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Asymptotically Optimal Codes Correcting Fixed-Length Duplication

Errors in DNA Storage Systems

Mladen Kovačević and Vincent Y. F. Tan

Abstract—A (tandem) duplication of length k is an insertion
of an exact copy of a substring of length k next to its original
position. This and related types of impairments are of relevance
in modeling communication in the presence of synchronization
errors, as well as in several information storage applications. We
demonstrate that Levenshtein’s construction of binary codes cor-
recting insertions of zeros is, with minor modifications, applicable
also to channels with arbitrary alphabets and with duplication
errors of arbitrary (but fixed) length k. Furthermore, we derive
bounds on the cardinality of optimal q-ary codes correcting
up to t duplications of length k, and establish the following
corollaries in the asymptotic regime of growing block-length:
1) the presented family of codes is optimal for every q, t, k, in
the sense of the asymptotic scaling of code redundancy; 2) the
upper bound, when specialized to q = 2, k = 1, improves upon
Levenshtein’s bound for every t ≥ 3; 3) the bounds coincide for
t = 1, thus yielding the exact asymptotic behavior of the size of
optimal single-duplication-correcting codes.

Index Terms—Tandem duplication, sticky insertion, deletions
of zeros, repetition error, synchronization error, bounds on codes,
Sidon set, magnetic storage, DNA storage.

I. INTRODUCTION AND PRELIMINARIES

T
HE EMERGING technology of DNA data storage [14],

apart from having a multitude of applications, poses

interesting new challenges to the traditional lines of research

in information theory and error control coding. In particular,

several channel models arise in this context that are typically

not encountered in more conventional data transmission and

storage systems. Motivated by one such model that was

introduced recently, we address in this letter the problem of

error correction in channels where the only impairments are

duplications of substrings in the transmitted string of symbols.

Although the main motivating examples are channels with

binary or quaternary alphabets, in the interest of generality

we will in fact study channels with arbitrary alphabets. In the

following two subsections we describe precisely the channel

model we have in mind and our contributions.

A. The Channel Model

Throughout this letter, Z denotes the integers, N the positive

integers, and Zq := Z/(qZ) the integers modulo q.

We assume that the channel alphabet, both input and output,

is Zq . The channel inputs are strings of length n over Zq , i.e.,
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elements of Z
n
q . The channel acts on the transmitted strings

by introducing multiple duplication errors of length k in

succession, where a duplication of length k is defined as an

insertion of an exact copy of a substring of length k next to its

original position; see Example 1 for an illustration. We refer

to this channel as the k-duplication channel.

Example 1. Consider the following input string x̃ ∈ Z
10
3 and

the corresponding output string ỹ obtained after the channel

has introduced several duplication errors of length k = 3:

x̃ = 0 1 1 2 0 2 1 0 0 2

→֒ 0 1 1 2 1 1 2 0 2 1 0 0 2

→֒ 0 1 1 2 1 1 2 0 1 2 0 2 1 0 0 2

→֒ 0 1 1 2 1 1 2 0 1 2 0 2 1 0 0 1 0 0 2 = ỹ.

(1)

The inserted substrings at each step are underlined. The total

number of duplications that occurred in the channel is 3. N

By using the transformation φk : Zn
q → Z

n
q , x̃ 7→ x, defined

by xi = x̃i− x̃i−k , 1 ≤ i ≤ n, where subtraction is performed

modulo q and it is understood that x̃i = 0 for i ≤ 0, one

can show that duplication errors of length k are essentially

equivalent to insertions of blocks of k zeros, denoted 0k [5].

For example, for the strings in (1) and k = 3 we would have:

x = 0 1 1 2 2 1 2 0 1 1

y = 0 1 1 2 0 0 0 2 0 0 0 1 2 0 1 0 0 0 1.
(2)

In particular, if a code C ⊆ Z
n
q can correct t insertions

of blocks 0k, then C̃ = φ−1
k (C) can correct t duplications

of length k; furthermore, since φk is a bijection, we have

|C| = |C̃|. For convenience, we will focus in the sequel on the

0k-insertion channel—the channel with insertions of blocks 0k

as the only type of noise. Due to the above-described equiv-

alence, our main results can easily be translated to the corre-

sponding results for the k-duplication channel: (1) asymptotic

bounds on codes for the 0k-insertion channel are automatically

valid for the k-duplication channel as well, and (2) a construc-

tion of codes for the k-duplication channel can be obtained

from a construction of codes for the 0k-insertion channel by

applying the transformation φ−1
k on the latter.

B. Previous Work and Main Results

The binary channel with insertions of zeros was first studied

in [11], where a construction of codes correcting t such errors

was described and bounds on the cardinality of optimal codes

derived. As mentioned in the previous subsection, these results

are applicable to channels with duplication errors of length

k = 1 as well. Different constructions of codes for the binary

1-duplication channel were subsequently given in [3], [12].

http://arxiv.org/abs/1808.10328v1
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A more general model, that is also studied here, with

arbitrary alphabets and duplications of length k was introduced

in [5]. In that work, in particular, optimal codes correcting all

patterns of duplications of length k were found (t = ∞). It

was also shown in [5] that optimal codes correcting t ∈ N

duplications of length k can be obtained from optimal codes

in the ℓ1 metric. However, constructions of optimal codes

in the ℓ1 metric for general parameters are not known at

this point, and hence no estimate of the cardinality of the

resulting duplication-correcting codes was given in [5]. An

explicit construction of codes for the special case t = 1 was

recently given in [10].

Our contributions can be summarized as follows:

• We show that q-ary codes correcting t insertions of blocks

0k can be constructed from Sidon sets, a notion borrowed

from additive combinatorics (Theorem 2).

• We derive bounds on the cardinality of optimal codes

of length n → ∞ correcting t insertions of blocks 0k

(Theorem 4). In particular, we obtain the exact asymp-

totic behavior of the size of optimal single-duplication-

correcting codes (t = 1), for arbitrary q, k.

• Specializing the bounds to q = 2, k = 1, we obtain an

improvement over the best known upper bound from [11]

(Remark 2).

While this paper was under review, another work ap-

peared [9] addressing very similar problems—constructions

and bounds on q-ary codes correcting t duplications of length

k. The asymptotic lower bounds obtained here and in [9] are

the same, whereas our upper bound is strictly better than the

one in [9], for every q, k, t.
Apart from error correction, various other problems con-

cerning duplications in strings were studied in the literature;

see, e.g., the references in [5], [15].

II. CODES CORRECTING INSERTIONS AND DELETIONS OF

BLOCKS OF ZEROS

A. General Properties

The 0k-insertion channel, by its definition, affects only the

lengths of runs of zeros in the transmitted strings, it does

not alter the non-zero symbols. In particular, the Hamming

weight of the transmitted string is always preserved. This fact

simplifies the analysis considerably and enables one to focus

on studying constant-weight codes without loss of generality.

We say that a code C ∈ Z
n
q can correct t insertions (resp.

deletions) of blocks 0k if every codeword x ∈ C can be

reconstructed uniquely after inserting (resp. deleting) up to

t blocks 0k. We say that C ∈ Z
n
q can correct t insertions

and deletions of blocks 0k if every codeword x ∈ C can

be reconstructed uniquely after inserting tins and deleting tdel

blocks 0k, for any tins, tdel with tins + tdel ≤ t. The following

claim is a straightforward generalization of [11, Lem. 1] to

arbitrary q, k, so the proof is omitted.

Lemma 1. The following statements are equivalent for every

q, n, t, k ∈ N, q ≥ 2, and every code C ⊆ Z
n
q :

• C can correct t insertions of blocks 0k.

• C can correct t deletions of blocks 0k.

• C can correct t insertions and deletions of blocks 0k.

The third point of Lemma 1, in particular, will be used in

the proof of Theorem 4 to optimize the upper bound on the

cardinality of codes correcting insertions of blocks 0k.

B. Construction

Let G be a finite Abelian group, written additively. A set

B = {b1, . . . , bw} ⊆ G is said to be a Sidon set of order t (or

Bt set) if the sums bi1+· · ·+biu have different values for every

choice of u ∈ {0, 1, . . . , t} and 1 ≤ i1 ≤ · · · ≤ iu ≤ w. Put

another way, the sums
∑w

i=1 uibi are required to be different

for all u1, . . . , uw ∈ Z with ui ≥ 0,
∑w

i=1 ui ≤ t (here

uibi denotes the sum of ui copies of the element bi ∈ G).

These and related objects have been studied quite extensively

in combinatorics and additive number theory; see [13] for

references. We next describe a code construction based on

the notion of Sidon sets. The construction is a generalization

of the one given in [11]1 for q = 2, k = 1.

Let wtH(x) denote the Hamming weight of the string

x ∈ Z
n
q . Let also ri(x) denote the length of the i’th run

of zeros in x. In other words, if wtH(x) = w, we have x =
0r0(x)α10

r1(x)α2 · · · 0rw−1(x)αw0
rw(x), where αi ∈ Zq\{0}.

Theorem 2. Fix q, n, w, t, k ∈ N, q ≥ 2, an Abelian group

G, a subset B = {b1, . . . , bw} ⊆ G, an element b ∈ G, and

define the code:
{

x ∈ Z
n
q : wtH(x) = w,

w
∑

i=1

⌊ri(x)

k

⌋

bi = b

}

. (3)

If B is a Sidon set of order t, then the code (3) can correct t
insertions of blocks 0k.

Proof: Let x be the transmitted codeword and suppose

that, after u insertions of blocks 0k in the channel, the string

y was produced at the output. If ui blocks 0k were inserted in

the i’th run of zeros in x, i = 0, 1, . . . , w, then ri(y)−ri(x) =
uik and

∑w
i=0 ui = u, where w = wtH(x) = wtH(y). Given

y, the receiver computes the following check-sum:

w
∑

i=1

⌊ri(y)

k

⌋

bi =

w
∑

i=1

(

⌊ri(x)

k

⌋

+ ui

)

bi = b+

w
∑

i=1

uibi,

(4)

and also infers the total number of insertions u from the

length of y. Since B is a Sidon set of order t, the check-sums

b+
∑w

i=1 uibi are different for all u1, . . . , uw satisfying ui ≥ 0,
∑w

i=1 ui ≤ t. Therefore, given y and assuming that u ≤ t,
the decoder can uniquely recover the pattern of insertions

u0, u1, . . . , uw by computing (4), inferring u1, . . . , uw from

the result, and concluding that u0 = u−∑w
i=1 ui.

Note that the construction (3) is not explicit. For it to

be made “practical”, one would need to describe efficient

constructions of Sidon sets, optimal ways of choosing the

element b, and explicit mappings of information sequences

to codewords. Describing explicit and efficient constructions

for this and related channel models is an important problem

that we shall have to leave for future investigation.

1Similar constructions of codes based on Sidon sets appear in various
contexts in coding theory; see, e.g., [2], [4], [6], [7]. The algebraic version
of the construction given here and in the mentioned works can also be stated
geometrically using the language of lattices; see [7], [8].
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C. Bounds

The following notation is used in the rest of this section:

given two non-negative real sequences (an) and (bn), an ∼ bn
stands for limn→∞

an

bn
= 1, an . bn for lim supn→∞

an

bn
≤ 1,

and an = o(bn) for limn→∞
an

bn
= 0. The base-2 logarithm is

denoted by log.

We first give one auxiliary result that will be needed in the

derivation of the bounds in Theorem 4. Informally, it states that

the “typical” values of the Hamming weight and the number

of runs of zeros of length ≥ k in q-ary strings of length

n → ∞ are q−1
q

n and q−1
qk+1n, respectively. To state the lemma

precisely, let us denote by S(≥k)
q (n,w,m) the number of q-ary

strings of length n, Hamming weight w, and having exactly

m runs of zeros of length ≥ k.

Lemma 3. Fix q, t, k ∈ N, q ≥ 2, and define ωq := (q− 1)/q
and µq,k := ωq(1 − ωq)

k = (q − 1)/qk+1. There exists a

sub-linear function2 f(n) = o(n) such that, for all n ≥ 1,

qn −
∑

w,m : |w−ωqn|≤f(n),
|m−µq,kn|≤f(n)

S(≥k)
q (n,w,m) <

qn

nlogn
. (5)

Proof: The analysis parallels that in [8, Sec. II.B], the

main difference being that the alphabet is q-ary in our case,

so we only give an outline. Denote by S
(j)
q (n,w, ℓ) the number

of q-ary strings of length n, Hamming weight w, and having

exactly ℓ runs of zeros of length j. In the asymptotic regime

n → ∞, w ∼ ωn, ℓ ∼ λn, for fixed ω ∈ (0, 1), λ ∈ (0, ω),
this quantity grows exponentially with the exponent [8]

lim
n→∞

1

n
logS(j)

q (n, ωn, λn) =

ω log(q − 1) + ωH
(λ

ω

)

+ (ω − λ) log

∞
∑

i=1
i6=j

ρ
i− 1−λ(j+1)

ω−λ

ω,λ ,
(6)

where H(·) is the binary entropy function, and ρω,λ is the

unique positive solution to the equation:
∞
∑

i=1
i6=j

(

i − 1− λ(j + 1)

ω − λ

)

zi = 0. (7)

Now, since the total number of q-ary strings of length n
is qn, and since there are only linearly (in n) many pos-

sible weights w and numbers of runs ℓ, there must exist

values of ω and λ for which the right-hand side of (6)

(the exponent) equals log q. Differentiating this exponent with

respect to ω and λ, one finds that it is uniquely maximized

for ω = ωq = q−1
q

and λ = ω2
q(1 − ωq)

j =: λq,j .

This implies that, for any given ǫ > 0, if we exclude the

strings of weight w ∈
(

(ωq − ǫ)n, (ωq + ǫ)n
)

having ℓ ∈
(

(λq,j−ǫ)n, (λq,j+ǫ)n
)

runs of zeros of length j, the number

of the remaining strings is exponential with an exponent

strictly smaller than log q. In other words, for every ǫ > 0 there

exists a (sufficiently small) δ(ǫ) > 0 such that, as n → ∞,

qn −
∑

w,ℓ : |w−ωqn|≤ǫn,

|ℓ−λq,jn|≤ǫn

S(j)
q (n,w, ℓ) . q(1−δ(ǫ))n. (8)

2The function f in general depends on the constants q, k as well; this is
suppressed for notational simplicity.

This further implies that, for every ǫ > 0 and large enough n,

qn −
∑

w,ℓ : |w−ωqn|≤ǫn,

|ℓ−λq,jn|≤ǫn

S(j)
q (n,w, ℓ) <

qn

nlogn
. (9)

Let n0(ǫ) be the smallest positive integer such that (9) holds

for all n ≥ n0(ǫ). Take an arbitrary sequence (ǫi) satisfying

1 = ǫ0 > ǫ1 > ǫ2 > . . . and limi→∞ ǫi = 0, and define the

function:

f ′(n) := ǫin, n0(ǫi) ≤ n < n0(ǫi+1). (10)

Clearly, f ′(n) = o(n). Furthermore, from (9) and (10) we

conclude that, for all n ≥ n0(1) = 1,

qn −
∑

w,ℓ : |w−ωqn|≤f ′(n),

|ℓ−λq,jn|≤f ′(n)

S(j)
q (n,w, ℓ) <

qn

nlogn
, (11)

which essentially completes the proof. It is now not difficult

to conclude that the relation (5) holds as well (with a possibly

different sub-linear function, f ). The typical value of the

number of runs of length ≥ k is obtained simply by adding

up the typical values of the numbers of runs of length j:
∑∞

j=k λq,j = ωq(1− ωq)
k = µq,k.

It follows from the above proof that Lemma 3 continues to

hold if nlogn is replaced with an arbitrary sub-exponential

function, but this choice is sufficient for our purposes. In

particular, since qn

nlog n = o( q
n

nt ) for any fixed t, Lemma 3

will enable us to disregard the non-typical input strings in the

asymptotic analysis of the size of optimal codes.

Let Mq(n; t; k) denote the size of an optimal code in

Z
n
q correcting t insertions of blocks 0k (or, equivalently, t

insertions and deletions of blocks 0k; see Lemma 1), and

Mq(n,w; t; k) the size of an optimal constant-weight code

with the same properties and weight w.

Theorem 4. For any fixed q, t, k ∈ N, q ≥ 2, the following

bounds hold as n → ∞:

qn

nt

( q

q − 1

)t

. Mq(n; t; k) .
qn

nt

( q

q − 1

)t

qkss!(t− s)!,

(12)

where s =
⌊

t+1
qk+1

⌋

. In particular, for t = 1,

Mq(n; 1; k) ∼ qn

n
· q

q − 1
. (13)

Proof: The lower bound in (12) is a consequence of the

construction in Theorem 2. For fixed q, n, w, t, k, and a Sidon

set B ⊆ G of order t, the only parameter that is left to be

specified in (3) is b ∈ G. Since the choice of b can be made

in |G| ways, resulting in at most |G| (disjoint) codes, and

since the total number of q-ary strings of length n and weight

w is
(

n
w

)

(q − 1)w =: Sq(n,w), we conclude from Theorem 2

that Mq(n,w; t; k) ≥ Sq(n,w)/|G|. By the result of Bose

and Chowla [1], the cardinality of the smallest Abelian group

containing a Sidon set of order t and size w can be upper

bounded as |G| . wt, for any fixed t and w → ∞. This

implies that, as n → ∞ and w ∼ ωn,

Mq(n,w; t; k) &
Sq(n,w)

wt
. (14)
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Now, to obtain the lower bound in (12), write:

Mq(n; t; k) =

n
∑

w=0

Mq(n,w; t; k) (15)

≥
ωqn+f(n)

∑

w=ωqn−f(n)

Mq(n,w; t; k) (16)

&
1

(

ωqn+ f(n)
)t

ωqn+f(n)
∑

w=ωqn−f(n)

Sq(n,w) (17)

∼ qn

(ωqn)t
, (18)

where (15) holds because the channel does not affect the

Hamming weight of the transmitted string, (17) follows from

(14), and (18) follows from Lemma 3 and the fact that

f(n) = o(n).
We now turn to the upper bound in (12). Let C∗ ⊆ Z

n
q

be an optimal code correcting t insertions and deletions of

blocks 0k, |C∗| = Mq(n; t; k). Consider a codeword x ∈ C∗

of weight w and having m runs of zeros of length ≥ k. We

first observe that the number of strings that can be produced

after x is impaired by s insertions and t−s deletions of blocks

0k is at least
(

w + s

s

)(

m− s

t− s

)

, (19)

and that all such strings are of length n+ k(2s− t). Namely,

since wtH(x) = w, there are w + 1 “bins” in which blocks

can be inserted, so inserting s blocks can be done in exactly
(

w+s
s

)

ways. On the other hand, deleting t− s blocks can be

done in at least
(

m−s
t−s

)

ways (we choose t−s out of m runs of

length ≥ k and delete one block from each of them; however,

we first exclude from these m runs those runs into which a

block has been inserted in the first step, because otherwise we

could potentially get the same string we started with). In the

asymptotic regime n → ∞, w ∼ ωn, m ∼ µn, the quantity

in (19) scales as

∼
(

ωn

s

)(

µn

t− s

)

∼ ntω
s

s!

µt−s

(t− s)!
. (20)

Now, since C∗ is assumed to correct t insertions and deletions

of blocks 0k, the sets of output strings that can be obtained

in the above-described way from any two distinct codewords

have to be disjoint. Since these outputs live in Z
n+k(2s−t)
q , and

since, in the asymptotic regime of interest, we can assume

that ω and µ take on their typical values ωq and µq,k (see

Lemma 3), we conclude that

Mq(n; t; k) · nt
ωs
q

s!

µt−s
q,k

(t− s)!
. qn+k(2s−t)

⇔ Mq(n; t; k) .
qn

nt

( q

q − 1

)t

qkss!(t− s)!. (21)

It is left to optimize the bound over the possible choices of

s ∈ {0, 1, . . . , t}. To that end note that the sequence as :=
qkss!(t − s)! is convex since as <

√
as−1as+1 ≤ 1

2 (as−1 +
as+1). This implies that as is minimized at the value of s
for which as ≤ as−1 and as < as+1. By checking these

conditions directly, we find this value to be s =
⌊

t+1
qk+1

⌋

.

Remark 1. Note that the lower bound in (12) is independent

of the duplication length k. An upper bound independent of

k can also be obtained by choosing a suboptimal value s = 0

in (21), which gives Mq(n; t; k) .
qn

nt

(

q
q−1

)t
t!. Therefore, the

duplication length does not seem to have a significant bearing

on the problem addressed here (see also (13)). N

Remark 2 (Binary channel with insertions/deletions of zeros).

Specializing the bounds (12) to q = 2, k = 1, we get:

2n

nt
2t . M2(n; t; 1) .

2n

nt
2t+ss!(t− s)!, (22)

where s =
⌊

t+1
3

⌋

. The lower bound in (22) was obtained3 in

[11, Lem. 3]. The upper bound in (22) strictly improves upon

the bound4 from [11, Lem. 2] for all t ≥ 3. N
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