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Distortion-free Golden-Hadamard Codebook Design for MISO Systems

Md. Abdul Latif Sarker, Md. Fazlul Kader, Moon Ho Lee, and Dong Seog Han

Abstract—In this letter, a novel Golden-Hadamard codebook
(GHC) scheme is proposed to improve the performance of
the traditional precoded Alamouti coding for multiple-input
and single-output systems. Although the traditional discrete
Fourier transform codebook (DFTC) performs satisfactorily with
Alamouti coding and offers numerous benefits for the Rayleigh
fading channel, this scheme inherently generates huge codeword
distortion, which leads to a lower minimum chordal distance
(MCD). Furthermore, the uncertain format of all prior versions of
codebooks results in poorer minimum determinant (MD) values.
Hence, the proposed GHC scheme successfully deals with the
issues of traditional DFTC to achieve a better codebook format
that completely overcome both MCD and MD problems. The
effectiveness of the proposed GHC scheme is confirmed, in terms
of bit-error-rate through Monte Carlo simulations.

Index Terms—Codeword distortion, minimum chordal distance
and minimum determinant, bit-error-rate performance.

I. INTRODUCTION

S
PACE-TIME block coding (STBC) is an important tech-

nique used in wireless communications to improve diver-

sity gain [1] and data rates [2]. Orthogonal STBC (OSTBC)

allows low-complexity decoding [3] and does not provide array

gain. Thus, precoded OSTBC (POSTBC), such as the discrete

Fourier transform codebook with Alamouti (DFTC-A) coding,

has been proposed [4] to improve array gain and attain low

average codeword distortion using a matrix search method.

In contrast, in another study, a vector search method with

unitary and non-unitary POSTBC [5] to minimize codebook

selection complexity. Additionally, Suh et al. proposed using

the DFTC [6] to achieve high eigenvectors with a high

resolution. In [7], Hai et al. compared the performance of

the discrete fractional sine transforms codebook (DFRSTC)

with that of the DFTC, demonstrating that they are equal. The

Hadamard codebook (HC) [8] and the diagonal codebook (DC)

[9] has been proposed along with OSTBC to improve error

performance. Furthermore, Grag et al. showed their use of a

DC in a non-OSTBC scheme [10]. Unfortunately, the uncertain

format of all previous version of POSTBC schemes produce

lower minimum chordal distances (MCDs) and minimum

determinant (MD) values. Based on this problem, we propose

a Golden-Hadamard (GH) codebook with Alamouti coding
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scheme (GHC-A) in this letter. The Golden code has been

proposed along with STBC [11]. Although the Golden code

has a higher decoding complexity [11], such schemes show

a better bit-error-rate (BER) performance [10]. Based on the

literature [4] and [9]–[11], a newly design GHC generator can

lead an identical BER performance.

In this letter, we present a novel GHC-A scheme to achieve a

higher MCD and MD values, which are key factors to demon-

strate good performance for any precoded codeword. Devel-

oping a better codebook generator is the principal subject of

this letter. However, a limited perfect and imperfect feedback

scheme is considered in computer simulations. The superiority

of the proposed GHC-A scheme over the traditional POSTBC

schemes for multiple-input single-output (MISO) systems, in

terms of BER is verified through computer simulations.

II. SYSTEM MODEL

We consider a MISO system where the transceiver is

equipped with NT transmit antennas and single receive an-

tenna. Let NT channels remains static over the symbol period,

T . Then the received signal yǫC1×T can be modeled as

y = hT X + z (1)

where h is the flat and block fading channel vector between the

transmitter and receiver, (·)T represents transpose operation,

and a high-order NT × T precoded codeword, X is

X = WDS (2)

where S is a low-order M ×T OSTBC, M ≤ NT , WD is an

NT ×M tall DFT precoding matrix with 1√
NT

e
j2πkl
NT at entry

(k, l) which is chosen from the codebook generator presented

in [4], [5], [7]:

FD = {Θi−1
D WD}, i = 1, 2, ..., L− 1 (3)

The NT ×M remaining DFT precoding matrices are given by

WD,i = Θi−1
D WD,1, i = 2, ..., L (4)

where L is the size of a codebook and WD,1 is the first

NT ×M DFT-based precoding matrix, of which entry (k, l) is

given as 1√
NT

e
j2π(k−1)(l−1)

NT , ΘD is a diagonal matrix [4], and

zǫC1×T is a noise vector with zero mean and unit variance.

III. THE PROBLEM OF THE EXISTING DFTC SCHEMES

The given DFTC entails two main problems in the POSTBC

scheme. The first problem is codeword distortion which leads

to a lower MCD value, and the second problem is the uncertain

format of DFTC causing a smaller MD value.

A. Codeword distortion: When a precoded codeword block or

blocks contain non-zero diagonal elements, this is denoted as

codeword distortion or geometric mean distortion. A geometric

mean is a special kind of mean value calculated by multiplying

http://arxiv.org/abs/1710.09142v3
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elements and taking their square root (for two elements), their

cube root (for three elements), and so on. Let the square root of

the product of two matrices as

√(
2 .08
.08 2

)(
.08 2
2 .08

)
=

(√
.32 2
2

√
.32

)
, where diagonal element

√
.32 6= 0 which

represents a non-zero geometric mean, is directly related to

an increase in codeword distortion.

Example 1: Let a 2 × 2 DFTC-A third codeword matrix be

given using by (2-4), [4] as follows:

[X3] =
Θ2

D√
2

[
1 1
1 ejπ

] [
s11 −s∗21
s21 s∗11

]

=
[
0.0000 + 0.0000i 0.8315− 0.5556i

0.1379 + 0.6935i 0.1379 + 0.6935i

]
(5)

where i = 3, NT = 2, M = 2, WD,3 = Θ2
DWD,1, the

rotation vector u=[1 7] uses the IEEE 802.16e parameters,

ΘD = diag(
[
ejπ/2, ej7π/2

]
), WD,1 is the 2 × 2 DFT first

precoding matrix, Sk is the k-th entry of the 2 × 2 complex

Alamouti code, symbols s11 and s21 belong to a quadrature

amplitude modulation (QAM) constellation, and (·)∗ is the

complex conjugate operator. Now, we increase the size of the

DFT precoding in (5). Let i = 3, M = 2, and NT = 4 in (5);

and we obtain the 4× 2 DFTC-A third codeword as follows.

[X3] =



0.0000 + 0.0000i 0.8315− 0.5556i

0.1379 + 0.6935i 0.1379 + 0.6935i

0.0000− 1.0000i −0.0000− 0.0000i

0.7071− 0.0000i −0.7071 + 0.0000i


 . (6)

Using (5) and (6), we plotted in Fig. 1. Fig. 1(a) depicts

a low codeword distortion curve at low-order DFTC, while

Fig. 1(b) shows how distortion gradually increases for high-

order DFTCs. This problem dramatically lowers the MCD

value. Thus, MCD is the major issue for subspace packing.

The selected precoding matrix Wsel
D,i can be treated as the

distortion due to non-ideal precoding WD,i. Therefore, a

packing can be described by its MCD [4], [5], [7] as following:

δmin(WD) = min
2≤i≤L

d(WD,1,WD,i) (7)

where d(·, ·) is called the chordal distance between two

subspaces PWD,1
and PWD,i

, of which PWD
is the subspace

generated by the columns of matrix WD.

B. MD for Any Codeword: The MD is an important key factor

to explain the good performance of any codeword. Thus, the

MD of finite code C is given by [11]

δmin(C) ≥ 2bδmin(C∞) (8)

where C∞ is denoted as the infinite code, b is bits per symbol

and δmin(C∞) = minXǫC∞,X 6=0|det(X)|2.

IV. PROPOSED GHC SCHEME

A Golden section [10], [11] with continuous geometric

proportion can provide a good OSTBC pattern. Encouraged

by this, we first design a GH precoding scheme as follows.

A. GH Precoding Matrices: Let NT = 2q and WGH(2q) be

a 2q ×M precoding matrix constructed using M columns of
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Fig. 1: Line graphs for different sizes of the DFTC-A codeword.
(a) Low-distortion of 2× 2 DFTC-A codeword in (5) and (b) High-
distortion of 4 × 2 DFTC-A codeword from (6). Both the red and
blue lines represent non-zero diagonal and anti-diagonal elements.

the 2q × 2q recursive GH precoding matrices:

WGH(2q) =
θG√
ξ

[
WH(2q−1) WH(2q−1)
WH(2q−1) (θ−1

G − θG)WH(2q−1)

]
(9)

where 2 ≤ qǫNT [12], WH(2q−1) is the 2q−1 × 2q−1

Hadamard matrix presented in [13], ξ = n{(1 + n)q −
(1 − n)q}/2q, n indicates the root of the geometric number,

θG is the Golden number [14], which satisfies θGθ
−1
G = 1,

(θ−1
G − θG) = −1, and its continuous geometric proportion

is θG : 1 : 1/θG, which indicates that the geometric mean

between θG and 1/θG is unity. Thus, we incorporate (9) in (4)

and construct the remaining GH precoding matrices as follows:

WGH,i(2
q) = (ejπδmin(WGH(2q)))i−1WGH,1(2

q), i = 2, .., L (10)

where e(·) denotes the exponential function, δmin(WGH(2q))
is the MCD based on (7) and (9), WGH,1(2

q) is an NT ×M
first GH precoding matrix. Now, we investigate the real and

complex Golden numbers with GH precoding as follows:

Case I (Real Golden Number): We consider that θGr
is the

real-valued root of µθGr
(X) = X2 −X − 1; θGr

= 1+
√
5

2 is

known as the real Golden number [10], [14], and its algebraic

conjugate can be obtained as ¯θGr
= 1 − θGr

= 1−
√
5

2 . Let

i = 3, q = 2, n =
√
5, ξ = 5 and θGr

= 1+
√
5

2 in (9) and (10)

to obtain the 4× 4 real GH precoding matrices as

WGHr,3(4) = (−1)2WGHr,1(4), i = 3, (11)

where ejπδmin(WGHr (2
q)) = −1 and

WGHr,1(4) =
1 +

√
5

2
√
5




1 1 1 1
1 −1 1 −1
1 1 −1−1
1 −1 −1 1


 (12)

Case II (Complex Golden Number): Let θGc
be the complex-

valued root of µθGc
(jX) = X2 − jX − 1; θGc

= j+
√
3

2
is known as the complex Golden number, and its algebraic

conjugate is obtained as ¯θGc
= j−

√
3

2 . Similarly, let i = 3, q =

2, n =
√
3, ξ = 3 and θGc

= j+
√
3

2 values in (9) and (10) to

obtain the 4× 4 complex GH precoding matrices as

WGHc,3(4) = (−j)2WGHc,1(4), i = 3, (13)
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TABLE I: Computation of the MCD

MCD,
√

δmin(W)
when i = 2, q = 2, NT = 4, and M = 2

DFTC[4, 6] DC[9, 10] HC[8]
Proposed GHC Scheme

Case I(15) Case II(15)

0.84 0.89 1.00 1.00 1.00

TABLE II: Computation of the MD

MD,
√

δmin(C)
when i = 2, q = 2, NT = 4, and M = 2

b DFTC[4, 6] DC[9, 10] HC[8]
Proposed GHC

Case I Case II

4 2 2 2 2.89 2.52

6 4 4 4 5.78 5.05

where jejπδmin(WGHc (2
q)) = −j and

WGHc,1(4) =
j +

√
3

2
√
3




1 1 1 1
1 −1 1 −1
1 1 −j −j
1 −1 −j j


 (14)

Note that (12) and (14) are the exact real and complex GH

matrices, respectively. Thus, we can summarize the expression

of the designed real and complex GHC generators as

FGH = {{(−1)i−1WGHr,i(2
q)},for−Case I

(−j)i−1WGHc,i(2q)},for−Case II
(15)

Now, we can calculate the MCD and MD values using (15) in

(2) to make Table I and II based on (7) and (8) for both real

CaseI and complex CaseII, respectively.

B. Distortion-free codeword: When a precoded code-

word block or blocks contain zero-diagonal elements,

they are distortion-free. Using Section III-A, we consider√(
2.0 0.08

−0.08 2.0

)(−0.08 2.0
2.0 0.08

)
=

(√
0 2
2

√
0

)
, where

diagonal element
√
0 = 0 represents a zero value of geometric

mean and is directly related to achieving a distortion-free

codeword which exhibit as an error-free feedback link [15].

Example 2, Let i = 3, q = 2, NT = 4,M = 2, and n =
√
5.

Then, by substituting (12) in (6), we obtain the 4× 2 GHC-A

third codeword matrix using Case I as

[X3] =



0.0000 + 0.0000i 1.0233− 1.0233i

1.0233 + 1.0233i 0.0000 + 0.0000i

0.0000 + 0.0000i 1.0233− 1.0233i

1.0233 + 1.0233i 0.0000 + 0.0000i


 (16)

Similarly, by substituting (14) in (6), we obtain the 4×2 GHC-

A third codeword matrix using Case II as

[X3] =



0.0000 + 0.0000i 1.1153− 0.2988i

0.2988 + 1.1153i 0.0000 + 0.0000i

0.0000 + 0.0000i 1.1153− 0.2988i

0.2988 + 1.1153i 0.0000 + 0.0000i


 . (17)

Using (16) and (17), we plotted Fig. 2 and , by comparison

with Fig. 1, we can see distortion-free codeword curve. Thus,

we state Theorem 1 as follows.

Theorem 1: All forms of X become distortion-free if the

precoding matrix W is a Hadamard or a Golden-Hadamard.
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Fig. 2: Line graphs of the proposed GHC-A codeword: (a) distortion-
free 4× 2 GHC-A codeword for CaseI obtained using (16), and (b)
distortion-free 4 × 2 GHC-A codeword for CaseII obtained using
(17). The red lines represent null-diagonal elements and the blue
lines represent non-zero anti-diagonal elements.

Proof of Theorem 1: DFTC-A schemes are not distortion-free

due to the exponential function of DFT precoding, which leads

to non-zero diagonal elements in the codewords as shown in

(5) and (6). Let the exponential function of a DFT precoding

be approximately equal to the Golden-Hadamard function:

e
j2π(k−1)(l−1)

NT ≈ ejπ = (θ−1
G − θG) = −1 (18)

where Euler’s formula is related to the Golden section by

ejπ = (θ−1
G − θG) as stated in [14]. Thus, we incorporate (18)

in (10) and obtain the distortion free third codeword using (2)

[X3] =
(−1)2θG√

ξ




0 −s∗21 + s∗11
s11 − s21 0

0 −s∗21 + s∗11
s11 − s21 0


 (19)

We can see that (19) is completely distortion-free owing to

null-diagonal elements in the codeword block or blocks as

explained Section IV-B. Thus, Theorem 1 has been proven.

V. PAIRWISE ERROR PROBABILITY (PEP)

Let Sk and Sl be the transmitted and decoded space-time

codewords, respectively, and l 6= k. Thus, the union bound on

the BER can be written as [16]

BER ≤
∑

l 6=k

e(Sk,Sl)

log22b
Pr(Sk −→ Sl) (20)

where e(Sk,Sl) is the Hamming distance between the binary

sequences representing Sk and Sl, the codeword PEP for an

effective channel h̃ can be upper bounded by the Chernoff

bound [3] as Pr(Sk −→ Sl|h̃) ≤ e−
γ0‖h̃‖2

2·2q , γ0 is the

SNR, ‖h̃‖2 = hTWGH(2q)AWH
GH(2q)h∗, A = S̄S̄H as

the covariance distance product matrix, (·)H denotes the

Hermitian operator. In the worst case, the average distance,

A = 1
T E[A] = 1

T

∑
k 6=l pklΞklΞ

H
kl where pkl is the probabil-

ity of the pair (Sk,Sl) and Ξ = (X− X̂).
If hmax and hmin represent the elements of h with the

largest and smallest magnitude, respectively as explained in

[9], [10], then the obtained norm of the effective channel

provides the correct, ‖h̃‖2correct = 2|θG|2|hmax|2 + (1 +
|θG|2 − |θG|2|θG|2)|hmin|2 and the incorrect, ‖h̃‖2incorrect =
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2|θG|2|hmin|2+(1+|θG|2−|θG|2|θG|2)|hmax|2 feedback bits,

respectively. Thus, the PEP in (20) is bounded by

Pr(Sk −→ Sl|h̃) ≤ e−
1.6180γ0(|h1|2+|h2|2)

2·2q (21)

where Pc = 1 is the probability for the correct feedback bit

[9], [10] and |θG|2 = 1.6180 is the optimal choice for Case

I. Similarly, we can measure the optimal choice for Case II

based on |θGc
|2 = 0.8660 + 0.50000i.

VI. SIMULATION RESULTS

This section shows some simulation results to demonstrate

the proposed GHC schemes for both real (Case I) and com-

plex (Case II) GH precoding. We implemented the simula-

tions of MISO systems as Monte-Carlo simulations over a

block flat Rayleigh fading channel. Moreover, we considered

limited feedback cases with an optimal codebook search

method at an SNR level of 30 dB. Throughout the simulations,

we assumed that q = 2, NT = 4, M = 2, and L = 64 with

six-bit codebooks. We assume Pc = 1 and |θGr
|2 = 1.6180

(Case I) and |θGc
|2 = 0.8660+0.5000i (Case II) for the op-

timal choice. In a fair comparison, our GHC schemes achieved

higher MCD and MD values (calculated as shown in Table I

and II) for both 16-QAM and 64-QAM signal constellations

and outperformed all prior versions of POSTBC schemes. In

Table I, it can be seen that the MCD of the GHC and HC

scheme is δmin(W) = 1 = sin(900), whereas the MCD of the

DFTC and DC schemes are δmin(W) = 0.84 = sin(57.140)
and δmin(W) = 0.89 = sin(62.870), respectively. This means

that the degree of freedom was increased by almost 270 to 330

in the GHC and HC scheme compared with that of the DFTC

[4], [6] and DC [9], [10] schemes. In contrast, the performance

of the HC scheme [8] dramatically worsened than the GHC

scheme due to the poorer MD values shown in Table II.

In Fig. 3, a 4 × 2 system using a POSTBC with 16-QAM

and 64QAM constellations is assumed for the perfect feedback

case. For the imperfect feedback with 16QAM shown in Fig.

4, we assumed w = f(h̃) where h̃ = αh+
√
1− α2herror and

α = J0(2πfdTc∆), fdTc = 0.01 is the normalized Doppler

frequency and ∆ = 12 is the feedback delay. Similarly, we

expect 64QAM to show a good performance over imperfect

feedback. Furthermore, the performance of the DFRSTC [7]

is equal to that of the DFTC scheme. The optimal codebook

selection method of the GHC scheme provides a 3 to 5

dB array gain compared with all prior versions of POSTBC

schemes. Both real Case I and complex Case II demonstrated

the better BER performance. The BER performance of the

complex GHC scheme is slightly worsened than that of the

real GHC scheme because of the reduction of the Golden ratio.

VII. CONCLUSIONS

We analyzed codeword distortion along with the MCD

and MD problems for all versions of POSTBC schemes.

The traditional POSTBC schemes are illustrated worse BER

performance by at least 10−1 steps than the proposed GHC-A

scheme due to the smaller MCD and MD values. Moreover, the

simulation results confirmed that the proposed GHC scheme
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Fig. 3: BER comparison under perfect feedback. q = 2, NT = 4,
M = 2, and L = 64.
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M = 2, L = 64, fdTc = 0.01, ∆ = 12, and α = 0.86.

outperforms all previous versions of the POSTBC schemes, in

terms of BER. Lastly, the GHC scheme can be extended further

to be applied in multi-layer wireless networks considering

more general cases, which is subjected to future works.
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