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Abstract—This letter investigates the problem of anti-jamming
communications in dynamic and unknown environment through
on-line learning. Different from existing studies which need to
know (estimate) the jamming patterns and parameters, we use
the spectrum waterfall, i.e., the raw spectrum environment,
directly. Firstly, to cope with the challenge of infinite state of
raw spectrum information, a deep anti-jamming Q-network is
constructed. Then, a deep anti-jamming reinforcement learn-
ing algorithm is proposed to obtain the optimal anti-jamming
strategies. Finally, simulation results validate the the proposed
approach. The proposed approach is relying only on the local
observed information and does not need to estimate the jamming
patterns and parameters, which implies that it can be widely used
various anti-jamming scenarios.

Index Terms—Anti-jamming, Deep Q-Network, Deep Rein-
forcement Learning

I. INTRODUCTION

Anti-jamming is always an active research topic, as wireless

transmissions are naturally vulnerable to jamming attacks. The

mainstream anti-jamming techniques includes Frequency Hop-

ping Spread Spectrum (FHSS) and Direct-Sequence Spread

Spectrum (DSSS) [1]. Recently, to address the interactions

between the legitimate users and the jammers, game theory has

been widely applied in the literature [2]–[7]. In methodology,

these approaches need to know the jamming strategies, which

implies that the legitimate users are required to estimate the

jamming patterns and parameters from the observed environ-

ment. However, with the rapid development of artificial intelli-

gence and universal software radio peripheral (USRP) [8], the

jammers can easily create dynamic and intelligent jamming

attacks. As a consequence, there are two limitations with

regard to estimation-based anti-jamming communications: i)

there may be information loss for unknown jamming patterns,

and ii) if the intelligent jammer switches its strategies dynam-

ically and rapidly, it is not possible to track and react it in real

time. Thus, it is challenging and interesting to investigate anti-
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jamming communication approaches in dynamic and unknown

environment.

To overcome the above limitations, a promising way is

to design new anti-jamming approaches that utilize the raw

environmental information, which is known as spectrum water-

fall [9], without estimating jamming patterns and parameters.

These kind of anti-jamming approaches would avoid infor-

mation loss and adapt to the dynamic environment, as can

be expected. In addition, online learning is an effective way

to solve the decision problems in dynamic environment. The

widely used technique is Q-learning [10], which has been used

in anti-jamming problems [2], [3]. Unfortunately, Q-learning

is not able to deal with the raw environmental information

directly because of the infinite state of the environment.

Motivated by the deep reinforcement learning technique for

learning successful control policies from raw video data in

[11], we investigate the anti-jamming problem in unknown

and dynamic environment. First, the raw spectrum information

is defined as the state of the environment to avoid losing

the jammer information as much as possible. Then, a deep

anti-jamming Q-network (DAQN) is constructed to realize the

direct processing of raw spectrum information. Finally, a deep

anti-jamming reinforcement learning algorithm (DARLA) is

proposed. Simulation results show that the proposed DARAL

achieves the best anti-jamming strategies in various scenarios.

The main contributions are summarized as follows.

• Based on the deep reinforcement learning technique, a

smart anti-jamming communication scheme is proposed.

In particular, the raw spectrum information is defined as a

state, which describes the detail features of jammer more

accurately.

• The proposed algorithm is relying only on the locally

observed information and does not need to estimate the

jamming patterns and parameters the jammer in advance,

i.e., it is model-free, which can be widely used in various

anti-jamming scenarios.

Note that the most related work is [12], which also adopted

deep reinforcement learning to investigate the anti-jamming

problems. The main differences in this work are as follows:

i) the environment state is presented by extracting features

of signal-to-interference-plus-noise ratio (SINR) and primary

user occupancy in [12], while it is presented by the raw

spectrum information in this work, and ii) it requires the

jammer to have the same channel-slot transmission structure
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Fig. 1. System model.

Fig. 2. Thermodynamic chart of various jamming pattern.

with the users in [12]. On the contrary, this requirement does

not hold in our work, which makes the proposed approach

more general.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider the transmission of one user (a transmitter-

receiver pair) against one or several jammers, as shown in

Fig. 1. The agent, which is disposed at the receiving end, sends

anti-jamming strategies to the transmitter through a reliable

control link. Jammers may adopt fixed, random, or possibly

intelligent jamming patterns. However, we do not analyze the

specific jamming models, but obtain the optimal anti-jamming

strategies based on the raw spectrum information.

While the receiver receives the desired signal, the agent

continuously senses the whole communication bands and

stores the sensed values. Denote the spectrum vector as Pt =
{pt,1, pt,2, · · · , pt,N}, where pt,n is the power of frequency

n at time t and N is the number of sampling points in

frequency space. In order to sufficiently use history spectrum

information, a two-dimensional matrix, which describes time-

frequency features of spectrum environment, is expressed as:

St =











Pt−1

Pt−2

...

Pt−M











=











pt−1,1 pt−1,2 · · · pt−1,N

pt−2,1 pt−2,2 · · · pt−2,N

...
...

. . .
...

pt−M,1 pt−M,2 · · · pt−M,N











. (1)

It is noted that St contains all the spectrum information until

time t, as M tends to infinity. However, the difficulty of the

decision optimization problem is significantly increased with

the increase of M . Therefore, M can take an appropriate value,

which would be determined by the time-varying characteristics

of the spectrum environment.

To illustrate the rationality of using St as the basis of anti-

jamming decision-making, we give the thermodynamic charts

of the St matrix of several common jamming patterns, also

known as spectrum waterfall [9], as shown in Fig. 2. Taking the

swept jamming as example, we can accurately determine the

frequency range and intensity (color) of jamming at the next

moment by looking at the thermal chart, which also means we

can determine the anti-jamming strategy accordingly.

In the unknown and dynamic environment, we do not

consider estimation-based anti-jamming strategies. Instead,

define St as the environment state, and then consider a

dynamic decision problem in which the agent (anti-jamming

user) interacts with an environment through a sequence of

observations of environment (St), actions (at) and rewards

(rt). Specifically, an action a can be a combination decisions of

frequency, power, coding schemes, spread spectrum, and other

kinds of anti-jamming decisions, e.g., a = (f, p) represents

the combination actions of frequency (f ) and power (p). The

rewards associated with the actions and environment is defined

as:

r(a,S) =

{

R(a)− λδ β(a,S) ≥ βth(a)
0 β(a,S) < βth(a)

, (2)

where R(a) is the bit rate when the action a is selected,

λ is the cost when action changes, δ is an indication of

action change (δ = 1 if at 6= at−1; δ = 0 if at = at−1),
β(a,S) is the received signal to interference plus noise ratio

(SINR) in state S with action a. βth(a) is the required SINR

threshold for successful transmission. Note that R(a) and

βth(a) are modeled as a function of action a, the reason

is as follows: the bit rate and SINR requirements change

for different anti-jamming strategies, such as forward error

correction and spread spectrum schemes.

Then, the goal of the agent is to select anti-jamming actions

in a fashion that maximizes cumulative future reward Rt =
∑

∞

i=0 γ
irt+i+1, where γ is the discount factor. One way of

achieving this goal is to compute the following optimal action-

value (also known as Q) function [10]:

Q∗(S, a) = max
π

E {Rt | St = S, at = a, π}, (3)

where the anti-jamming policy π = P (a |S) refers to a

probability distribution over the actions. Based on the Bellman

equation,

Q∗(S, a) = E
{

r + γmax
a′

Q∗(S′, a′) | S, a
}

. (4)

III. ANTI-JAMMING COMMUNICATION SCHEME

The traditional Q-learning is unable to cope with the anti-

jamming problem described in section II, as the state space

size of St is almost infinite. In order to solve this problem,

a deep anti-jamming Q-network (DAQN) is constructed to

address the interactive decision-making problem with raw

spectrum information input, which contains decision network

and update network, as shown in Fig. 3 and Fig. 4 respectively.

We use a deep convolutional neural network (CNN) to approx-

imate the optimal action-value as shown in decision network,

where the input state St is represented by a thermal chart of

M×N pixels. After the processing of two convolutional layers

and two fully connected layers, the output is the estimated Q

function, where K is the size of action space. At last, the
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Fig. 3. Decision network of the DAQN.

Fig. 4. Updating network of the DAQN.

decision layer outputs the corresponding action based on the

estimated Q function.

However, reinforcement learning is known to be unstable or

even to diverge when a nonlinear function approximator [11],

such as the neural network is used to represent the Q function.

The main reason is correlation during the learning process. The

idea of experience replay is adopted to address these instabil-

ities as shown in the update network. To perform experience

replay, we store the agent’s experiences et = (St, at, rt,St+1)
at each time-step t in data set Dt = (e1, · · · et). When the

experience pool is big enough, we construct target values

r + γmax
a′

Q(S′, a′) by randomly choosing elements in a

uniform distribution (S, a, r,S′) ∼ U(D), which reduces

the correlation during sequential observation. The Q-learning

update at iteration i uses the following loss function:

Li(θi) = E(S,a,r,S′)∼U(D)

[

(yi −Q(S, a; θi))
2
]

, (5)

where θi is the parameter of Q-network at iteration i and

yi = r + γmax
a′

Q(S′, a′; θi−1) is target value computed by

Q-network parameter θi−1 with greedy strategy. By assuming

that yi is the expected output of CNN with network weight θi
when the input is S, we calculate the difference between real

output Q(S, a; θi) and target value yi to determine the update

of network parameters. Differentiating the loss function with

respect to the weights, we arrive at the following gradient:

∇θiLi(θi) = E(S,a,r,S′) [(yi −Q(S, a; θi))∇θiQ(S, a; θi)] .
(6)

According to the gradient descent algorithm, the network

weight θi is updated according to (6). Although there are two

Algorithm 1: Deep Anti-jamming Reinforcement Learning

Algorithm (DARLA)

Initialize : Set D = ∅, ǫ = 1, Set θ with random weights,

Sense initial environment S1.

For t = 1, T do

With probability ǫ, select a random action at
otherwise, select at = argmax

a

Q(St, a; θ)

Execute action at and compute rt and observe St+1

Store transitions (St, a, r,St+1) in D

If Sizeof(D) > N (Enough amount of transitions)

Sample random minibatch of transistions

(S, a, r,S′) from D

Compute yi = r + γmax
a′

Q(S′, a′; θ)

Compute gradient based on Eq.(6) and Update θ

End If

Calculate ǫ = max(0.1, ǫ−∆ǫ)
End For

CNN networks with different weights, as shown in Fig. 4,

the actual implementation requires only one CNN network, as

the computing of target values and the updating of network

weights are in different stages. The algorithm for anti-jamming

communication based on deep reinforcement learning is pre-

sented in Algorithm 1.

IV. NUMERICAL RESULTS AND DISCUSSIONS

In the simulation setting, the user and the jammer combat

with each other in a frequency band of 20MHz, where the

frequency resolution of spectrum sensing is 100kHz. The

user performs a full band sensing every 1ms and retains the

spectrum data within the 200ms. Hence, the size of matrix St

is 200× 200. The bandwidth of user signal is 4MHz, and the

center frequency is allowed to change in each 10ms with the

step of 2MHz, which means K = 9. Both signal and jamming

are raised cosine waveform with roll-off factor α = 0.3, in

which jamming power is 30dBm and signal power is 0dBm.

The demodulation threshold βth at all frequency is set to be

10dB, and the cost of action change λ is set to be 0.2R(a).
Four kinds of jamming patterns are given for simulation: i)

Sweep jamming (sweep speed is 1GHz/s); ii) Comb jamming

(three fixed frequency signals at 2MHz, 10MHz, and 18MHz);
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Fig. 5. Normalized throughput under different jamming patterns.

Fig. 6. Environmental states at initial and convergent stages under different
jamming patterns.
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Fig. 7. Probability of user actions during learning.

iii) Random jamming (frequency is randomly changed every

20ms with the step of 4MHz); iv) Intelligent jamming (the

jammer continuously observes the probability that the user

signal appears at each frequency point, and chooses the largest

one as jamming channel). For all Jamming patterns, the

instantaneous bandwidth of the jamming is set to be 4MHz.

The normalized average throughput of legitimate user under

different jamming patterns is given in Fig. 5. It is shown

that the anti-jamming ability of user has been improved

significantly with the proposed DARLA learning. Especially in

the case of comb jamming, the normalized throughput is close

to one after convergence, which indicates that the jamming is

almost completely avoided.

Environmental states at initial stages under sweep, comb

and random jamming patterns are given in Fig. 6(a), (b),

and (c) respectively, and the converging states are given in

Fig. 6(d), (e), and (f) respectively. These states that contain

time-frequency information can clearly reflect the past actions

of user and jamming. Taking sweep jamming as an example,

at the beginning of the learning procedure, the user adopts

randomized action as it is unfamiliar with environment (the

locations of rectangular blocks are randomly distributed), and

after convergence, the frequency is properly changed before

the jamming arrives (the rectangular blocks are distributed

according to the slashes).

With regard to the intelligent jamming, since the probability

distribution of user actions is the basis for jammer to release

jamming, the best strategy for user is that the probability of

each action is almost identical. The simulation results in Fig. 7

show the probabilities of each action being selected during the

learning procedure, which is consistent with our analysis.

V. CONCLUSION

In this letter, we investigated the anti-jamming problem in

unknown and dynamic environment. Aiming at employing the

waterfall spectrum information directly, we constructed a deep

anti-jamming Q-network to handle the complex interactive

decision-making problem with infinite number of states. Then,

a deep anti-jamming reinforcement learning algorithm was

proposed. Using the proposed learning algorithm, the user

is able to learn the best anti-jamming strategy by constantly

trying various actions and sensing the spectrum environment.

Simulation results in various scenarios are presented to val-

idate the proposed anti-jamming communication approach.

Future work on designing multi-user deep anti-jamming re-

inforcement learning algorithms is ongoing.
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