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Low-Complexity Multiuser QAM

Detection for Uplink 1-bit Massive MIMO
Panos N. Alevizos, Student Member, IEEE

Abstract—This work studies multiuser detection for one-bit
massive multiple-input multiple-output (MIMO) systems in order
to diminish the power consumption at the base station (BS).
A low-complexity near-maximum-likelihood (nML) multiuser
detection algorithm is designed, assuming that each BS antenna
port is connected with a pair of single-bit resolution analog-
to-digital converters (ADCs) and each user equipment (UE)
transmits symbols from a quadrature amplitude modulation
(QAM) constellation. First, a novel convex program is formulated
as a convex surrogate of the ML detector and subsequently solved
through an accelerated first-order method. Then, the solution of
the convex optimization problem is harnessed to solve a refined
combinatorial problem with reduced search space, requiring non-
exponential complexity on the number of the UEs. Judicious
simulation study corroborates the efficacy of the resulting two-
phase detection algorithm. The proposed two-phase algorithm
can achieve symbol error rate (SER) performance close to the ML
detector, with significantly reduced computation cost compared
to the nML detection schemes in prior art.

Index Terms—Massive MIMO, maximum-likelihood detection,
quadrature amplitude modulation, uplink.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) systems in

conjunction with single-bit resolution analog-to-digital con-

verters (ADCs) will be a promising cost-efficient solution for

future green cellular networks that support wide bandwidths.

In addition to the above, as the in-phase and the quadrature

components of the continuous-valued received samples are

quantized separately using one-bit ADCs (i.e., zero-threshold

comparators) the resulting hardware complexity at the base

station (BS) can be sustained to ultra-low levels.

Relevant papers in [1]–[4] offer the current perspective of

uplink massive MIMO with one-bit resolution ADCs. Work

in [1] designed a low-complexity message-passing one-bit

multiuser detector for quadrature phase-shift keying (QPSK)

alphabets at the user equipment devices (UEs), demonstrating

performance close to the linear minimum mean-squared error

(MMSE) detector with reduced computational cost. Subse-

quent work [2] offered throughput analysis of one-bit multiuser

linear detectors in uplink massive MIMO [4], quantifying also

the impact of imperfect channel state information (CSI) at the

BS. Near-maximum-likelihood (nML) detection is proposed

in [3] using a two-stage procedure.

In this paper, we focus on uplink multiuser massive MIMO

systems with single-bit ADCs at the BS, assuming that the UEs

transmit symbols from a square quadrature amplitude modula-

tion (QAM) constellation. QAM is the dominating modulation

scheme in current Long-Term Evolution-Advanced Pro (LTE-

A Pro) and future cellular networks [5]. The proposed detector

is divided in two phases. In the first phase, a novel convex

optimization formulation is proposed, standing as a convex

surrogate of the ML detection rule; the latter is optimal in

terms of symbol error rate (SER) but requires exponential

computational cost on the number of UEs and a huge number

of memory resources at the BS. The relaxed convex program is

solved through an accelerated projected gradient method with

adaptive restart, achieving close to the optimal convergence

rate. In the second phase of the algorithm, the solution of

the convex program is harnessed to identify the less-reliable

UE symbols and refine their decision estimates via a com-

binatorial problem with reduced search space. The resulting

two-phase detector does not require exponential computational

cost on the number of the UEs. Thorough simulation study

demonstrates that the proposed detector achieves similar SER

performance with the ML detector, and at the same time,

significantly reduces the computational cost compared to the

nML detection schemes in prior art.

Notation: Notation R, R+, and C, stands for the set of real,

non-negative, and complex numbers, respectively. Nonbold

lower-case letters (e.g., x) will stand for variables. Vectors

and matrices will be denoted by lower-case (e.g., x) and

capital (e.g., A), respectively, bold characters. Symbols (·)⊤
and (·)H denote the transpose and the conjugate transpose

of a vector or matrix, respectively. 0N (1N ) and IN denote

the N-dimensional all-zeros (all-ones) vector and the N × N

identity matrix. CN(µ,Σ) denotes the proper complex Gaus-

sian distribution while N(µ,Σ) denotes the (real) Gaussian

distribution.
⊗N

i=1 Ai denotes the N-fold Cartesian product

of sets {Ai}Ni=1
.

II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider an uplink system consisting of a BS, equipped

with M antennas. The BS serves K UEs, where M ≫ K . For

a single channel use, the received signal at the BS, y ∈ CM ,

is given by

y = H P x + n =

K∑

k=1

√
pk hk xk + n, (1)

where pk is the transmit power of the kth UE, k ∈
{1, 2, . . . ,K}, H = [h1 h2 . . . hK ] ∈ CM×K is the compound

uplink channel matrix consisting of uplink channel vectors

hk ∈ CM from the kth UE to the BS, k ∈ {1, 2, . . . ,K}.
Matrix P ∈ R

K×K
+

is a diagonal matrix, whose diago-

nal elements comprise of {√pk}Kk=1
; n ∼ CN(0M, σ

2IM )
is additive complex Gaussian noise at the BS of variance

σ2, while vector x = [x1 x2 . . . xK ]⊤ ∈ CK comprises

of the K UEs’ transmitted symbols. Each xk belongs to

a normalized square Q-QAM constellation X, i.e., vector x
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satisfies E[x] = 0K and E[x xH] = IK . For that case,
√
Q

is an integer and X , {xI + jxQ : xI, xQ ∈ S}, where

S ,
{√

3
2(Q−1) (2q − 1 − √

Q)
}√Q
q=1

is the constellation of
√
Q-

PAM. Each wireless link is subject to Rayleigh small-scale

fading, i.e., channel vectors hk ∼ CN(0M, v
2
k

IM ), where

v
2
k

is the corresponding distance-dependent wireless channel

variance. The resulting signal-to-noise ratio (SNR) for UE k

is SNRk ,
pk v2

k

σ2 .

For a simplified exposition, the signal model in Eq. (1) is

transformed to the real domain as follows

r = G s + w, (2)

where r ,
[
ℜ{y}
ℑ{y}

]
, G ,

[
ℜ{H P} −ℑ{H P}
ℑ{H P} ℜ{H P}

]
, s ,

[
ℜ{x}
ℑ{x}

]
, and

w ,
[
ℜ{n}
ℑ{n}

]
. Note that r,w ∈ R

2M , G ∈ R
2M×2K , while each

element of s belongs to a
√
Q-PAM constellation, i.e., s ∈ S2K .

BS applies one-bit quantization on the signal r and forms

vector b = [b1 b2 . . . b2M ]⊤ = sign(r) ∈ {±1}2M , where

sign(·) is the sign operator applied component-wise. The

objective at the BS is to detect s, i.e., the transmitted symbol

sequence from the UEs in the cell, using only the one-bit-

quantized noisy measurements b. The noise vector in (2) satis-

fies w ∼ N
(
02M,

σ2

2
I2M

)
, and thus, with the compound uplink

channel matrix G = [g1 g2 . . . g2M ]⊤ available, the received

vector offers the following statistics r ∼ N
(
G s, σ

2

2
I2M

)
.

Each element of b, bm, follows Bernouli distribution with

P(bm = 1) = Q
(
−

√
2
σ

g⊤ms
)
, where Q(x) = 1√

2π

∫ ∞
x

e−t2/2dt

is the well known Q-function. Using similar reasoning with

[6, Eq. (4)], it follows that the SER-optimal ML detector can

be expressed as

ŝML
= arg min

s∈S2K

{
−

2M∑

m=1

ln Q
(
−√γ bm g⊤m s

)
}
, (3)

where γ = 2/σ2. The complexity to calculate the sequence

ŝML in Eq. (3) scales as O(√Q2K
M K) = O(QKM K), which

is exponential on the number of UEs.

III. PROPOSED NEAR SER-OPTIMAL DETECTOR

In this section a two-phase detection algorithm is proposed

in order to seek an approximate solution to the ML detector

in (3), which requires exponential computational cost.

A. Phase I: Relaxation and Projection

In the first phase (phase I), a convex surrogate of opti-

mization problem (3) is formulated. Specifically, since each

element of s, sn, belongs to a
√
Q-PAM constellation, we relax

constraint s ∈ S2K to |sn | ≤
√

3
2(Q−1) (

√
Q−1), n = 1, 2, . . . , 2K .

Hence, the proposed convex relaxation version of (3) is

expressed as

minimize
s∈R2K

−
2M∑

m=1

ln Q
(
−√γ bm g⊤m s

)
(4a)

subject to |sn | ≤

√
3(√Q − 1)2
2(Q − 1) , n = 1, 2, . . . , 2K . (4b)

Note that function f(s) , −∑2M
m=1 ln Q

(
−√γ bm g⊤m s

)
is a

convex function of s ∈ R
2K as a composition of an affine

function with a convex increasing function −ln Q(x) [7, p. 84].

The set of constraints in Eq. (4b) is denoted as B, i.e.,

B ,
{
s ∈ R2K : |sn | ≤

√
3(√Q−1)2

2(Q−1) , n = 1, 2, . . . , 2K

}
, forming

a box on R2K , which is a convex set. Thus, the problem in (4)

is a convex optimization problem [7], which can be solved

either with gradient- or Newton-based iterative algorithms.

In this work, the optimal solution of problem (4) is cal-

culated through an accelerated projected gradient method

exploiting the smoothness of the objective function (i.e.,

continuously differentiable objective) [8]. First, the gradient

of f(·) is calculated as [9]

∇f(s) = −
2M∑

m=1

√
γ bm e− γ(g⊤m s)2

2

√
2 πQ

(
−√γ bm g⊤ms

) gm. (5)

Then, we need to evaluate an upper bound for local smooth-

ness parameter of function f(s) at any s ∈ R2K , which through

the use of Cauchy-Swartz inequality for matrix norms, can be

obtained as [9]: ‖∇2f(s)‖2 ≤ ‖G‖2
2
‖d(s)‖∞ , L(s), ∀s ∈ R2K,

where the elements of vector function d(s) are given by

dm(s)=
γ e−γ(g⊤ms)2

2 π
[
Q
(
−√γ bm g⊤ms

) ]2
+

γ
3
2 bm (g⊤ms) e− γ(g⊤m s)2

2

√
2 πQ

(
−√γ bm g⊤ms

) , (6)

m = 1, 2, . . . , 2M. Note that for any s ∈ R
2K , function L(s) is

an upper bound for the local smoothness parameter of function

f(·).
For the problem in (4), classic projected gradient method

iterates as s(t+1)
= PB

(
s(t) − η∇f(s(t))

)
until convergence,

where PB(·) is the projector operator onto the set B, given

by

[PB(s)]n = sign(sn) min



|sn |,

√
3(√Q − 1)2
2(Q − 1)



, (7)

n = 1, 2, . . . , 2K , and η is a suitable constant gradient step size.

On the other hand, the proposed accelerated projected gradi-

ent method: (a) exploits the knowledge of local smoothness

upper bound L(·) in the calculation of the gradient step size

and (b) employs an extra extrapolation step after projection.

More specifically, the proposed accelerated projected gradient

procedure is shown in Algorithm 1.

At line (4), the upper bound of local smoothness parameter

of f(·), L(·), is calculated, exploiting the fact that ‖G‖2
2

can

be precomputed. At line (5), a projected gradient step is

applied, where the gradient step size harnesses the knowledge

of L(·) at the current point. Lines (6) and (7) calculate

the optimal interpolation parameter β(t+1) [8] and apply the

interpolation step between the current and the previous points,

respectively. Since function f(·) is smooth, executing lines

(4) to (7) iteratively until convergence, an ǫ-optimal solution

can be found (a neighborhood of the optimal solution with

diameter ǫ ≪ 1) using at most O(1/√ǫ ) iterations [8]. An

adaptive restart mechanism (at lines 8–10) is also utilized [10]

in order to further speed up the convergence rate, requiring

also at most O(1/√ǫ) iterations to reach an ǫ-optimal solution
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Algorithm 1 Algorithm to solve problem (4)

Input: G,b, γ

1: Pre-compute ‖G‖2
2

2: t = 0 : Initialize β(0) = 1, u(0) = s(0) ∈ R2K

3: while Stopping criterion is not reached do

4: L(u(t)) = ‖G‖2
2
‖d(u(t))‖∞

5: s(t+1)
= PB

(
u(t) − 1

L(u(t))∇f(u(t))
)

6: β(t+1)
=

1+

√
1+4(β(t))2

2

7: u(t+1)
= s(t+1)

+
β(t)−1

β(t+1)

(
s(t+1) − s(t)

)

8: if ∇f(u(t))⊤
(
s(t+1) − s(t)

)
> 0 then

9: β(t+1)
= 1, u(t+1)

= s(t+1)
10: end if
11: t := t + 1
12: end while

Output: s̆(I) = s(t)

[11]. The algorithm terminates either if quantity
‖s(t+1)−s(t) ‖2

‖s(t) ‖2

is below a prescribed precision or if a maximum number of

iterations is reached. In contrast, the projected gradient scheme

with constant step size, converges to an optimal solution after

O(1/ǫ) iterations, which is much larger than the proposed

O(1/√ǫ ), especially for small ǫ .

The calculation of ‖G‖2
2

requires O(K2 M) arithmetic oper-

ations. The per iteration complexity of the proposed algorithm

is O(K M) due to the evaluation of ∇f(u(t)) and d(u(t)) at

lines 4 and 5, respectively. In the worst case, the algorithm

iterates Imax ≈ 1/√ǫ times to find an ǫ-optimal solution,

requiring computational cost O( 1√
ǫ

K M). Thus, the overall

computational cost for Algorithm 1 is O(K M(1/√ǫ + K)).
As the elements of the ǫ-optimal solution vector s̆(I) are

soft estimates that do not necessarily belong to the
√
Q-PAM

constellation set, after the execution of Algorithm 1 a nearest

neighbor rule is employed, by projecting each element of s̆(I),
s̆
(I)
n , to the constellation set S, i.e.,

ŝ
(I)
n = arg min

s∈S
| s̆(I)n − s|, n = 1, 2, . . . , 2K . (8)

Note that ŝ(I) ∈ S2K and also, by the properties of ML detector,

f(̂s(I)) ≥ f(̂sML) holds.

B. Phase II: Refinement and Multiuser Detection

In the second phase (phase II) of the proposed algorithm

we apply a refinement step to further improve detection

performance. First, the vector of absolute residuals is formed

as

zn , | s̆(I)n − ŝ
(I)
n |, n = 1, 2, . . . , 2K . (9)

The elements of vector z express the absolute mismatch of the

soft-decision estimates and the projected estimates of phase I.

Intuitively, the smaller the value of a zn is, the more reliable

is the estimate for s̆
(I)
n , in the sense that ŝ

(I)
n = ŝML

n with high

probability.

After forming vector z, we choose the R largest elements

of z. Parameter R is a refinement parameter, determining how

many elements of estimated vector ŝ(I) and ML vector ŝML may

be different. Refining the decision on the elements of decision

vector ŝ(I), corresponding to the indexes of the R largest (less-

reliable) elements of vector z, can in principle boost the SER

performance of the detector. Let us denote Jr ⊂ {1, 2, . . . , 2K}
the set of indexes associated with the R largest elements of

residual vector z. For each unreliable residual element, i.e., n ∈
Jr, the second closest symbol from the

√
Q-PAM constellation

is obtained through

ŝ
(II)
n = arg min

s∈S\ŝ(I)n
| s̆(I)n − s|, n ∈ Jr. (10)

The two closest points of S to the soft-decision estimate

s̆
(I)
n , i.e.,

{
ŝ
(I)
n , ŝ

(II)
n

}
, are the refined candidate decision esti-

mates of symbol sn, for n ∈ Jr. On the other hand, for

n ∈ {1, 2, . . . , 2K}\Jr, only the closest point of S to the

soft-decision estimate s̆
(I)
n (i.e., only {ŝ

(I)
n }, obtained from (8)),

constitutes the single candidate decision estimate for symbol

sn. Combining the above, the refined symbols’ codebook can

be mathematically expressed as

Wr =

⊗

n<Jr

{
ŝ
(I)
n

}
×
⊗

n∈Jr

{
ŝ
(I)
n , ŝ

(II)
n

}
, (11)

forming a set of 2R 2K-dimensional
√
Q-PAM symbol se-

quences. After forming the refined symbols’ codebook, the

final detector is given by

ŝ = arg min
s∈Wr

{
−

2M∑

m=1

ln Q
(
−√γ bm g⊤m s

)
}
. (12)

The total computational cost to evaluate the detection rule

in (12) is O(M K 2R). After obtaining ŝ, BS reconstructs the

transmitted complex Q-QAM symbols from all K UEs as:

x̂k = ŝk + ĵsK+k , k = 1, 2 . . . ,K .

C. Remarks

The overall computational cost for the end-to-end multiuser

detection procedure, described in phase I and phase II above,

scales with O(M K (2R
+1/√ǫ +K)), which is not exponential

on the number of UEs, depending exponentially on the re-

finement parameter. The latter controls the accuracy versus

complexity trade-off. In the studied simulation setups, we

found that the proposed detector can attain very close SER

performance to the ML detector even for small values of

parameter R.

IV. NUMERICAL RESULTS

For the studied simulation setups, the SER performance

of the following schemes is studied: (i) proposed two-phase

detector, (ii) the detector in [3] (two-stage nML), (iii) the

detector in [4] (1-bit ZF), implementable only for 4-QAM, (iv)

the Bussgang linear minimum mean-squared error (BLMMSE)

detector, that estimates a soft-decision version of transmitted

vector x using the framework presented in [12] and the ele-

ments of the outcome are projected to the Q-QAM constella-

tion set, and (v) the ML detector. The two-stage detector in [3]

requires O(M K(1/ǫ)) arithmetic operations for first stage plus

O(M K 4K ) arithmetic operations for the second stage, using

common neighborhood parameter c for all sets in [3, Eq. (38)];
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in contrast to the proposed scheme, the required complexity in

[3] is exponential on the number of UEs. The computational

cost of BLMMSE detector is O(M2(M+K)), while the simple

linear detector in [4] requires O(M K2) arithmetic operations.

The proposed detection technique employs R = 4 and R = 6

for the 4-QAM and 16-QAM systems, respectively.

In the first simulation study of Fig. 1 the SER is plotted

as a function of SNR, using pk = 1 and v
2
k
= 1, for

k = 1, 2, . . . ,K , examining also the impact of parameters K ,

M, and QAM modulation order, Q. For the 4-QAM and 16-

QAM systems, the SER of the proposed and the two-stage

nML detectors coincide with the SER of the ML detector.

The ZF 1-bit detector works only for 4-QAM, while for 16-

QAM the resulting SER is larger than 0.5; the algorithm is

computationally cheap but its SER performance compared to

the other detectors is worse, especially for high SNR. The

BLMMSE detector slightly outperforms ZF 1-bit detector and

offers slightly worse SER than near ML detectors for the

4-QAM system, while for 16-QAM system its SER cannot

drop below 10%. The proposed detector achieves near optimal

performance requiring significantly less computational cost

compared to the two-stage nML detector.

In the next simulation setup of Fig. 2 we consider a BS

with M = 150 antennas, placed at [0 0 100]⊤, and K = 8

UEs transmitting 4-QAM symbols, that are randomly placed

around the BS. The average SER performance of the UEs

is examined as a function of the UE transmit power, using

pk = p, for k = 1, 2, . . . ,K . The following path-loss model

is considered: v2
k
= (λ/4π)2 (dk/d0)ν , with d0 = 100 meters,

ν = 3.2, λ = 0.15, where dk denotes the distance from the kth

UE to the BS. The noise power was set σ2
= −130 dBWatt.

In this asymmetric multiuser setting, the SER of 1-bit ZF

detector saturates after p = −20 dBWatt transmit power.

BLMMSE detector slightly outperforms 1-bit ZF and its SER

also saturates after p = −20 dBWatt. The saturation effect

stems from the fact that the channel matrix is ill-conditioned

and at the high-power regime, BLMMSE and 1-bit ZF de-

tectors may offer some erroneous detection decisions due to

the required channel inversion. Both BLMMSE and 1-bit ZF

detectors offer similar SER with nML detectors, but beyond

p = −30 dBWatt their performance becomes worse. On the

other hand, the proposed and the two-stage nML detectors

achieve similar SER with the optimal ML detector.

V. CONCLUSION

In this work a two-phase detection algorithm is proposed for

uplink multiuser massive MIMO systems employing single-

bit ADCs. The algorithm achieves the SER performance of

the ML detector and manages to significantly reduce the

computational cost of the nML detectors in prior art.
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