1T
N

(
cTR−1

)T
= 0N×N , (22)

where 0N×N is the N × N matrix with all elements equal
zero. Substituting (22) into (21), we obtain the final covariance
matrix of the test statistic T(y) as

cTR−1G
(
cTR−1

)T
= cTR−1c. (23)

The means of y under H0 and H1 are (θ̂01N + u) and
(θ̂11N + v), respectively. As such, the distributions of T(y)
under H0 and H1 are given by

T(y)|H0∼N
(
cTR−1

(
u−uTR−11N

1T
NR−11N

1N

)
, cTR−1c

)
, (24)

T(y)|H1∼N
(
cTR−1

(
v−vTR−11N

1T
NR−11N

1N

)
, cTR−1c

)
. (25)

As per the decision rule in (4) and the definitions of the false
positive and detection rates, we obtain the results in (14) and
(15) after some algebraic manipulations.

IV. COMPARISON BETWEEN GLRT AND D-LRT IN
RSS-BASED LVSS

For the specific observation model given in (1), the compos-
ite binary detection problem in the RSS-based LVS can also be
solved by the D-LRT [9], where the unknown transmit powers,
θ0 and θ1, are removed by differencing. For convenience,
we represent the detection performance of the D-LRT in the
following lemma, which is Theorem 2 in [9].

Lemma 2: The false positive and detection rates of D-LRT
are given by

αD = Q

 lnλD + 1
2 (∆v−∆u)

T
D−1 (∆v−∆u)√

(∆v−∆u)
T
D−1 (∆v−∆u)

 , (26)

βD = Q

 lnλD − 1
2 (∆v−∆u)

T
D−1 (∆v−∆u)√

(∆v−∆u)
T
D−1 (∆v−∆u)

 , (27)

where λD is the threshold corresponding to the likelihood ratio
of ∆y, ∆um = um−uN , ∆vm = vm− vN , Dmn = RNN +
Rmn−RmN−RnN , m = 1, . . . , N−1, and n = 1, . . . , N−1.

Proposition 1: We have αR = αD and βR = βD for λR =
λD. That is, the performance of the D-LRT is equivalent to
the performance of the GLRT based on y.

Proof: From (14), (15), (26), and (27), we can see that
αR, βR, αD, and βD are all in the form of the Q function.
We denote αR = Q(ζR), βR = Q(ηR), αD = Q(ζD), and
βD = Q(ηD). In order to prove αR = αD and βR = βD for
λR = λD, we only need to prove ζR−ηR = ζD −ηD. As per
(14), (15), (26), and (27), in order to prove ζR−ηR = ζD−ηD,
it suffices to prove the following equation

cTR−1c = (∆v−∆u)
T
D−1 (∆v−∆u) . (28)

This equation is the same as (55) in [9], which has been proved
in [9], and thus the proof of Proposition 1 follows.
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Fig. 1. The receiver operating characteristic (ROC) curves of the
GLRT and D-LRT with localization errors on the true location of the
legitimate user, where N = 4, R = σ2

dBIN , σdB = 3, Σ =
diag{σ2

1 , σ
2
2}, the reported location is [0, 0], the best location to attack

for the malicious user is [5, 10], and the locations of the N BSs are
[22.3, 45.5], [37.9,−33.4], [54.1, 77.5], and [−13.8, 93.1].

Based on Proposition 1, the composite hypothesis testing
problem in the RSS-based LVS can be solved through the
more efficient D-LRT, in which the detection performance is
equivalent to that of the more complex GLRT. This indicates
that in RSS-based LVSs, estimating the unknown transmit
power or removing it by differencing does not affect the
detection performance. The latter strategy (i.e., D-LRT) is of
lower complexity and therefore more desirable in practice.
That is, with unknown transmit powers RSS-based LVSs
should be designed based on the D-LRT since this strategy
incurs a lower implementation cost.

In Fig. 1, we verify our Proposition 1 and also examine the
impact of localization error on the performance of the GLRT
and D-LRT. Specifically, we consider the localization error on
the true location of the legitimate user, where the legitimate
user’s true location follows a normal distribution with the
reported location as the mean and Σ as the covariance matrix.
In Fig. 1, we observe that the performances of the GLRT and
D-LRT are identical regardless of the size of the localization
errors. This can be explained by the fact that Proposition 1 is
valid for arbitrary vectors u and v (such as arbitrary vectors
∆u and ∆v), while the size of the localization errors only
affects the vector u and ∆u. Therefore, our analysis indicates
the identical performance of the GLRT and D-LRT a result
that is independent of localization errors on the true location
of the legitimate or malicious user. This observation also
confirms the asymptotic optimality of the D-LRT even with
localization errors. In this figure, we also observe that the
detection performance of both the GLRT and D-LRT decreases
as the localization error increases.

Proposition 2: The detection performance of the RSS-
based LVSs using the GLRT and D-LRT is the same for the
following two scenarios.

Scenario 1: The legitimate user’s transmit power is publicly

known and the malicious user optimizes his transmit power.
Scenario 2: The legitimate user’s transmit power is un-

known to BSs or the malicious user.
Proof: The proof follows from our Theorem 1, Lemma 2

and the Theorem 1 in [9].
The intuitive explanation of Proposition 2 is that the benefits

of knowing the legitimate user’s transmit power by the BS
are counteracted by the malicious user through optimizing his
transmit power accordingly. As such, we can conclude that
setting the legitimate user’s transmit power to be known or
unknown has no effect the RSS-based LVSs.

V. CONCLUSION

In this work, we first proved that the unknown transmit pow-
er in an RSS-based LVS, which can be estimated or removed
by differencing, has no effect on the detection performance of
the LVS. In addition, we analytically showed that setting the
legitimate user’s transmit power to be known or unknown has
no effect on the detection performance of the RSS-based LVS.
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