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Optimal Power Control in Decentralized Gaussian
Multiple Access Channels

Kamal Singh

Abstract—We consider the decentralized power optimization
problem for Gaussian fast-fading multiple access channel (MAC)
so that the average sum-throughput is maximized. In our MAC
setup, each transmitter has access to only its own fading coeffi-
cient or channel state information (CSI) while the receiver has full
CSI available at all instants. Unlike centralized MAC (full CSIT
MAC) where the optimal powers are known explicitly, the ana-
lytical solution for optimal decentralized powers does not seem
feasible. In this letter, we specialize alternating-maximization
(AM) method for numerically computing the optimal powers and
ergodic capacity of the decentralized MAC for general fading
statistics and average power constraints. For illustration, we
apply our AM method to compute the capacity of MAC channels
with fading distributions such as Rayleigh, Rician etc.

I. INTRODUCTION

The multiple access channel (MAC) is a commonly used
model to represent communication scenario where multiple
senders communicate to a common receiver, such as the uplink
channel of a mobile cellular network. The availability of the
CSI at the transmitters and receiver has a significant impact on
the achievable throughput rates of the fading MAC channels.
Under full CSI at the receiver and partial CSI at the trans-
mitters, the ergodic capacity region of a MAC with additive
white Gaussian noise (AWGN) and fast fading is completely
characterized by the optimal power control schemes [1]. An
intuitive justification for this property is that in a fast fading
scenario, each codeword experiences all possible fading real-
izations and thus, any rate close to ergodic capacity can be
achieved by choosing to transmit all codewords with the same
rate and optimal power strategies [2]. More precisely, Gaussian
codebooks with optimal power control achieves the ergodic
capacity region, see Figure 1. Depending upon the availability
of channel state information (CSI) at the transmitters and
receiver, the optimal power control strategy varies. In this
letter, we consider a fading MAC where each transmitter
knows only its own fading coefficients and the receiver has
full CSI. Further, we assume independent fading statistics,
with average power constraints not necessary identical, across
users. Also, we assume a fast fading model where the channel
varies IID (independent and identically distributed) in time.

The power and ergodic capacity problem of the decentral-
ized fading Gaussian MAC is a long-standing open problem
posed by Shamai and Telatar in [4] suggesting that analyt-
ical solution is not feasible. As an alternative, near closed-
form lower bounds on ergodic capacity are derived for the
identical user1 MAC channel using a simple heuristic ON-
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1Fading distributions and power constraints are identical across users.

OFF power scheme which further improve with number of
MAC users [4]. In [5], structural properties of the optimals are
derived to design suitable power schemes to further raise these
near closed-form lower bounds. More recently in [6], tight
numerical bounds (upper and lower both) to ergodic capacity
are obtained for the decentralized MAC for identical users
setting.

This letter is a first attempt to solve numerically the optimal
powers and ergodic capacity problem of the decentralized
fading MAC for general fading statistics and average power
constraints. Thus, in our study, the identical users MAC is a
special case. Our main contribution is a simple alternate max-
imization based numerical algorithm for optimal decentralized
powers and capacity where each of the partial maximizations
is solved utilizing the monotone structure of the optimals.

The organization of the letter is as follows. Section II
details the system model and the optimization problem to be
solved. In Section III, the computational algorithm for the
optimal powers based on alternating maximization approach
is explained followed by proofs of convergence and optimal-
ity. Numerical results for the decentralized fading MAC are
presented in section IV. Section V concludes the letter.

II. SYSTEM MODEL

Consider a L-user Gaussian fading MAC whose output is
given by

Y =
∑L

i=1
HiXi + Z,

where user-i transmit symbol Xi undergoes flat fading denoted
by multiplicative coefficient Hi . The additive noise Z is a
normalized AWGN process independent of Xi and Hi . The
fading processes Hi are assumed to be independent across
users and varies IID in time. In our decentralized model,
the fading coefficients Hi are known only to the respective
transmitters at all instants. The receiver has access to the full
CSI vector (H1, H2, · · · , HL ). We also assume that the fading
distributions are known a priori to all the transmitters and
the receiver. The i-th transmitter, using the available channel
state information hi (current realization of Hi), selects transmit
power of Pi (hi), see Figure 1. For convenience, with a slight
abuse of notation, we will use Pi to denote the power control
of the i-th user. For a chosen set of power schemes denoted
by (P1, · · · , PL ), the average ergodic sum-rate R , E

∑L
i=1 Ri

given by

R(P1, · · · , PL ) = E log
(
1 +

∑L

i=1
|Hi |

2Pi (Hi)
)
, (1)

is achieved by employing successive cancellation decoding at
the receiver [3, Chapter 4]. Since Hi is known at the respective
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Fig. 1: Power control in Decentralized Gaussian fading MAC.

transmitter and receiver, the sum-rate in (1) depends only
on the fading magnitudes. Thus, we can replace |Hi |

2 by
Vi and write Pi (Hi) as Pi (Vi), 1 ≤ i ≤ L. Our objective is
to maximize the sum-rate R over the set of power control
schemes Pi (Vi), 1 ≤ i ≤ L, satisfying power constraints
associated with the transmitters.

Definition 1. The ergodic sum-capacity Csum is the maximum
average sum-rate achievable [1], i.e.

Csum = max
(P1, ..., PL )∈P

E log
(
1 +

∑L

i=1
ViPi (Vi)

)
, (2)

where the maximization is over the set P defined as collection
of all power strategies satisfying E Pi (Vi) ≤ P avg

i , 1 ≤ i ≤ L.

Remark 2. Notice that the average power constraints are
linear and the objective function R is concave in powers
Pi, 1 ≤ i ≤ L. Furthermore, R is continuous and has
continuous partial derivatives. Also, it can be easily deduced
that the set P is a non-empty convex compact set.

We will use boldface letters to denote vectors. For example,
d is a vector with element di at position-i where di can be
either a scalar or a function. We also use the notation d ĵ
to represent a vector containing all elements of d excluding
element d j . The joint distribution (CDF) is denoted by Ψ,
where Ψi denotes the marginal CDF of fading of user-i.

III. OPTIMAL POWER CONTROL

Since (2) is a convex program with a strictly feasible point,
KKT conditions are necessary and sufficient condition for the
optimal powers. We obtain the cost function

L ,

∫
log *

,
1 +

L∑
i=1

viPi (vi)+
-

dΨ(v) −
L∑
i=1

λi

∫
Pi (vi)dΨi (vi)

where the constants λi, 1 ≤ i ≤ L are Lagrange multipliers for
each of the power constraints. The derivatives with respect to
the power allocation functions has to be zero for optimality,
whenever non-zero power is allocated. Thus,∫ dΨ(v ĵ )

1 + vjPj (vj ) +
∑L

i=1,i,j viPi (vi)
=
λ j

vj
, 1 ≤ j ≤ L. (3)

The analytical solution of (3) for the optimal powers is
considered not feasible [4]. Next, we identify a key structural
property of optimal decentralized powers that enables the com-
putation of optimal powers and ergodic capacity numerically.

Theorem 3. The optimal power P∗j (vj ), whenever non-zero,
must be a monotonically increasing function of vj, 1 ≤ j ≤ L.

Proof: W.l.o.g consider the optimal power scheme say P∗
k

of user-k. Using (3), we have

vk

∫ dΨ(v
k̂
)

1 + vkP∗
k

(vk ) +
∑L

i=1,i,k viP
∗
i (vi)

= λk, (4)

whenever P∗
k
> 0. Furthermore, consider any two values of

the fading variable vk say β > α such that positive powers
are allocated. Thus, we have

β

∫
dΨ(y)

1 + βP∗
k

(β) + y
= α

∫
dΨ(y)

1 + αP∗
k

(α) + y
, i.e.∫ (

β

1 + βP∗
k

(β) + y
−

α

1 + αP∗
k

(α) + y

)
dΨ(y) = 0. (5)

where
∑L

i=1,i,k viP
∗
i (vi) is replaced by y for ease of represen-

tation. Rewriting the integrand in (5), we get∫ ( (β − α)(1 + y) + αβ(P∗
k

(α) − P∗
k

(β))

(1 + αP∗
k

(α) + y)(1 + βP∗
k

(β) + y)

)
dΨ(y) = 0· (6)

The integrand above is strictly positive for P∗
k

(β) ≤ P∗
k

(α),
thus violating (6). Therefore, P∗

k
(β) > P∗

k
(α). This completes

the proof.

Remark 4. Though we presented proof of monotonicity of the
optimal P∗

k
assuming that all remaining powers are optimal,

this is also true for the partially optimal say P̂∗
k

for any set
of feasible powers for the remaining users and can be proved
using reasoning similar to that in the proof of the Theorem 3.

Let us denote the integral on the LHS in (3) by f j (vjPj (vj )).

Corollary 5. For optimal Pj (vj ), f j (vjPj (vj )) is monotoni-
cally decreasing function of vj .

Proof: For the optimal case, by Theorem 3, vjPj (vj )
increases monotonically in vj and the corollary follows.

A. AM Algorithm

We now develop a simple numerical algorithm to solve the
joint optimization problem in (2) in terms of partial optimiza-
tions using the principle of alternating maximization (AM).
As we will later prove, the partial maximization can be solved
numerically using the monotone structure of the optimal. The
convergence and the optimality proofs are established in the
next sub-section.

The alternating maximization (AM) method maximizes R
w.r.t. each power scheme sequentially. To identify this, we de-
note the i-th user power by P(n)

i . The computational algorithm
is parameterized in terms of λi, 1 ≤ i ≤ L.

Algorithm Optimal powers for decentralized MAC

Initialization: Initialize λ j, 1 ≤ j ≤ L, small step-size δ,
approximation error tolerance ε . P(0)

j , 1 ≤ j ≤ L denote
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arbitrarily initialized powers obeying constraints. Set n = 1.
Repeat
For j = 1 to L
(a) Compute the partial maximization

P(n)
j = arg max

Pj

R(P(n)
1 , · · · , P(n)

j−1, Pj, P
(n−1)
j+1 , · · · , P(n−1)

K ),

using the formula: P(n)
j (vj ) =

1
vj

f −1
j

(
λ j

vj

)
·

(b) Find P̄ avg
j =

∫
P(n)
j (vj )dΨj (vj ).

(c) If



(
P avg

j − P̄ avg
j

)
> ε, then λ j = λ j + δ; goto step (a)(

P avg
j − P̄ avg

j

)
< −ε, then λ j = λ j − δ; goto step (a)

End
n = n + 1
Until all the power constraints converge.

Notice that the algorithm outputs power schemes in the order
P(0)

1 , P(0)
2 , · · · , P(0)

K , P(1)
1 , P(1)

2 , · · · , P(1)
K , P(2)

1 , P(2)
2 , · · · , P(2)

K , · · · ,
where each power in the sequence is the partial maximizer
in step (a) with the previously available powers fixed for the
remaining users. In the following corollary, we justify the
procedure for the partial maximization in step (a).

Corollary 6. The partial maximizer P(n)
j is solved by

P(n)
j (vj ) =

1
vj

f −1
j

(
λ j

vj

)
, 1 ≤ j ≤ L, (7)

where f −1
j (·) is the inverse mapping of the f j (·) function.

Proof: Since for optimal Pj (vj ), f j (vjPj (vj )) is strictly
decreasing with vj , there is a one-to-one correspondence
between the RHS and LHS of (3) for every vj . Hence f −1

j (·),
inverse mapping of f j (·), exists and the corollary follows.

Precisely speaking, for every vj , we compare the computed
integral f j (vjPj (vj )) with λ j

vj
for different values of Pj (vj )

until the two values agree to the desired accuracy. This is
done using bisection method (linear convergence, rate 1/2) to
solve (3) for Pj (vj ). The algorithm repeats until convergence
(step (c)) with stop condition as |P avg

j − P̄ avg
j | < ε, 1 ≤ j ≤ L.

B. Convergence and Optimality
In general, alternating optimizations need not converge. We

now show that AM algorithm always converges to the global
optimal of (2). The proof follows a set of arguments similar
to convergence and optimality proofs of AM optimization for
convex objective function and convex constraints presented
in [8, Chapter 9] with appropriate modifications.

We define term “iteration" to indicate updating of all L-
user’s power exactly once from previously updated L-user’s
powers set. Let P(n) := (P(n)

1 , P(n)
2 , · · · , P(n)

L ) denote the
updated all powers set after iteration-n.

Lemma 7. There exists a constant R∗ such that

R(P(n)) → R∗

Proof: We describe the proof for L = 2 user case. The
extension to higher L is straightforward. For every run of the
algorithm, the ergodic sum-rate improves i.e.

R(P(n−1)
1 , P(n−1)

2 ) ≤ R(P(n)
1 , P(n−1)

2 ) ≤ R(P(n)
1 , P(n)

2 ).

In short, R(P(n)) ≥ R(P(n−1)) holds for all n. Since the rate
sequence R(P(n)) is non-decreasing and bounded from above,
it must converge i.e. R(P(n)) → R∗ for some R∗ ≤ Csum.

In our main Theorem 9, we show that the AM algorithm
attains the global optimum irrespective of the chosen starting
or initializing conditions. Towards this end, we define

∆R(P) = R(Pnext ) − R(P),

where Pnext is the updated powers set after an iteration of the
AM algorithm using P as previous powers set. Thus, ∆R(P)
is the increment in R(P) after an iteration of the algorithm.

Corollary 8. If ∆R(P) = 0 for any P ∈ P, then Pnext = P.

Proof: The condition ∆R(P) = 0 implies there is no
increment in the sum-rate in each of the partial optimizations.
This, in turn, implies Pnext, j = Pj, 1 ≤ j ≤ L due to
uniqueness of solutions of partial maximizations i.e. each Pj

is the partial optimizer when remaining powers are fixed.

Theorem 9. The AM Algorithm converges to global optimum
i.e.

R∗ = Csum.

Proof: The proof consists of two parts: (1) showing that if
R(P(n)) < Csum for any power P(n) , then R(P(n+1)) > R(P(n))
i.e. the algorithm does not get trapped if R(P(n)) < Csum, and
(2) showing that R(P(n)) necessarily converges to Csum.
Part (1): If R(P) < Csum for any P ∈ P, then

R(Pnext ) > R(P) or ∆R(P) > 0.

The proof is by contradiction. Consider any P ∈ P such that
R(P) < Csum. Assume ∆R(P) = 0. Since R(P) < Csum, there
exists Q ∈ P such that R(P) < R(Q). Consider the direction
from P to Q, we see that

Q − P = [Q1 − P1, 0, 0, · · · , 0] + [0, Q2 − P2, 0, · · · , 0]+
· · · + [0, · · · , 0, 0, QL − PL].

Rewriting the above in unit vector form, we get

~u = α1~u1 + α2~u2 + · · · + αL~uL,

where ~u is unit vector along Q − P, ~u1 along [Q1 −
P1, 0, 0, · · · , 0], ~u2 along [0, Q2 − P2, 0, · · · , 0] etc. and
αi = ‖Qi − Pi ‖/‖Q − P‖, 1 ≤ i ≤ L are the scalars. The
rate of change of R(P) in the direction from P to Q is given
by

∇R(P) · ~u = ∇R(P) · (α1~u1 + α2~u2 + · · · + αL~uL ),
= α1∇R(P) · ~u1 + α2∇R(P) · ~u2 + · · · + αL∇R(P) · ~uL .

Consider the direction ~u1:

[Q1 − P1, 0, 0, · · · , 0] = [Q1, P2, P3, · · · , PL]
− [P1, P2, P3, · · · , PL].

Corollary 8 implies P1 maximizes sum-rate R for the fixed set
of remaining powers {P2, P3, · · · , PL }. Hence ∇R(P) ·~u1 = 0.
By similar arguments, ∇R(P) · ~ui = 0, 1 ≤ i ≤ L holds. Thus,

∇R(P) · ~u =
∑L

i=1
αi∇R(P) · ~ui = 0. (8)
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Fig. 2: (a) Capacity result for L = 2 non-identical users decentralized MAC with normalized Rayleigh and Rician fading
i.e. dΨ1(h1) = 2h1e−h

2
1 dh1, dΨ2(h2) = 2h2(K + 1)e−h

2
2 (K+1)−K I0(2h2

√
K (K + 1))dh2 and E [h2

1] = E [h2
2] = 1. Solid curve is

capacity of the centralized MAC [7]. (b) Capacity results for L-identical users decentralized MAC with all fadings Rayleigh
distributed: Dashed curves are the desired capacity of decentralized MAC, dotted curves are near closed-form lower bounds
to decentralized MAC capacity obtained in [5] and solid curves represent capacity of centralized MAC [7].

Since sum-rate R is concave, it satisfies

R(Q) ≤ R(P) + ∇R(P) · ‖Q − P‖ ~u, ∀P ∈ P, ∀Q ∈ P,

which, with (8), implies R(Q) ≤ R(P) which is a contradic-
tion. Therefore, ∆R(P) > 0.
Part (2): Convergence to the optimal is not established since
the algorithm may produce increments ∆R(P) > 0 arbitrarily
small. We now prove that the sum-rate sequence indeed
converges to Csum. To this end, we recall, from Lemma 7,
that the sum-rate R(P(n)) converges to say R∗. Thus, for any
δ > 0 and for all n sufficiently large, we have

R∗ − δ ≤ R(P(n)) ≤ R∗. (9)
Let µ = min

P̃

∆R(P),

where P̃ = {P ∈ P : R∗ − δ ≤ R(P) ≤ R∗}. Recall that R(P)
is continuous and has continuous partial derivatives. Thus,
∆R(P) is also continuous. Since P̃ is inverse image of a closed
interval under continuous R(P) and P is compact, we conclude
that the subset P̃ is also compact. Thus, µ exists.

If R∗ < Csum, then ∆R(P) > 0 for all power schemes in P̃
(Part (1)) and hence µ > 0. Since R(P(n)) satisfies (9), P(n) ∈

P1. Therefore, ∆R(P(n)) ≥ µ holds for all sufficiently large
n. Since µ > 0, this implies ∆R(P(n)) > 0 for all sufficiently
large n suggesting that R(P(n)) eventually exceeds R∗, which
is a contradiction. Therefore, R(P(n)) → Csum.
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Fig. 3: Powers for L-identical users decentralized MAC.

IV. NUMERICAL RESULTS

We demonstrate the utility of the proposed algorithm for
Gaussian MAC with independent fadings across users and
average power constraints assumed identical for simplicity.
Figures 2 and 3 illustrate the ergodic capacity computed for the
non-identical & identical users MAC and the optimal powers
for the identical users MAC respectively. Here, we do not
pursue detailed convergence-rate and complexity analysis of
the AM algorithm due to lack of space but empirical estimates
suggest that its convergence rate slows down significantly by
several orders of magnitude with number of MAC users.

V. CONCLUSIONS

We demonstrated, for the first time, the numerical approach
based on alternating optimization principle to solve the decen-
tralized powers and ergodic capacity of Gaussian MAC for the
general fading statistics and power constraints. The proposed
algorithm is simple to implement but the computational com-
plexity increases with MAC users, thus rendering it useful for
MAC with moderate number of users. As future work, we look
forward to explore strategies to improve convergence rates of
our iterative AM algorithm.
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