
1089-7798 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LCOMM.2019.2921755, IEEE
Communications Letters

1

Blockchained On-Device Federated Learning

Hyesung Kim, Jihong Park†, Mehdi Bennis†, and Seong-Lyun Kim

Abstract—By leveraging blockchain, this letter proposes a
blockchained federated learning (BlockFL) architecture where
local learning model updates are exchanged and verified. This
enables on-device machine learning without any centralized
training data or coordination by utilizing a consensus mechanism
in blockchain. Moreover, we analyze an end-to-end latency model
of BlockFL and characterize the optimal block generation rate by
considering communication, computation, and consensus delays.

Index Terms—On-device machine learning, federated learning,
blockchain, latency.

I. INTRODUCTION

FUTURE wireless systems are envisaged to ensure low
latency and high reliability anywhere and anytime [1]–

[3]. To this end, on-device machine learning is a compelling
solution wherein each device stores a high-quality machine
learning model and is thereby capable of make decisions, even
when it loses connectivity. Training such an on-device machine
learning model requires more data samples than each device’s
local samples, and necessitates sample exchanges with other
devices [4], [5]. In this letter, we tackle the problem of training
each device’s local model by federating with other devices.

One key challenge is that local data samples are owned
by each device. Thus, the exchanges should keep the raw
data samples private from other devices. For this purpose, as
proposed in Google’s federated learning (FL) [4], [5], referred
to as vanilla FL, each device exchanges its local model update,
i.e., learning model’s weight and gradient parameters, from
which the raw data cannot be derived. As illustrated in Fig. 1-
a, the vanilla FL’s exchange is enabled by the aid of a central
server that aggregates and takes an ensemble average of all
the local model updates, yielding a global model update.
Then, each device downloads the global model update, and
computes its next local update until the global model training
is completed [5]. Due to these exchanges, the vanilla FL’s
training completion latency might be tens of minutes or more,
as demonstrated in Google’s keyboard application [6].

The limitation of the vanilla FL operation is two-fold.
Firstly, it relies on a single central server, which is vulnerable
to the server’s malfunction. This incurs inaccurate global
model updates distorting all local model updates. Secondly,
it does not reward the local devices. A device having a larger
number of data samples contributes more to the global training.
Without providing compensation, such a device is less willing
to federate with the other devices possessing few data samples.

This work was partly supported by Institute of Information & communications
Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT)
(No.2018-0-00170, Virtual Presence in Moving Objects through 5G), Basic Science
Research Foundation of Korea(NRF) grant funded by the Ministry of Science and ICT
(NRF-2017R1A2A2A05069810), and the Mobile Edge Intelligence at Scale (ELLIS)
project at the University of Oulu.

H. Kim and S.-L. Kim are with School of Electrical and Electronic Engineering,
Yonsei University, Seoul, Korea (email: {hskim, slkim}@ramo.yonsei.ac.kr).

†J. Park and †M. Bennis are with the Centre for Wireless Communications, University
of Oulu, 4500 Oulu, Finland (email: {jihong.park, mehdi.bennis}@oulu.fi).

Fig. 1. An illustration of (a) the vanilla federated learning (FL) [4], [5] and
(b) the proposed blockchained FL (BlockFL) architectures.

In order to resolve these pressing issues, by leveraging
blockchain [7], [8] in lieu of the central server, we propose a
blockchained FL (BlockFL) architecture, where the blockchain
network enables exchanging devices’ local model updates
while verifying and providing their corresponding rewards.
BlockFL overcomes the single point of failure problem and
extends the range of its federation to untrustworthy devices in
a public network thanks to a validation process of the local
training results. Moreover, by providing rewards proportional
to the training sample sizes, BlockFL promotes the federation
of more devices with a larger number of training samples.

As shown in Fig. 1-b, the logical structure of BlockFL
consists of devices and miners. The miners can physically be
either randomly selected devices or separate nodes such as
network edges (i.e., base stations in cellular networks), which
are relatively free from energy constraints in mining process.
The operation of BlockFL is summarized as follows: Each
device computes and uploads the local model update to its
associated miner in the blockchain network; Miners exchange
and verify all the local model updates, and then run the Proof-
of-Work (PoW) [7]; Once a miner completes the PoW, it
generates a block where the verified local model updates are
recorded; and finally, the generated block storing the aggregate
local model updates is added to a blockchain, also known as
distributed ledger, and is downloaded by devices. Each device
computes the global model update from the new block.

Note that the global model update of BlockFL is computed
locally at each device. A miner’s or a device’s malfunction
does not affect other devices’ global model updates. For the
sake of these benefits, in contrast to the vanilla FL, BlockFL
needs to account for the extra delay incurred by the blockchain
network. To address this, the end-to-end latency model of
BlockFL is formulated by considering communication, compu-
tation, and the PoW delays. The resulting latency is minimized
by adjusting the block generation rate, i.e., the PoW difficulty.

II. ARCHITECTURE AND OPERATION

FL operation in BlockFL: The FL under study is operated
by a set of devices D = {1, 2, · · · , ND} with |D| = ND. The i-th
device Di owns a set of data samples Si with |Si| = Ni, and
trains its local model. The local model updates of the device

1089-7798 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LCOMM.2019.2921755, IEEE
Communications Letters

2

Di is uploaded to its associated miner Mj that is uniformly
randomly selected out of a set of miners M={1, 2, · · · ,NM}.

Our distributed model training focuses on solving a regres-
sion problem in a parallel manner, considering a set of the
entire devices’ data samples S = ∪ND

i=1Si with |S| = NS .
The k-th data sample sk ∈ S is given as sk = {xk, yk} for
a d-dimensional column vector xk ∈ Rd and a scalar value
yk ∈ R. The objective is to minimize a loss function f(w) for a
global weight vector w ∈ Rd. The loss function f(w) is chosen
as the mean squared error: f(w) = 1

NS

∑ND

i=1

∑
sk∈Si fk(w),

where fk(w)=(x>k w− yk)2/2. Other loss functions under deep
neural networks can readily be incorporated, as done in [9].

In order to solve the above problem, following the vanilla
FL settings in [4], the model of the device Di is locally
trained via a stochastic variance reduced gradient algorithm
[4], and all devices’ local model updates are aggregated using
a distributed approximate Newton method. For each epoch,
the device Di’s local model is updated with the number Ni
of iterations. At the t-th local iteration of the `-th epoch, the
local weight w(t,`)

i ∈ Rd is:

w
(t,`)
i = w

(t−1,`)
i −

β

Ni

([
∇fk(w

(t−1,`)
i)−∇fk(w(`))

]
+∇f(w(`))

)
, (1)

where β > 0 is a step size, w(`) indicates the global weight at
the `-th epoch, and ∇f(w(`)) = 1/NS ·

∑ND
i=1

∑
sk∈Si

∇fk(w(`)).
Let w(`)

i denote the local weight after the last local iteration
of the `-th epoch, i.e., w(`)

i =w
(Ni,`)
i . Then,

w(`) = w(`−1) +

ND∑
i=1

Ni
NS

(
w

(`)
i − w

(`−1)
)
. (2)

In vanilla FL in [4], [5], the device Di uploads its local
model update (w

(`)
i , {∇fk(w(`))}sk∈Si) to the central server,

with the model update size δm that is identically given for all
devices. The global model update (w(`),∇f(w(`))) is computed
by the server. In BlockFL, the server entity is substituted with
a blockchain network as detailed in the following description.

Blockchain operation in BlockFL: In the BlockFL, the
blocks and their verification by the miners in M are de-
signed so as to exchange the local model updates truthfully
through a distributed ledger. Each block in a ledger is divided
into its body and header parts [7]. In BlockFL, the body
stores the local model updates of the devices in D, i.e.,
(w

(`)
i , {∇fk(w(`))}sk∈Si) for the device Di at the `-th epoch, as

well as its local computation time T (`)
local,i that is discussed at the

end of this subsection. The header contains the information of
a pointer to the previous block, block generation rate λ, and
the output value of the PoW. The size of each block is set as
h + δmND, where h and δm are the header and model update
sizes, respectively. Each miner has a candidate block that is
filled with the local model updates from its associated devices
and/or other miners. The filling procedure continues until it
reaches the block size or a waiting time Twait.

Afterwards, following the PoW [7], the miner randomly
generates a hash value by changing its input number, i.e.,
nonce, until the generated hash value becomes smaller than
a target value. Once the miner M1 succeeds in finding the
hash value, its candidate block is allowed to be a new block
as shown in Fig 2. Here, the block generation rate λ can

Fig. 2. The one-epoch operation of BlockFL with and without forking.

be controlled by the PoW difficulty, e.g., the lower PoW
target hash value, the smaller λ. Due to simpleness and
robustness, the PoW is applied to the wireless systems as in
[10], [11]. BlockFL can also use other consensus algorithms
such as the proof-of-stake (PoS) or Byzantine-fault-tolerance
(BFT), which may require more complicated operation and
preliminaries to reach consensus among miners.

The generated block is propagated to all other miners. To
this end, as done in [7], all the miners receiving the generated
block are forced to stop their PoW operations and to add the
generated block to their local ledgers. As illustrated in Fig 2,
if another miner M2 succeeds in its block generation within
the propagation delay of the firstly generated block, then some
miners may mistakenly add this secondly generated block to
their local ledgers, known as forking. In BlockFL, forking
makes some devices apply an incorrect global model update
to their next local model updates. Forking frequency increases
with λ and the block propagation delay, and its mitigation
incurs an extra delay, to be elaborated in Sect. III.

The blockchain network also provides rewards for data
samples to the devices and for the verification process to
the miners, referred to as data reward and mining reward,
respectively. The data reward of the device Di is received from
its associated miner, and its amount is proportional to the data
sample size Ni. When the miner Mj generates a block, its
mining reward is earned by the blockchain network, as done
in the conventional blockchain structure [7]. The amount of
mining reward is proportional to the aggregate data sample size
of its all associating devices, namely, ∑NMj

i=1 Ni where NMj

denotes the number of devices associated with the miner Mj .
It is noted that the BlockFL can further be improved using
a reward mechanism, which considers not only the size but
also the quality of data sample that affects the accuracy of FL.
Untruthful devices may inflate their sample sizes with arbitrary
local model updates. Miners verify truthful local updates
before storing them by comparing the sample size Ni with its
corresponding computation time T (`)

local,i. This can be guaranteed
in practice by Intel’s software guard extensions, allowing
applications to be operated within a protected environment,
which is utilized in blockchain technologies [12].

One-epoch BlockFL operation: As depicted in Fig. 2,
the BlockFL operation of the device Di at the `-th epoch is
described by the following seven steps.
1. Local model update: The device Di computes (1) with the
number Ni of iterations.
2. Local model upload: The device Di uniformly randomly
associates with the miner Mi; if M = D, then Mi is

1089-7798 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LCOMM.2019.2921755, IEEE
Communications Letters

3

selected from M\Di. The device uploads the local model
updates (w

(`)
i , {∇fk(w(`))}sk∈Si) and the corresponding local

computation time T (`)
local,i to the associated miner.

3. Cross-verification: Miners broadcast the obtained local
model updates. At the same time, the miners verify the
received local model updates from their associated devices or
the other miners. The verified local model updates are recorded
in the miner’s candidate block, until its reaching the block size
(h+ δmND) or the maximum waiting time Twait.
4. Block generation: Each miner starts running the PoW until
either it finds the nonce or it receives a generated block.
5. Block propagation: Denoting as Mô ∈ M the miner who
first finds the nonce. Its candidate block is generated as a
new block and broadcasted to all miners. In order to avoid
forking, an ACK, including whether forking occurs or not,
is transmitted once each miner receives the new block. If a
forking event occurs, the operation restarts from Step 1. A
miner that generates a new block waits until a predefined
maximum block ACK waiting time Ta,wait.
6. Global model download: The device Di downloads the
generated block from its associated miner.
7. Global model update: The device Di locally computes the
global model update in (2) by using the aggregate local model
updates in the generated block.
The procedure continues until satisfying |w(L)−w(L−1)|≤ε.

Centralized FL is vulnerable to the server’s malfunction
that distorts all devices’ global models. However, in BlockFL,
the global model update is computed locally at each device,
which is robust against the malfunction and prevents excessive
computational overheads of miners.

III. END-TO-END LATENCY ANALYSIS

We investigate the optimal block generation rate λ∗ min-
imizing learning completion latency To, defined as the total
time during L epochs at a randomly selected device Do∈D.

One-epoch BlockFL latency model: The `-th epoch la-
tency T (`)

o is determined by computation, communication, and
block generation delays. First, computation delays are brought
by Steps 1 and 7 in Sect. II. Let δd denote a single data
sample’s size identical for all data samples. Processing δd
with the clock speed fc requires δd/fc. Local model updating
delay T

(`)
local,o in Step 1 is thus given as T

(`)
local,o = δdNo/fc.

Likewise, global model updating delay T
(`)
global,o in Step 7

is evaluated as T
(`)
global,o = δmND/fc. Note that δd and δm

change with applications types. Second, communication delays
are entailed by Steps 2 and 6 between devices and miners.
Measuring the achievable rate under additive white Gaussian
noise channels, local model uploading delay T

(`)
up,o in Step 2

is computed as T
(`)
up,o = δm/[Wup log2(1 + γup,o)], where Wup

is the uplink bandwidth allocation per device and γup,o is
the miner Mo’s received signal-to-noise ratio (SNR). The
global model downloading delay T

(`)
dn,o in Step 6 is given as

T
(`)
dn,o=(h+δmND)/[Wdn log2(1+γdn,o)], where Wdn is the downlink

bandwidth per device and γdn,o is the device Do’s SNR.
For Steps 3 and 5, assuming verification processing time

is negligible compared to the communication delays, cross-
verification delay T (`)

cross,o in Step 3 is T (`)
cross,o=max{Twait−(T

(`)
local,o+

T
(`)
up,o),

∑
Mj∈M\Mo

δmNMj
/[Wm log2(1 + γoj)]} under frequency

division multiple access (FDMA), where Wm is the bandwidth
allocation per each miner link and γoj is the miner Mj’s
received SNR from the miner Mo. Denoting as Mô ∈ M
the miner who first finds nonce, referred to as the mining
winner, total block propagation delay T (`)

bp,ô in Step 5 is given
as T (`)

bp,ô =maxMj∈M\Mô
{t(`)bp,j , Ta,wait} under FDMA. The term

t
(`)
bp,j=(h+δmND)/[Wm log2(1+γôj)] represents the block prop-

agation delay from the mining winner Mô to Mj ∈ M\Mô,
and γôj is the miner Mj’s received SNR. Lastly, in Step 4,
block generation delay T (`)

bg,j of the miner Mj ∈M follows an
exponential distribution with mean 1/λ, as modeled in [8]. The
delay of interest is the mining winner Mô’s block generation
delay T

(`)
bg,ô. Finally, the `-th epoch latency T

(`)
o is

T
(`)
o =N

(`)
fork

(
T

(`)
local,o+T

(`)
up,o+T

(`)
cross,o+T

(`)
bg,ô+T

(`)
bp,ô

)
+T

(`)
dn,o+T

(`)
global,o, (3)

where N (`)
fork denotes the number of forking occurrences in the

`-th epoch, and follows a geometric distribution with mean
1/(1−p(`)fork), with the forking probability p(`)fork at the `-th epoch.
Following Step 5, the forking probability is represented as:

p
(`)
fork = 1−

∏
Mj∈M\Mô

Pr
(
t
(`)
j − t

(`)
ô > t

(`)
bp,j

)
, (4)

where the term t
(`)
j = T

(`)
local,j + T

(`)
up,j + T

(`)
cross,j + T

(`)
bg,j is the

cumulated delay until the miner Mj generates a block.
Latency optimal block generation rate: Using the one-

epoch latency (3), we derive the optimal block generation
rate λ∗ that minimizes the `-th epoch latency averaged over
the PoW process. Here, the PoW process affects the block
generation delay T

(`)
bg,ô, block propagation delay T

(`)
bp,ô, and the

number N (`)
fork of forking occurrences, which are inter-dependent

due to the mining winner Mô. We consider the case where all
miners synchronously start their PoW processes by adjusting
Twait such that T (`)

cross,o=Twait−(T (`)
local,o+T

(`)
up,o). In this case, even the

miners completing the cross-verification earlier wait until Twait,
providing the latency upper bound. With this approximation,
we derive the optimal block generation rate λ∗ as follows.
Proposition 1. With the PoW synchronous approximation,
i.e., T (`)

cross,o = Twait − (T
(`)
local,o + T

(`)
up,o), the block generation rate

λ∗ minimizing the `-th epoch latency E[T (`)
o] averaged over the

PoW process is given by:

λ∗ ≈ 2

(
T

(`)
bp,ô

[
1 +

√
1 + 4NM

(
1 + Twait/T

(`)
bp,ô

)])−1

.

Proof: Applying the synchronous PoW approximation and the
mean 1/(1− p(`)fork) of the geometrically distributed N

(`)
fork to (3),

E[T
(`)
o] ≈

(
Twait + E[T

(`)
bg,ô]

)
/
(
1− p(`)fork

)
+ T

(`)
dn,o + T

(`)
global,o. (5)

The terms Twait, T
(`)
dn,o, T

(`)
global,o are constant delays given

in Sect. II. For the probability p
(`)
fork, using (4) with t

(`)
j −

t
(`)
ô = T

(`)
bg,j − T

(`)
bg,ô under the synchronous approximation,

we obtain p
(`)
fork as: p

(`)
fork = 1 − e

λ
∑

Mj∈M\Mô
T

(`)
bp,j , where

T
(`)
bp,j is a constant delay given in Sect. II-A. Next, for

the delay E[T
(`)
bg,ô], using the definition of T

(`)
bg,ô and the

complementary cumulative distribution function (CCDF) of
the exponentially distributed T

(`)
bg,j , we derive T

(`)
bg,ô’s CCDF

1089-7798 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LCOMM.2019.2921755, IEEE
Communications Letters

4

(a) With respect to λ. (b) Test accuracy.
Fig. 3. Average learning completion latency (a) versus block generation
rate λ and (b) test accuracy of BlockFL, Vanilla FL, and standalone without
federation (γup,o = γdn,o = γoj = SNR).

as: Pr
(
T

(`)
bg,ô > x

)
=
∏NM

j=1 Pr
(
T

(`)
bg,j > x

)
=e−λNMx. Applying

the total probability theorem yields E[T
(`)
bg,ô] = 1/(λNM). Fi-

nally, combining all these terms, (5) is recast as: E[T
(`)
o] ≈

(Twait + 1/λNM)e
λ
∑

Mj∈M\Mô
T

(`)
bp,j+T

(`)
dn,o+T

(`)
global,o, which is con-

vex for λ. The optimum λ∗ is thus directly derived. �
For a larger λ, the forking event occurs more frequently,

increasing the learning completion latency. On the contrary,
for a high PoW difficulty with a low λ, the block generation
time incurs its own overheads with excessive latency.

IV. NUMERICAL RESULTS AND DISCUSSION

We numerically evaluate the proposed blockFL’s average
learning completion latency E[To] =

∑L
`=1 E[T

(`)
o]. By default,

we consider ND = NM = 10, and Ni ∼ Uni(10, 50) ∀Di ∈ D.
Following the 3GPP LTE Cat. M1 specification, we use Wup =

Wdn =Wm = 300 KHz and γup,o = γdn,o = γoj = 10 dB. Other
simulation parameters are given as: δd =100 Kbit, δm =5 Kbit,
h=200 Kbit, fc=1 GHz, Twait =50 ms, Ta,wait =500 ms.

Fig. 3-a shows the impact of block generation rate λ on the
BlockFL’s average learning completion latency. In Fig. 3-a, we
observe that the latency is convex-shaped and is decreasing
with the SNRs. For the optimal block generation rate λ∗,
the minimized average learning completion latency obtained
from Proposition 1 is always longer by up to 1.5% than the
simulated minimum latency. In Fig. 3-b, the BlockFL and the
vanilla FL achieve almost the same accuracy for an identical
ND. On the other hand, the learning completion latency of our
BlockFL is lower than that of the vanilla FL (NM =1) as in
Fig. 4-a, which shows the scalability in terms of the numbers
NM and ND of miners and devices, respectively. The average
learning completion latency is computed for NM = 1, 10

with or without the miners’ malfunction. The malfunction
is captured by adding Gaussian noise N (−0.1, 0.01) to each
miner’s aggregate local model updates with probability 0.05.
Without malfunction, a larger NM increases the latency due to
the increase in their cross-verification and block propagation
delays. In BlockFL, each miner’s malfunction only distorts
its associated device’s global model update. Such distortion
can be restored by federating with other devices that associate
with the miners operating normally. Hence, a larger NM may
achieve a shorter latency for NM =10 with the malfunction.

Fig. 4-a shows that there exists a latency-optimal number
ND of devices. A larger ND enables to utilize a larger amount
of data samples, whereas it increases each block size and block
exchange delays, resulting in the convex-shaped latency.

Fig. 4. Average learning completion latency versus the number of devices,
(a) under the miners’ malfunction, (b) for different energy constraints θe, and
(c) overtake probability with respect to the number of chained blocks.

In Fig. 4-b, we assume that some miners cannot participate
if their battery level is lower than a predefined threshold
value θe, a normalized battery level, θe ∈ [0,1]. Without the
malfunction of miner nodes, the learning completion latency
becomes larger for a lower θe due to an increase in cross-
verification and block propagation delays. On the contrary,
when the malfunction occurs, a lower θe achieves a shorter
latency because more miners federate with leading to robust
global model updates. Fig. 4-c shows the overtake probability
that a malicious miner will ever form a new blockchain whose
length is longer than a blockchain formed by honest miners.
The overtake probability goes to zero if just a few blocks
have already been chained by honest miners. Although the
malicious miner begins the first PoW with the honest miners,
the larger number of miners prevents the overtake.

REFERENCES

[1] P. Popovski, J. J. Nielsen, C. Stefanovic, E. de Carvalho, E. G. Ström,
K. F. Trillingsgaard, A. Bana, D. Kim, R. Kotaba, J. Park, and R. B.
Sørensen, “Wireless Access for Ultra-Reliable Low-Latency Communi-
cation (URLLC): Principles and Building Blocks,” IEEE Netw., vol. 32,
pp. 16–23, Mar. 2018.

[2] M. Bennis, M. Debbah, and V. Poor, “Ultra-Reliable and Low-Latency
Wireless Communication: Tail, Risk and Scale,” [Online]. Available:
https://arxiv.org/abs/1801.01270.

[3] J. Park, D. Kim, P. Popovski, and S.-L. Kim, “Revisiting Frequency
Reuse towards Supporting Ultra-Reliable Ubiquitous-Rate Communica-
tion,” in Proc. IEEE WiOpt Wksp. SpaSWiN, May 2017.

[4] J. Konečný, H. B. McMahan, D. Ramage, “Federated Optimization:
Distributed Machine Learning for On-Device Intelligence,” [Online].
Available: https://arxiv.org/abs/1610.02527.

[5] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, B. A.y Arcas,
“Communication-Efficient Learning of Deep Networks from Decentral-
ized Data,” in Proc. AISTATS, Fort Lauderdale, FL, USA, Apr. 2017.

[6] H. B. McMahan, and D. Ramage, “Federated Learning: Collabo-
rative Machine Learning without Centralized Training Data,” [On-
line] Available at: https://ai.googleblog.com/2017/04/federated-learning-
collaborative.html, 2017.

[7] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” [On-
line]. Available: https://bitcoin.org/bitcoin.pdf.

[8] C. Decker, and R. Wattenhofer, “Information Propagation in the Bitcoin
Network,” in Proc. IEEE P2P, Torento, Italy, Sep. 2013.

[9] S. Samarakoon, M. Bennis, W. Saad, and M. Debbah, “Distributed
Federated Learning for Ultra-Reliable Low-Latency Vehicular Commu-
nications,” [Online]. Available: https://arxiv.org/abs/1807.08127.

[10] P. Danzi, A. E. Kalør, C. Stefanović, and P. Popovski, “Analysis of the
Communication Traffic for Blockchain Synchronization of IoT Devices,”
Proc. IEEE Int. Conf. on Commun. (ICC), 2018.

[11] N. C. Luong, D. Niyato, P. Wang, and Z. Xiong, “Optimal Auction
for Edge Computing Resource Management in Mobile Blockchain
Networks: A Deep Learning Approach,” Proc. IEEE Int. Conf. on
Commun. (ICC), 2018.

[12] L. Chen, L. Xu, N. Shah, Z. Gao, Y. Lu, and W. Shi, “On Security
Analysis of Proof-of-Elapsed-Time,” in Proc. SSS, Boston, MA, USA,
Nov. 2017.

