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SparseCast: Hybrid Digital-Analog Wireless Image

Transmission Exploiting Frequency Domain Sparsity
Tze-Yang Tung and Deniz Gündüz

Abstract—A hybrid digital-analog wireless image transmission
scheme, called SparseCast, is introduced, which provides graceful
degradation with channel quality. SparseCast achieves improved
end-to-end reconstruction quality while reducing the bandwidth
requirement by exploiting frequency domain sparsity through
compressed sensing. The proposed algorithm produces a linear
relationship between the channel signal-to-noise ratio (CSNR) and
peak signal-to-noise ratio (PSNR), without requiring the channel
state knowledge at the transmitter. This is particularly attractive
when transmitting to multiple receivers or over unknown time-
varying channels, as the receiver PSNR depends on the expe-
rienced channel quality, and is not bottlenecked by the worst
channel. SparseCast is benchmarked against two alternative
algorithms: SoftCast and BCS-SPL. Our findings show that the
proposed algorithm outperforms SoftCast by approximately 3.5
dB and BCS-SPL by 15.2 dB.

Index Terms—joint source-channel coding, analog transmission,
compressed sensing.

I. INTRODUCTION

Conventional wireless image/video transmission systems
consist of two components: a source encoder for compression,
and a channel encoder that introduces redundancy against
noise and interference. This separate design is without loss of
optimality according to Shannon’s separation theorem, and has
dominated practical implementations. Although the optimality
breaks down for multi-user systems or time-varying channels,
there has been a steady move towards fully digital and separate
architectures (e.g., digital TV/radio) thanks to the modularity
and flexibility it provides. However, many emerging applica-
tions from tactile Internet to autonomous vehicles require wire-
less transmission of image/video files under extreme latency,
energy and complexity constraints, which preclude the use of
advanced compression and channel coding techniques.

A surprising result in [1] shows that, when transmitting
independent Gaussian samples over a Gaussian channel, with
one sample per channel use on average, uncoded transmission,
where each sample is simply scaled and transmitted, meets
the theoretical Shannon bound. With digital transmission, the
same performance can only be achieved by vector-quantising
an arbitrarily long sequence of source samples, followed by
a capacity achieving channel code. Benefits of analog trans-
mission has since been shown in various settings [2], [3].
We highlight that, analog transmission here does not refer
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to traditional analog modulation techniques, i.e., amplitude
or frequency modulation. Instead, it refers to a transmission
scheme, in which both the source and channel encoder/decoder
employ sampling; however, the samples are allowed to take
continuous values, rather than being limited to a discrete set
of quantised values or constellation points.

Motivated by the theoretical properties of uncoded transmis-
sion, a practical joint source-channel coding (JSCC) scheme,
called SoftCast, was proposed in [4]. SoftCast applies a
discrete cosine transform (DCT) on the image, and transmits
the DCT coefficients directly over the channel using a dense
constellation. Compression is obtained by discarding blocks of
DCT coefficients whose energy is below a threshold. Index of
the discarded blocks is sent as meta-data to the receiver for
reconstruction. Since the encoder is linear and the coefficients
are corrupted by additive noise directly, the resultant video
peak signal-to-noise ratio (PSNR) is linearly related to the
channel signal-to-noise ratio (CSNR), solving the cliff effect
problem encountered in separate source and channel coding.

This letter aims to reduce the bandwidth usage in uncoded
image/video transmission by utilising a novel grouping of DCT
coefficients, and by incorporating compressed sensing (CS)
and sparse signal recovery. CS theory demonstrates that a
system of underdetermined equations can be solved with high
probability if the solution is sparse [5]. This implies that if
an image or a video frame can be transformed into a sparse
domain, even if we send a few linear combinations of the pixel
values to the receiver, it can still recover the original frame.
CS has been previously used for wireless video transmission in
[6] [7], where the l1 approximation for recovery is considered.
While this allows the receiver to employ convex optimisation,
it may still be computationally complex for video streaming
applications with strict delay constraints. Iterative algorithms
have been developed to approximate the solution faster at the
cost of greater error. One such algorithm, used in [8] and
[9], called block CS-smooth projected Landweber (BCS-SPL)
[10], achieves reconstruction through iterative thresholding.
This algorithm applies CS on the pixels directly and requires
no meta-data as long as the measurement matrix is agreed a
priori between the transmitter and receiver. It is important to
note here that in [8], optimal power allocation is not considered
and an additional image processing technique was employed
following BCS-SPL to improve the output image quality.

In this letter, after applying 2D-DCT on image blocks and
thresholding, a novel grouping of the coefficients is applied,
where coefficients of the same frequency component are
grouped into vectors. We then multiply each vector with a
pseudo-random measurement matrix whose size depends on
the sparsity level of the corresponding vector. Finally, a scaling
factor is applied to the results of this multiplication, which
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corresponds to power allocation across different frequency
components. The receiver employs a combination of approxi-
mate message passing (AMP) [11] and minimum mean squared
error (MMSE) estimation. AMP is a low-complexity iterative
thresholding algorithm for CS recovery, which does not need to
know the exact positions of the nonzero elements in the sparse
vector. It converges exponentially and does not assume any
prior distribution on the data, incurring a minimal computation
overhead.

The benefits of SparseCast can be summarised as fol-
lows: i) Instead of removing blocks as in SoftCast, it uses
thresholding on individual coefficients and CS to reduce the
channel bandwidth; ii) By grouping coefficients of different
blocks according to their frequencies, it better exploits the
sparsity of higher frequency components; iii) Unlike other CS-
based image/video transmission schemes, it employs power
allocation according to empirical variances, which significantly
improves the reconstruction quality.

II. PROPOSED ALGORITHM

A. Encoder

The image is divided into N non-overlapping blocks of size√
b×

√
b, and 2D-DCT is applied to each block before being

stacked on top of each other to form a 3D matrix of size√
b ×

√
b × N . Vectors xj ∈ R

N , j = 1, ..., b along the
third dimension are formed corresponding to each pair of row
and column indices, as illustrated in Figure 1, before being
“sparsified” by setting values that are smaller than the sparsity
threshold τK to zero. This means that the same frequency
components of all the DCT blocks are stacked into the same
vector. Most natural images have DCT energy focused at low
frequency components, therefore high frequency components
will likely be set to zero and have minimal effect on the image
quality.

The sparsity level of vector xj refers to the number of its

non-zero entries, and is denoted by kj , i.e., kj , ||xj ||0.
The empirical mean of each xj vector is first subtracted from
all its entries to obtain a zero-mean vector, such that the
empirical variance of each vector is equivalent to its power,
before being multiplied by a pseudo-random orthonormal
measurement matrix Φj ∈ R

µj×N , where ỹj , Φj(xj − cj)
and cj is the empirical mean of vector xj . We wish to maintain
kj ≤ µj ≪ N , where µj is the number of measurements
sent for vector xj , which provides a trade-off between the
accuracy and the channel bandwidth. Note that, to distinguish
the received signals for each of the vectors, the decoder needs
to know µj’s, which increases the meta-data size. To reduce
the meta-data, we choose µj’s from a set of S predefined
measurement levels. Thus, for each vector, µj is chosen as
the closest value among the set of predefined measurement
levels that is higher than the desired number of measurements.
The total amount of meta-data for µj’s to be transmitted is
then given by b · log2 S bits. Moreover, in the case where
µj = N , we set Φj = I and xj is not sparsified as to not lose
performance when there is insufficient sparsity to exploit.

Finally, we allocate the transmit power among different
frequency components according to their empirical variances.

xj

2D-DCTStack

Fig. 1. Encoder divides the frame into blocks of
√
b×

√
b before computing

the 2D-DCT coefficients, and forms vectors xj by extracting the DCT
coefficients corresponding to the same pair of indices across all blocks.

Fig. 2. Unlike traditional modulation schemes, such as QPSK, SparseCast
does not have a fixed set of constellation points.

We would like to transmit the elements of these vectors over
the channel by simple scaling. The optimal scaling coefficients
to transmit independent Gaussian samples, derived in [12], is
presented in Lemma 1 for completeness.

Lemma 1: Given L data vectors x1, ...,xL, each consisting
of mj = |xj | samples from a zero mean Gaussian distribution
with variance λj , for j = 1, ..., L, the linear encoder that min-
imises the MMSE in the presence of additive white Gaussian
noise (AWGN) scales the j-th vector by gj , where

gj = λ
−1/4
j

(

√

∑

j mj
∑

j mj

√

λj

)

, j = 1, . . . , L. (1)

In our implementation, we have mj = µj , the number of
measurements transmitted for xj , j = 1, . . . , b.

Channel symbols are formed by pairing consecutive ele-
ments of vector yj = gjỹj as the in-phase and quadrature (I/Q)
components of a complex symbol (Figure 2). This differs from
traditional systems that map a bit sequence to a predefined set
of discrete constellation points, and allows the channel noise
to directly corrupt the coefficients; and hence, preserves the
linearity of the scheme (apart from the thresholding, which
serves for compression). The generated symbols along with
pilot symbols for channel estimation are sent over the channel.

Meta-data consisting of the empirical mean and variance
values as well as the number of measurements µj for each xj

are sent separately to the receiver. For the proposed technique
to work, the meta-data must be received without error; there-
fore, we employ BPSK modulation with 1/2 rate convolutional
code for a strong protection against channel errors.
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B. Decoder

The received vector is ŷj = yj+nj , where nj is the AWGN
term with power 1

2
σ2
n
, ∀j; the noise power is assumed to be

the same for all transmissions. The decoder employs AMP to
decode the sparse xj vector if µj < N . When µj = N , MMSE
estimator is used, as the AMP algorithm performs poorly for
non-sparse vectors.

The MMSE estimate of a non-sparse xj vector is given by

x̂j =
gjλj

g2

j
λj+σ2

n
/2
ŷj + cj , where cj and λj (i.e. empirical mean

and variance) of the vector xj is obtained from the meta-data.
The 2D-DCT coefficients of the image are then reconstructed
from the x̂j vectors before inverse 2D-DCT is performed to
obtain the original pixels.

Although AMP increases the complexity of decoding com-
pared to the linear decoding in SoftCast, its per iteration
complexity is dominated by a matrix-vector multiplication
operation with a worst-case complexity of O(µjN) [11], and
the required number of iterations is typically on the order of
tens. As we will see in the next section, this slightly increased
decoding complexity can be justified with the increased per-
formance.

III. RESULTS

We compare SparseCast with sparse recovery using BCS-
SPL as described in [8], SoftCast and standard digital encoding
by comparing the achieved PSNR across a range of CSNR
values. A smooth and linear relationship between PSNR and
CSNR is desirable particularly when transmitting to multiple
receivers or over a time-varying unknown channel, while a
higher PSNR for given CSNR and channel bandwidth con-
straints is indicative of better bandwidth utilisation efficiency.
The algorithms are first simulated in MATLAB and then im-
plemented using USRP NI2900 and LabView Communications
Design Suite 2.0 for real world testing.

Figure 3 shows a linear relationship between CSNR and
PSNR for the considered uncoded transmission schemes, indi-
cating they can achieve strong multicasting performance, and
are less sensitive to inaccuracies or the lack of channel state
information at the transmitter. SparseCast is approximately 3.5
dB and 15.2 dB better in PSNR than SoftCast and BCS-SPL,
respectively, showing the superiority of SparseCast in terms
of its ability to adapt to varying CSNR, as well as bandwidth
efficiency over a wide range of channel conditions.

Advantages of uncoded transmission schemes are clear when
compared with digital transmission with JPEG compression
followed by conventional constellations and codes from the
802.11a standard. The points on Figure 3 correspond to the
achieved PSNR values at the corresponding CSNR threshold.
The CSNR threshold for each constellation and convolutional
code rate pair with 10% packet loss rate are given in Table
I. Different constellations and code rates have different com-
pression requirements. For example, BPSK (1 bit/symbol) with
1/2 rate (input bits/output bits) convolutional code and 131,000
available channel symbols implies the source image size
must be compressed under 1 bit/symbol × 131000 symbols ×
0.5 rate = 65, 500 bits. In contrast, JSCC schemes do not
suffer from the cliff effect and can smoothly adjust the output

TABLE I. CSNR THRESHOLDS FOR UNCODED/CODED

CONSTELLATIONS IN 802.11A

Constellation Code rate
CSNR threshold (dB)

Uncoded Coded 1/2 Coded 2/3 Coded 3/4

BPSK 1/2 or 3/4 8 3 - 5

QPSK 1/2 or 3/4 11 6 - 8

16-QAM 1/2 or 3/4 18 11 - 15

64-QAM 2/3 or 3/4 24 - 19 21

PSNR with respect to CSNR. SparseCast and SoftCast both
follow and even sometimes surpass the envelope formed by
the different digital modulation schemes, especially at low
CSNR values, suggesting their superiority for wireless image
transmission while avoiding the cliff effect.
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Fig. 3. PSNR vs. CSNR. The channel symbol length is 131, 000 symbols.
The single points correspond to the PSNR values at the CSNR threshold of
each modulation scheme from the 802.11a standard.

The meta-data size also differs across algorithms, with
SparseCast requiring the greatest amount. In our simulations,
SparseCast requires meta-data size of around 17, 000 bits with
block size 16 × 16. SoftCast requires 10, 000 − 16, 000 bits
depending on the block threshold, while BCS-SPL requires no
meta-data, both with block size 32× 32. Different block sizes
are used to ensure the meta-data size is similar. The increase
compared to SoftCast is due to the need to transmit µj’s and
the way vectors xj are generated. This is subject to change for
different block sizes and parameters and should only have a
small impact on the overhead of the algorithm. We emphasise
that the meta-data size is parameter dependent and the results
show that, under similar meta-data sizes, SparseCast is able
to outperform SoftCast in terms of PSNR. It should be noted
here that real numbers (i.e. mean and variance values) use the
single precision floating point format (32 bits).

Finally, the results obtained from the practical implementa-
tion confirm the observations made from simulations. As can
be seen in Figure 4, the same linear relationship between PSNR
and CSNR can be observed. However, an important difference
between the USRP and simulation results is the slope of
the plots. Whereas the simulation results exhibit a slope of
1, due to the AWGN assumption, the USRP results show
slopes at about 1/2. This is likely due to additional channel
distortions caused by disturbances in the environment and
transmitter/receiver oscillator misalignment. The latter is due
to the free running oscillators in the USRP hardware, which
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(a) High bandwidth usage (131, 000 channel symbols).
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(b) Low bandwidth usage (75, 000 channel symbols).

Fig. 4. USRP and simulation results. Block size for SparseCast is 16× 16

while it is 32 × 32 for SoftCast and BCS-SPL. The lines drawn for USRP
results are the linear regression lines for each respective algorithm. In (a),
SparseCast was simulated with µj = 3kj and τK = 0.1, BCS-SPL with
λ = 0.001 and sampling ratio of 0.65, SoftCast with block threshold of
7400. In (b), SparseCast was simulated with µj = 3kj and τK = 3.5,
BCS-SPL with λ = 0.001 and sampling ratio of 0.4, SoftCast with a block
threshold of 28, 000.

can result in phase offset between the carrier frequencies.
The simulated results also tend to plateau at very low CSNR

values as seen in Figure 4. This effect is caused by the output
pixel luminosity being limited to the range of [0, 255], limiting
the maximum possible error. This cannot be seen in the USRP
results as the PSNR never reached the level suggested by the
simulation for the effects to be observed. To replicate this
phenomenon with the USRP hardware would require a larger
CSNR range which was not possible with the hardware model
used due to antenna saturation and gain limitations.

IV. CONCLUSIONS

We proposed SparseCast, a novel hybrid digital-analog
image transmission technique based on uncoded transmission
of DCT coefficients. Sparsity in the frequency domain is
exploited to improve the bandwidth usage, and a fixed set
of measurement levels are used to reduce the amount of
transmitted meta-data. We have used AMP to recover sparse
vectors at the receiver to reduce decoder complexity. Shown
by both simulation and experimental results, the combined

(a) Digital, PSNR = 25.00dB (b) SparseCast, PSNR = 31.05dB

(c) SoftCast, PSNR = 27.98dB (d) BCS-SPL, PSNR = 14.13dB

Fig. 5. Simulation results for visual quality comparison of test image
“Lenna” under CSNR = 5dB and channel symbol length 75, 000. For digital
transmission JPEG compression is used with BPSK modulation and 1/2 rate
convolutional coding.

use of MMSE and AMP for CS recovery overcomes the
shortcomings of iterative CS recovery algorithms under non-
sparse scenarios, while exploiting sparsity effectively. We have
focused on the transmission of a single image here, but the
proposed scheme can easily be used for video transmission,
similarly to [4], [6] and [7]. Non-linear mappings can also be
used for bandwidth compression or expansion to better exploit
the channel bandwidth as in [13], [14] with an increased
encoder and decoder complexity.
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