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Abstract—Network slicing promises to provision diversified
services with distinct requirements in one infrastructure. Deep
reinforcement learning (e.g., deep Q-learning, DQL) is assumed
to be an appropriate algorithm to solve the demand-aware
inter-slice resource management issue in network slicing by
regarding the varying demands and the allocated bandwidth
as the environment state and the action, respectively. However,
allocating bandwidth in a finer resolution usually implies larger
action space, and unfortunately DQL fails to quickly converge
in this case. In this paper, we introduce discrete normalized
advantage functions (DNAF) into DQL, by separating the Q-
value function as a state-value function term and an advantage
term and exploiting a deterministic policy gradient descent
(DPGD) algorithm to avoid the unnecessary calculation of Q-
value for every state-action pair. Furthermore, as DPGD only
works in continuous action space, we embed a k-nearest neighbor
algorithm into DQL to quickly find a valid action in the
discrete space nearest to the DPGD output. Finally, we verify the
faster convergence of the DNAF-based DQL through extensive
simulations.

I. INTRODUCTION

Networks are becoming increasingly agile and flexible to

provision diversified services with distinct requirements on

latency and rate. Specifically, network slicing, which belongs

to one of cutting-edge technologies in the 5G era, allows

infrastructure providers to offer “slices” of resources (compu-

tational, storage and networking) with specified service license

agreements (SLAs) [1]–[4]. However, in order to fully reap

the desired merits like slice-level protection, envyfreeness,

and load-driven elasticity [3], [4], end-to-end network slicing

still faces a lot of technical challenges. For example, taking

account of the limited spectrum, the slice-level protection

could guarantee superior quality of experience (QoE) but also

incurs degradation in spectrum efficiency (SE). Therefore, one

typical question naturally arises like that how to intelligently

allocate the spectrum to slices according to the dynamics of

service request from mobile users in a coherent manner [5],

so as to obtain satisfactory QoE in each slice at the cost of

acceptable SE.

In order to address the aforementioned problem, one poten-

tial solution is to consider the (deep) reinforcement learning

(RL). As a non-nascent algorithm, RL has been widely applied
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in the field of cognitive radio [6] and green communications

[7]. The recent well-known application success in Go [8]

further proves the feasibility to utilize neural networks (NN)

to approximate the value functions in classical RL with

case-testified convergence stability, and triggers tremendous

research attention in the communications and networking area

to solve resource allocation issues in some specific fields

like power control, green communications, cloud radio access

networks, mobile edge computing and caching [3]. But, a

common problem in these works is that researchers usually

assume a rather limited small discrete action space to ensure

the necessary convergence rate. For example, [3] realized the

spectrum allocation per slice on the unit of MegaHertz and

accordingly design a DRL framework with tens of possible

actions. But, such a coarse-grained spectrum allocation so-

lution inevitably decreases the SE when some slice has very

few service activities. In a word, it urgently needs a rethink on

DRL to better avoid the curse of dimensionality and quickly

converge in larger action space.

Overall speaking, this paper aims to answer how to allocate

the limited spectrum on a finer-grained resolution across slices

based on an improved DRL. In particular, we revolutionize the

calculation and approximation of the Q-value function in the

deep Q-learning (DQL) as follows:

• Inspired by the normalized advantage functions (NAF)

model [9], [10], we design a discrete NAF (DNAF) NN to

separately approximate a state-value function term V (s)
and an advantage term A(s,a), where s and a denote

a state and an action respectively. Moreover, we have

Q(s,a) = V (s) + A(s,a). Hence, the common part of

the Q-value function could be learnt across all actions.

• We utilize a deterministic policy gradient descent

(DPGD)-based Q-learning [16] to replace the classical

statistical policy gradient descent-based DQL, so as to

directly yield the most suitable action for a specific state.

• In order to solve the issue that a DPGD method ignores

the discreteness of the action space, we firstly output

a proto action with the largest Q-value in the virtual

continuous action space and then scramble it with an extra

noise term. Finally, we embed a k-nearest neighbor (k-nn)

algorithm to quickly select the closest discrete action.

The remainder of the paper is organized as follows: Section

II talks about some necessary algorithmic background and

formulates the system model. Section III gives the details of

the DNAF based Q-Learning, while Section IV presents the
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related simulation results. Finally, Section V concludes the

paper with a summary.

II. MATHEMATICAL BACKGROUND AND SYSTEM MODEL

A. Mathematical Background

RL tries to find a strategy π, which maps a state s ∈ S

(i.e., the varying traffic per slice) to an action π(s), (i.e., a ∈
A, allocated bandwidth per slice) to maximize the discounted

accumulative reward starting from the state s(0) = s. Formally,

this accumulative reward is called as a state-value function,

which can be calculated by [11]

V π(s) = Eπ

[

∞
∑

k=0

γkR(s, π(s)|s(0) = s)

]

(1)

where the positive parameter γ is the discount factor that maps

the future reward to the current state. Given the diminishing

importance of future cost than the current one, γ is smaller

than 1.

Q-learning is an RL technique to obtain the strategy π.

Specifically, a Q-learning agent attempts to learn the value

of taking a specific action for a given state, i.e. Q-value, by

constantly updating Q value in a temporal difference (TD)

manner as

Q(s,a) (2)

←Q(s,a) + α
(

R(s,a) + γmax
a′∈A

Q(s′,a′)−Q(s,a)
)

where α is the learning rate and s′ denotes the state of the

environment after taking action a at state s.

In recent years, [8] proposes to use NNs to approximate

Q-value function [12] so as to solve an RL problem with

a tremendous state dimension. Mathematically, DQL trains

an NN with parameters θ by minimizing the loss function

between the real Q-value function Q(s,a) and an NN-

approximated one Q+(s,a|θ), which can be formulated as

θ = argmin
θ′

L(θ′) = argmin
θ′

(

Q(s,a)−Q+(s,a|θ′)
)2

(3)

Commonly, θ could be achieved by a gradient-based approach

as

θ ← θ − α∇L(θ) (4)

In addition, there are some tricks that can improve the per-

formance of DQL, such as replay buffer [13], target network

[14], prioritized replay [15], etc.

B. System Model

We consider an access network scenario in Fig. 1 consisting

of multiple base stations (BSs) , where there exists a list of

existing slices 1, · · · , N sharing the aggregated bandwidth W

and having fluctuating demands d = (d1, · · · , dN ). We aim to

maximize the expectation of the utility function E{R(w,d)},
where the notation E(·) denotes to take the expectation of

the argument. Moreover, the utility function is defined as the

weighted sum of SE and QoE satisfaction ratio. Mathemati-

cally,

R = ζ · SE + β · QoE (5)

where ζ and β denotes the importance of SE and QoE. Our

goal is to allocate the bandwidth to slices according to the

traffic variations within each slice, that is,

argmax
w

Et{R(w,d)}

=argmax
w

E
{

ζ · SE(w,d) + β · QoE(w,d)
}

s.t.: w = (w1, · · · , wN ) (6)

w1 + · · ·+ wN = W

wi = k ·∆, ∀i ∈ [1, · · · , N ]

d = (d1, · · · , dN )

di ∼ Certain Traffic Model, ∀i ∈ [1, · · · , N ]

where t denotes the temporal index, k is an integer and ∆
is the minimum allocated bandwidth per slice. Notably, d(t)
depends on both d(t− 1) and w(t − 1), since the maximum

sending capacity of servers belonging to one service is tangled

with the provisioning capabilities for this service. For example,

the TCP sending window size is influenced by the estimated

channel throughput.

The key challenge to solve (6) lies in the volatile demand

variations without having known a priori due to the traffic

model. Hence, DQL promises to be an appropriate solution

to solve this problem. But, DQL converges slowly for large

action space, since DQL needs to predict Q-values for each

state-action pair. Unfortunately, the size of action space |A|
increases exponentially along with the decrease of ∆ and the

increase of N , since we have

|A| =

(

⌊W∆ ⌋ − 1

N − 1

)

(7)

Therefore, it is inevitable to revolutionize the classical DQL.

III. THE DNAF BASED Q-LEARNING

Researchers in [9], [10] has suggested NAF as a potential

solution to DQL with continuous action space by decomposing

Q-value into a state-value function V and an advantage

function A. Since the discreteness of action space for resource

management in network slicing is different from the continuity

in [9], [10], it is quite meaningful to re-investigate its effec-

tiveness here.

Inspired by [9], [10], we build two separate NNs for the

state-value function V (s|θV ) parameterized by θV and the

advantage function A(s,a|θA) parameterized by θA, on top

of a common NN collecting some general information, that is,

Q(s,a|θQ) = V (s|θV ) +A(s,a|θA) (8)

Moreover, the advantage function approximation leverages the

DPGD algorithm [16] to obtain the proto action µ(s|θµ) by

an parameterized by θµ by

A(s,a|θA) (9)

=−
1

2
(a− µ(s|θµ))TΛ(s|θL)Λ(s|θL)T (a − µ(s|θµ))

where Λ(s|θL) is a low-triangular matrix whose entries come

from a linear output layer of an NN parameterized by θL [9].

Hence, θA is a concatenation of θµ and θL.
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Fig. 1: An illustration of DNAF-based Q-learning for resource management in network slicing.

Since the action µ(s|θµ) might be an invalid action in the

discrete action space A, we first calculate the proto action

â1 by adding µ(s|θµ) with a noise term. Notably, the added

noise in selecting action procedure could be regarded as an

alternative means to the ǫ-greedy strategy in classical RL for

state exploration. Afterwards, k-nn is applied to find the closest

valid action, that is,

gk(a) = argmina′∈A ‖a
′ − â‖2 (10)

In other words, the function gk(·) is a k-nn mapping from a

continuous space to a discrete set and returns k valid actions

closest to the proto action. For k > 1, it also means to obtain

the k nearest actions that maximize Q-value [17]. The case

k = 1, which belongs to the key focus in this paper, is

equivalent to simply select the nearest action.

We incorporate the aforementioned methods into the DQL

and have the DNAF-based Q-learning in Algorithm 1.

IV. SIMULATION RESULTS AND NUMERICAL ANALYSES

In this part, we compare the convergence rate of the DNAF-

based DQL and classical DQL. We simulate in one single BS

scenario with three types of services (i.e., VoLTE, video, ultra-

reliable low-latency communications (URLLC)) as in [3], [18]

1As depicted in Fig. 1, the proto action is plotted in the blue circle while
the valid actions are presented in green ones.

and correspondingly have three slices. Moreover, we attempt to

allocate 10-MegaHertz bandwidth to these three slices and set

the minimal bandwidth allocation resolution is 0.2-MegaHertz,

thus leading to 1176 valid actions. Meanwhile, the network

slice stops sending new packets to one user if 5 packets in

the caching buffer for this user have not been successfully

delivered or expired (e.g., exceeding the tolerant delay for that

slice). Otherwise, each network slice sends traffic to its user

following the settings in Table I.

Fig. 2 gives an illustration of the reward variations with

respect to the episode index. Here, the reward is defined in (5).

As for the DNAF-based DQL, inspired by the noise settings in

[13], we first assume the noise obeys normal distribution and

is multiplied by an attenuating coefficient, which gradually

decays with the number of iterations and ultimately fixes at

zero after 3000 iterations. It can be observed from Fig. 2 that

regardless of the values of α, the DNAF-based DQL could

converge after 4000 - 6000 episodes, while the classical DQL

still changes dramatically with no sign of convergence even

after 10000 episodes. Therefore, it could safely come to the

conclusion that the DNAF-based DQL could converge more

rapidly than the classical DQL. On the other hand, Fig. 2

also provides the performance result of the equal-allocation

strategy where we intuitively allocate the bandwidth according

to the number of slices and verified that the DNAF-based

DQL yield superior performance than the equal-allocation
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Algorithm 1 The DNAF based Q-learning

1: Randomly initialize a normalized Q network Q(s,a|θQ),
where θQ is a concatenation of θV and θA.

2: Initialize a target network Q′ with weight θQ′

← θQ.

3: Initialize replay buffer R← ∅.

4: Initialize an episode index t = 0.

5: repeat

6: At episode t, the agent observes the state st.

7: The agent calculates a proto-action ât = µ(st|θµ)+Nt

and determines the closest action at = g1(ât) by (10).

8: The agent receives the reward R(st,at) and observes

a new state st+1 for the environment.

9: The agent stores the episode experience

(st,at, Rt, st+1) in R.

10: The agent samples a mini-batch Rmbatch of experiences

from R.

11: The agent sets yi = Ri + γV ′(si+1|θQ′

) and gets

estimated Q-value Qi = Q(si,ai|θQ)) by (5) and (6),

∀(si,ai, Ri, si+1) ∈ Rmbatch.

12: The agent updates the weights θQ for the evaluation

network by leveraging gradient descent algorithm to
1

|Rmbatch|

∑

i((yi −Qi)
2).

13: The agent clones the Q network to the target network

Q′ every C episodes by assigning the weights Q′ as

θQ′

= θQ.

14: The episode index is updated by t← t+ 1.

15: until A predefined stopping condition (e.g., the gap be-

tween yi and Qi, the episode length, etc) is satisfied.

TABLE I: A Brief Summary of Key Settings for Traffic

Generation Per Slice

VoLTE Video URLLC

Bandwidth 10 MHz

Scheduling Round robin per slot (0.5 ms)

Slice Band Adjustment
(Q-Value Update)

1 second (2000 scheduling slots)

Channel Rayleigh fading

User No. (100 in all) 46 46 8

Distribution of Inter-
Arrival Time per User

Uniform
[Min =
0, Max =
160ms]

Truncated
Pareto
[Exponential
Para = 1.2,
Mean = 6
ms, Max =
12.5 ms]

Exponential
[Mean = 180
ms]

Distribution of Packet
Size

Constant (40
Byte)

Truncated
Pareto
[Exponential
Para = 1.2,
Mean = 100
Byte, Max =
250 Byte]

Truncated
Lognormal
[Mean =
2 MB,
Standard
Deviation =
0.722 MB,
Maximum
=5 MB]

SLA: Rate 51 kbps 5 Mbps 10 Mbps

SLA: Latency 10 ms 10 ms 5 ms

0 2000 4000 6000 8000 10000
Episode Index

3

4

5

6

Re
wa

rd

(a) SE weight α = 0.01, QoE weight β = 1

DNAF
DQL
Equal

0 2000 4000 6000 8000 10000
Episode Index

10

20

30

40

Re
wa

rd

(b) SE weight α = 0.1, QoE weight β = 1

DNAF
DQL
Equal

Fig. 2: The convergence rate of the DNAF-based DQL and

classical DQL.
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Fig. 3: The cumulative reward of the DNAF-based DQL,

classical DQL, equal-allocation strategy.

strategy. Furthermore, Fig. 3 gives the cumulative reward

of the DNAF-based DQL, classical DQL, equal-allocation

strategy. It can be found in Fig. 3 that the DNAF-based DQL

could obtain superior performance than the equal-allocation

strategy while DQL yield some inferior performance than the

equal-allocation strategy due to its slow convergence rate.

Fig. 4 presents the SE and QoE satisfaction ratio applying

the learnt policy after 10000 episodes. It can be observed

that when α = 0.01, which implies that SE is on a par

with QoE satisfaction ratio, the DNAF-based DQL could

yield superior performance on SE and QoE satisfaction ratio

simultaneously than the classical DQL. On the other hand,

when α takes a larger value (i.e., 0.1) to put more focus on

SE, compared than the classical DQL, the DNAF-based DQL

learns a policy giving significantly higher SE but degrades

the QoE satisfaction ratio for some slices. Notably, some

evaluation metrics produced by the DNAF-based DQL policy

are not always superior (or even inferior) to the classical
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Fig. 4: The snapshot of SE and QoE satisfaction ratio applying

the learnt policy after 10000 episodes.
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Fig. 5: The reward of the DNAF-based DQL with the action

noise obeying normal distribution and uniform distribution.

DQL, since it is still a very challenging research topic to

design RL with multiple conflicting rewarding metrics. In this

paper, we simply choose the weighted sum of two conflicting

metrics (i.e., SE and QoE) as the reward in RL. Despite the

intuitiveness of this direct summation, our simulation results

have demonstrated that we cannot guarantee to simultaneously

obtain superior performance for both SE and QoE. Therefore,

we have left this inspiring and interesting topic as our future

works.

Fig. 5 shows the comparison between normal distributed

noise and uniform distributed ones, respectively. It can be

observed that both cases could lead to convergent learning

policy and exhibit trivial performance difference.

V. CONCLUSION

In this paper, we have discussed how to accelerate the

convergence rate of the classical DQL in large action space,

so as to satisfy the requirements for finer-resolution resource

management in network slicing. In particular, we have applied

the DNAF into DQL, by separating the Q-value function as a

state-value function term and an advantage term and exploiting

a DPGD algorithm to avoid the unnecessary calculation of Q-

value for every state-action pair. Furthermore, we have embed-

ded a k-nn algorithm into DQL to quickly find a valid action in

the discrete action space. We have also verified that compared

than the classical DQL, the DNAF-based DQL exhibits faster

convergence and superior performance. Hence, we believe our

works could contribute to enhancing the applicability of DQL

in network slicing. However, there still exist some research

issues to be solved, in particular the need to further improve

DQL to guarantee minimal slice SLAs, capably adapt non-

stationary traffic demands, and smartly design the reward for

multi-conflicting metrics.
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