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Abstract—Common signals in public channels of cellular sys-
tems are usually transmitted omnidirectionally from the base
station (BS). In recent years, both discrete and consecutive
omnidirectional space-time block codings (STBC) have been
proposed for massive multiple-input multiple-output (MIMO)
systems with a uniform linear array (ULA) configuration to
ensure cell-wide coverage. In these systems, constant received
signal power at discrete angles, or constant received signal sum
power in a few consecutive time slots at any angle is achieved. In
addition, equal-power transmission per antenna and full spatial
diversity can be achieved as well. In this letter, by utilizing the
property of orthogonal complementary codes (OCCs), a new
consecutive omnidirectional quasi-orthogonal STBC (QOSTBC)
design is proposed, in which constant received sum power at any
angle can be realized with equal-power transmission per antenna
through one STBC transmission, and a higher diversity order of
4 can be achieved. In addition, the proposed design can be further
extended to the uniform planar array (UPA) configuration with
the two-dimensional OCCs.

Index Terms—Massive MIMO, QOSTBC, omnidirectional
transmission, orthogonal complementary codes.

I. INTRODUCTION

TO meet the challenging capacity requirement of the fifth

generation (5G), massive multiple-input multiple-output

(MIMO) system with tens to hundreds of antennas deployed at

base station (BS) has attracted substantial attentions [1]. Public

channels play important roles since many essential common

signals are provided to users from BS through public channels.

In order to broadcast common information from BS, discrete

and consecutive omnidirectional space-time codings have been

recently proposed in [2]-[4] for massive MIMO systems with a

uniform linear array (ULA) configuration. In [2][3], by utiliz-

ing the Zadoff-Chu (ZC) sequences, equal-power transmission

per antenna and constant received signal power at finite

discrete angles are satisfied, where the number of discrete

angles is the same as the number of transmit antennas. In

[4], a design of consecutive omnidirectional space-time coding

is proposed, where the orthogonal space-time block code

(OSTBC), Alamouti code (AC), is used for 2 data streams,

the sum of received signal powers at 2 consecutive time slots

is constant at any angle, and equal-power transmission per
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antenna and diversity order of 2 are achieved as well. However,

the design in [4] can only be applied to AC. Although quasi-

OSTBCs (QOSTBC) for 4 data streams of diversity order 4

are designed in [3], constant received signal power can be

achieved only at finite discrete angles.

In this letter, to further increase the diversity order over

the AC coding in [4], by utilizing the orthogonal comple-

mentary codes (OCCs) [5], a new consecutive omnidirectional

QOSTBC design is proposed, where the received signal sum

power in 4 consecutive time slots at any angle is constant,

and equal-power transmission per antenna at any time and

full diversity order of 4 are achieved as well. We want to

emphasize that these three properties are new and additional

to all the existing properties of the QOSTBC studies in, for

example, [6]-[13]. Unlike the discrete omnidirectional STBCs,

the proposed design is insensitive to the number of BS anten-

nas. Moreover, constructed with binary OCCs, high-resolution

phase shifters are not necessary at the BS when employing the

proposed STBCs, which will significantly reduce the energy

consumption and the BS deployment expense. In addition, by

utilizing the two-dimensional OCCs (2D-OCCs) [15], similar

omnidirectional STBCs can be designed for massive MIMO

with uniform planar arrays (UPAs) equipped in BSs.

II. PROBLEM DESCRIPTION

A. System Model

In this letter, we consider STBC transmission for common

information broadcasting. For simplicity, we first consider that

a BS is equipped with a ULA of M antennas and serves K
users each with a single antenna. The common information is

mapped to an STBC S ∈ CM×T with M ≥ T and transmitted

from M antennas of BS within T time slots to all the users.

The received signal of user k can be written as

[yk,1, yk,2, . . . , yk,T ] =
√

Pth
T

kS+ [zk,1, zk,2, . . . , zk,T ] (1)

where Pt denotes the total transmit power, the channel hk ∈
CM×1 is assumed to keep constant within T time slots, (·)T
stands for the transpose, and zk,t ∼ CN

(

0, σ2
n

)

is the additive

white Gaussian noise (AWGN) at time slot t (t = 1, 2, . . . , T ).
Note that, different from the multi-user MIMO downlink

transmissions where the BS transmits different signals to

different users and K is upper bounded, in this letter, since

the BS transmits the same common signals to all the users

in public channels, there is no interference between different

users. Therefore, K can be arbitrary here.

To decode the transmitted information symbols in codeword

S, the instantaneous CSI hk must be known at the user side.

However, in massive MIMO systems, since the number of BS

http://arxiv.org/abs/1810.11312v2
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antennas is very large and the number of downlink resources

needed for pilots is proportional to the number of BS antennas,

the downlink channel estimation becomes challenging. In or-

der to reduce the pilot overhead, a dimensional-reduced STBC

is utilized in, for example, [2]-[4], where a high dimensional

STBC is composed by a precoding matrix W and a low

dimensional STBC X, i.e., S = WX, where W ∈ CM×N

is a tall precoding matrix independent of the channel or the

information data (since users may be inactive and no feedback

is available), and X ∈ C
N×T is a low dimensional STBC

modulated by the common information data. To decode the

common information data, users only need to estimate the

effective channel WT
hk of dimension N × 1 with N ≪ M

instead. To normalize the total average transmission power at

the BS side, we assume that E
(

XX
H
)

= T /N · IN and

tr(WW
H) = N where E (·) denotes the expectation, (·)H

donotes the Hermitian operation, IN is the N × N identity

matrix and tr (·) stands for the trace of a matrix.

B. Criteria of Consecutive Omnidirectional STBC

For consecutive omnidirectional STBC design, the follow-

ing three criteria should be guaranteed [4].

1. Criterion of Constant Instant Transmission Power at

Each Antenna at Any Time Slot t: Assume xt is the t-th
column vector of the low dimensional STBC X, then Wxt

is the transmitted signal in BS at time slot t. To sufficiently

utilize all the power amplifier (PA) capacities of BS antennas,

the precoding design should satisfy

|[Wxt]m| = 1√
M

, m = 1, . . .M (2)

at any time slot t, where [Wxt]m denotes the transmitted

signal on the m−th antenna at time slot t.
2. Criterion of Full Diversity Order T : The STBC S =

WX satisfies the full column rank, i.e., for any two distinct

STBC codewords S1 and S2 of S, the difference S1 −S2 has

full column rank T .

3. Criterion of Constant Received Signal Sum Power at

Any Angle: The corresponding transmitted signal in the angle

domain under a ULA configuration can be written as

St(ω) = a(ω) · [Wxt], (3)

where a(ω) =
[

1, e−jω, · · · , e−j(M−1)ω
]

is the antenna array

response vector under the ULA setup and ω = 2π d
λ sin (θ)

with carrier wavelength λ, antenna spacing d and azimuth

angle of departure (AoD) θ. The criterion is
T
∑

t=1

|St(ω)|2 = c, ∀θ ∈ (−π, π] (4)

for a positive constant c. For a UPA configuration in BSs, the

criterion can be rewritten as
T
∑

t=1

|St(ω, υ)|2 = c, ∀θ ∈ (−π, π], φ ∈ [0, π] (5)

for a positive constant c. Here, ω = 2π da

λ sin (θ) sin (φ), and

υ = 2π de

λ cos (φ) with antenna spacings da and de, and AoDs

θ and φ in azimuth and elevation, respectively.

From (3), one can see that, St(ω) is the Fourier transform

(FT) of Wxt. Note that the received signal power of St(ω)
at time slot t cannot be constant for any angle θ as mentioned

in [4]. It is the motivation in [4] to consider a sum of a few

consecutive signal powers as (4).

In this letter, we design precoded QOSTBC for N = 4
data streams, i.e., symbol rate 1, with spatial diversity order

of 4. Note that OSTBCs for T = N = 4 can accommodate at

most 3 data streams [14], i.e., their symbol rates are at most

3/4, although they can achieve the spatial diversity order of 4.

C. Orthogonal Complementary Codes

Some useful mathematical results are reviewed

here to help the omnidirectional STBC design. Let

{ci,j , 1 ≤ i ≤ p, 1 ≤ j ≤ q} be a set of orthogonal

complementary codes, where each code ci,j is a sequence
1 of length L. Every i-th subset {ci,1, ci,2, . . . , ci,q} is a

complementary set of q sequences, and for i 6= i′, the i-th and

i′-th subsets are mutually orthogonal complementary [5][15].

The OCC has the following properties.














q
∑

j=1

Rci,j (τ) = 0, ∀τ 6= 0, 1 ≤ i ≤ p

q
∑

j=1

Rci,jci′,j
(τ) = 0, ∀τ, 1 ≤ i 6= i′ ≤ p

(6)

with














Rci,j (τ) =
L
∑

l=1

[ci,j ]l[ci,j ]
∗

l+τ

Rci,jci′,j
(τ) =

L
∑

l=1

[ci,j ]l[ci′,j ]
∗

l+τ

(7)

where Rci,j (τ) and Rci,jci′,j
(τ) are the aperiodic autocor-

relation function (AACF) and the aperiodic crosscorrelation

function (ACCF) for shift τ , respectively, (·)∗ denotes the

complex conjugate, and [ci,j ]l is the l-th element of ci,j if

1 ≤ l ≤ L, and 0 otherwise.

III. OMNIDIRECTIONAL QOSTBC DESIGN FOR A ULA

CONFIGURATION

OSTBCs have both advantages of complex symbol-wise

maximum-likelihood (ML) decoding and full diversity. How-

ever, their symbol rates are upper bounded by 3/4 for more

than two antennas for complex symbols [14] as mentioned

earlier. Therefore, QOSTBCs are proposed in [6][7] where the

orthogonality is relaxed to achieve high symbol transmission

rate but with a more complex symbol pair-wise ML decoding.

By rotating the constellations of the complex symbols, the

QOSTBCs can further achieve full diversity [8]-[12]. We next

want to study the consecutive omnidirectional STBC design

based on the QOSTBCs and OCCs for ULA configuration.

Consider the low dimensional QOSTBC of Tirkkonen,

Boariu, and Hottinen (TBH) scheme [7] as an example, and

constellation rotations [12] are applied to achieve the diversity

order of T = 4,

X = XQ
∆
=









x1 x∗
2 x3 x∗

4

x2 −x∗
1 x4 −x∗

3

x3 x∗
4 x1 x∗

2

x4 −x∗
3 x2 −x∗

1









(8)

1In [4], complementary pair is introduced to construct the precoding matrix
W for AC. However, it does not work for QOSTBC due to the nonorthog-
onality. Therefore, OCC is introduced here to overcome this problem, and
more details are given in Section III.
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where x1, x2 are taken from a symbol constellation S, and

x3, x4 are taken from the rotated symbol constellation ejϕS.

The correlation matrix of XQ in (8) is

XQX
H
Q =









α 0 β 0
0 α 0 β
β 0 α 0
0 β 0 α









= αI4 + βΠ2 (9)

where α =
4
∑

i=1

|xi|2, β = 2Re (x1x
∗
3 + x2x

∗
4), Re (·) denotes

the real part of a complex number, and Π2 =

[

0 I2

I2 0

]

where I2 is the 2 × 2 identity matrix. Note that while

x1, x2, x3, x4 are independent with each other, β is not always

possible to be 0. Then, (4) can be rewritten as
4
∑

t=1

|St(ω)|
2 = a(ω)WXQX

H
QW

H
a
H(ω)

=αa(ω)WW
H
a
H(ω) + βa(ω)WΠ2W

H
a
H(ω)

=α

4
∑

n=1

a(ω)wnw
H
n a

H(ω)

+β

2
∑

n=1

a(ω)
(

wnw
H
n+2 +wn+2w

H
n

)

a
H(ω)

=α

4
∑

n=1

|Wn(ω)|
2+2βRe

(

2
∑

n=1

Wn(ω)W
∗

n+2(ω)

)

(10)

where wn is the n-th column vector of W, and Wn(ω) is the

FT of wn for n = 1, · · · , 4.

Theorem 1. If the sequence sets {w1,w2} and {w3,w4}
are mutually orthogonal complementary, and α is constant

for signal constellation S, then, the criterion 3 for a ULA

configuration, i.e., (4), of constant received signal sum power

with T = 4 holds for all θ ∈ (−π, π].

Proof. See Appendix A.

In addition, the QOSTBC design should satisfy the criterion

of equal power at each antenna as well. Consequently, we

propose the precoding matrix W = WQ as follows.

Consider a ULA is equipped in the BS, we assume that the

number of BS antennas M is an integer multiple of 4, and let

{c1, . . . , c4} be a set of binary OCCs of length L = M/4, in

which {c1, c2} and {c3, c4} are two sets of complementary

pairs of components either 1 or -1 and they are mutually

orthogonal complementary. The precoding matrix WQ is

WQ =

√

4

M
[c1 ⊗ u1, c2 ⊗ u2, c3 ⊗ u3, c4 ⊗ u4] (11)

where ui is the i-th column vector of the 4 × 4 identity

matrix I4, and ⊗ denotes the Kronecker product. Clearly,

WQ has rank 4, i.e., it has full column rank. The signal

constellation S is selected to be a phase shift keying (PSK),

i.e., xi ∈ SPSK = 1
2

{

1, ej2π/ϑ, . . . , ej2π(ϑ−1)/ϑ
}

for some

positive integer ϑ. The optimal rotation angle for PSK signal

x3 and x4 is π/ϑ when ϑ is even and π/(2ϑ) or 3π/(2ϑ)
when ϑ is odd [12]. In this way, the precoding design will

satisfy all the three criteria as we shall see below.

First, let cn,i be the i-th element of cn, we have

S = WQXQ

=
√

4
M















c1,1x1 c1,1x
∗
2 c1,1x3 c1,1x

∗
4

c2,1x2 −c2,1x
∗
1 c2,1x4 −c2,1x

∗
3

...
...

...
...

c3,Lx3 c3,Lx
∗
4 c3,Lx1 c3,Lx

∗
2

c4,Lx4 −c4,Lx
∗
3 c4,Lx2 −c4,Lx

∗
1















.
(12)

Since cn is a sequence of 1’s and -1’s, and xi is constant even

with the rotations, it is easy to see that, all the elements in

S have the same amplitude, so the criterion 1 of equal-power

transmission per antenna at any time holds.

Since the low dimensional QOSTBC XQ in (8) has diversity

order of 4 after the optimal angle rotation, and the precoding

matrix WQ is a constant full column rank matrix, it is clear

that the low dimensional QOSTBC S = WQXQ has diversity

order T = 4, i.e., the criterion 2 of full diversity order holds.

Then, let us prove that it satisfies the constant received

signal sum power criterion 3. When PSK signals are adopted,

we have α =
4
∑

i=1

|xi|2 = 1. Let Cn(ω) be the FT of cn,

so Wn (ω) =
√

4
M e−j(n−1)ωCn(4ω). According to (10) and

Theorem 1, we have
4
∑

t=1

|St(ω)|
2 =

4α

M

4
∑

n=1

|Cn(4ω)|
2

+
8β

M
Re

(

e
2jω

2
∑

n=1

Cn(4ω)C
∗

n+2(4ω)

)

= 4

(13)

which is constant for θ ∈ (−π, π] under a ULA configuration.

In summary, the above precoded QOSTBC satisfies all

the three criteria presented in Section II. Similarly, the om-

nidirectional QOSTBC based on Jafarkhani scheme [6] or

other schemes can be done and we omit the details here. In

addition, to decrease the ML decoding complexity, we also

find that the proposed scheme can work for the QOSTBC with

minimum decoding complexity (MDC) [10][13] when QPSK

modulation (xi ∈ 1
2 {±1,±j}) is used (refer to the Case 2

and (42) in [13]). Instead of complex symbol pair-wise ML

decoding, QOSTBC with MDC has real symbol pair-wise ML

decoding which has the same complexity as complex symbol-

wise decoding.

Note that the length of a binary OCC may not be arbitrary.

The construction of binary OCC is possible with any length

L = 2a · 10b · 26c for all integers a, b, c ≥ 0, and there is no

binary OCC containing two sequences whose length cannot

be expressed as a sum of two squares [5][15]. Therefore, the

number of BS antennas may not be arbitrary either for our

proposed designs in this letter.

IV. OMNIDIRECTIONAL QOSTBC DESIGN FOR A UPA

CONFIGURATION

For massive MIMO systems under a UPA configuration,

similar omnidirectional QOSTBC designs can be done by

utilizing the property of 2D-OCCs [15].

A. Two-Dimensional Orthogonal Complementary Codes

We denote {Bi,j , 1 ≤ i ≤ P, 1 ≤ j ≤ Q} as a set of 2D-

OCCs, where each element Bi,j is an L1 ×L2 matrix. Every
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TABLE I: Binary OCC of length 16

c1 1 1 1 -1 1 1 -1 1 1 1 1 -1 -1 -1 1 -1

c2 1 1 1 -1 1 1 -1 1 -1 -1 -1 1 1 1 -1 1

c3 1 -1 1 1 1 -1 -1 -1 1 -1 1 1 -1 1 1 1

c4 1 -1 1 1 1 -1 -1 -1 -1 1 -1 -1 1 -1 -1 -1

0 5 10 15 20 25 30
SNR(dB)

10-6

10-5

10-4

10-3

10-2

10-1

100

B
E

R

Discrete precoded AC
Consecutive precoded AC
Discrete precoded QOSTBC
Proposed precoded QOSTBC

Fig. 1: BER performance versus SNR for 2 bps/Hz.

i-th subset {Bi,1,Bi,2, . . . ,Bi,Q} is a 2D complementary

set of Q matrice. For i 6= k, the i-th and k-th subsets are

mutually orthogonal complementary [15]. The 2D-OCC has

the following properties


















Q
∑

j=1

RBi,j
(m,n)=0, ∀ (m,n) 6=(0, 0) , 1≤ i ≤ P

Q
∑

j=1

RBi,jBk,j
(m,n)=0, ∀ (m,n) , 1≤ i 6=k ≤ P

(14)

with














RBi,j
(m,n) =

L1
∑

p=1

L2
∑

q=1
[Bi,j ]p,q[Bi,j ]

∗

p+m,q+n

RBi,jBk,j
(m,n) =

L1
∑

p=1

L2
∑

q=1
[Bi,j ]p,q[Bk,j ]

∗

p+m,q+n

(15)

where RBi,j
(m,n) and RBi,jBk,j

(m,n) are the 2D aperiodic

autocorrelation function (AACF) and 2D aperiodic crosscorre-

lation function (ACCF) for vertical shift m and horizontal shift

n, respectively. Here, if 1 ≤ p ≤ L1 and 1 ≤ q ≤ L2, [Bi,j ]p,q
is the (p, q)-th element of Bi,j , otherwise [Bi,j ]p,q = 0.

B. Omnidirectional QOSTBC Design

We consider the BS under a UPA configuration of M =
Na × Ne antennas, and there are Na antennas in each row

and Ne antennas in each column. Similar to the design for

ULA in (11), when the QOSTBC of TBH scheme [7] in (8) is

adopted as the low dimensional STBC, we can construct the

precoding matrix WQ based on 2D-OCCs as

WQ=

√

4

M
[vec(B1⊗U1), vec(B2⊗U2), vec(B3⊗U3), vec(B4⊗U4)]

(16)

with
{

B1, . . . ,B4 ∈ CNe/2×Na/2
}

as a set of 2D binary

orthogonal complementary codes, in which {B1,B2} and

{B3,B4} are two sets of 2D complementary pairs of com-

ponents either 1 or -1 and they are mutually orthogonal com-

plementary. Here, U1=

(

1 0
0 0

)

, U2=

(

0 0
1 0

)

, U3=

(

0 1
0 0

)

,

and U4=

(

0 0
0 1

)

.

It is easy to see that, the criterion 1 of equal-power trans-

mission per antenna at any time holds for this design. With

the low dimensional QOSTBC XQ after the optimal angle

rotation, the criterion 2 of full diversity order holds as well.

-60 -40 -20 0 20 40 60
Mean AoD (degree)

10-5

10-4

10-3

10-2

10-1

B
E

R

Discrete precoded AC
Consecutive precoded AC
Discrete precoded QOSTBC
Proposed precoded QOSTBC

SNR=10dB

SNR=20dB

Fig. 2: BER performance versus mean AoD for 2 bps/Hz.

When PSK signals are adopted, we have

α =
4
∑

i=1

|xi|2 = 1. Let Bn(ω, υ) and Wn (ω, υ) be

the 2D FT of Bn and Bn ⊗Un, so Wn (ω, υ) =
√

4
M e−j(p−1)ωe−j(q−1)υBn(2ω, 2υ), where (p, q) is the

position of the nonzero element in Ui, i.e. [Ui]p,q = 1.

According to (10) and Theorem 1, similar conclusion
4
∑

t=1

|Gt(ω, υ)|
2 =

4α

M

4
∑

n=1

|Bn(2ω, 2υ)|
2

+
8β

M
Re

(

e
jω

2
∑

n=1

Bn(2ω, 2υ)B
∗

n+2(2ω, 2υ)

)

= 4

(17)

can be achieved which is constant for all θ ∈ (−π, π] and

φ ∈ [0, π].
Therefore, the precoded QOSTBC for a UPA configuration

satisfies all the three criteria presented in Section II as well.

V. NUMERICAL RESULTS

In this section, we will evaluate the performance of the

proposed omnidirectional QOSTBC design. We first consider

that the BS is a ULA of M = 64 antennas in a 120◦ sector,

where the antenna space is d = λ/
√
3, and serves K = 300

users each with a single antenna. The channel model here

refers to the model in [3]. To represent that users have different

angles with respect to the ULA of the BS within the sector, the

mean AoD θ0 is randomly selected in uniform distribution on

[−60◦, 60◦], while the angle spread (AS) σ = 5◦. The signal

constellation in all the schemes is QPSK, while for either the

discrete [3] or the preposed precoded QOSTBC, the optimal

rotation angle of π/4 is adopted [12]. The binary OCC, which

is shown in Table I [5][15], is used to obtain the proposed

precoding matrix.

First, we have the average bit error rate (BER) performance

with respect to the signal-to-noise ratio (SNR) value, i.e.,

Pt/σ
2
n, as shown in Fig. 1. We can see that although all the

schemes can achieve full diversity order of 2 or 4, consecutive

precoded STBCs (either AC [4] or preposed QOSTBC) always

outperform the discrete ones obtained in [3] with the same

low dimensional STBCs in high SNR regime. This is because

when the antenna number is limited, the angle resolution of

the discrete precoded STBCs is not enough.

Then, we evaluate the BER performance with respect to

the mean AoD θ0 to verify the ability of omnidirectional

transmission for different STBC designs which is shown in

Fig. 2. We can see that compared with the discrete precoded

STBCs, the consecutive precoded STBCs have flatter BER

performance for different values of mean AoDs in both low
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1st complementary pair

11B

+ + + - + + - +é ù
ê ú+ + + - + + - +ê ú
ê ú+ + + - + + - +
ê ú
- - - + - - + -ê ú
ê ú+ + + + + + - +
ê ú
+ - + + + - - +ê ú
ê ú- + - - - + + -
ê ú
+ - + + + - - +ê úë û

12B

+ + + - - - + -é ù
ê ú+ + + - - - + -ê ú
ê ú+ + + - - - + -
ê ú
- - - + + + - +ê ú
ê ú+ - + + - + + +
ê ú
+ - + + - + + +ê ú
ê ú- + - - + - - -
ê ú
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Fig. 3: A set of 2D binary OCCs.

Fig. 4: Beam pattern for 16× 16 UPA with consecutive omnidirectional
transmission. (a) the first time slot, (b) the second time slot, (c) the third

time slot, (d) the fourth time slot, (e) sum power in 4 consecutive time slots.

and high SNR regimes, since the sum of the received signal

powers of 2 or 4 consecutive time slots in the consecutive

precoded STBCs is constant at any angle, rather than just at

finite discrete angles.

Finally, we evaluate the beam pattern of the proposed

omnidirectional STBC design based on 2D-OCCs. Here, we

consider that the BS is a UPA of M = 256 antennas in a

120◦ sector and Na = Ne = 16, where the antenna space is

da = de = λ/2.The channel model here refers to the model in

[16]. The 2D binary OCCs [5][15], which is shown in Fig. 3,

are used to obtain the proposed precoding matrix. Let x1 = 1,

x2 = j, x3 = (1 + j)/
√
2, and x4 = −1. Fig. 4(e) shows the

beam pattern of sum power in 4 consecutive time slots of one

QOSTBC of TBH scheme, while Figs. 4(a-d) represent beam

patterns of the first to the fourth time slots, respectively. It

can be seen that, the consecutive omnidirectional STBC based

on 2D-OCCs can realize omnidirectional transmission via a

complete STBC transmission.

VI. CONCLUSION

In this letter, consecutive omnidirectional QOSTBC designs

for ULA and UPA configuration are proposed to guarantee

omnidirectional transmission, i.e., the sum of T = 4 con-

secutive received signal power is constant at any angle, equal

instantaneous power on each transmit antenna, and achieve the

full diversity of the low-dimensional QOSTBCs. Compared

with the discrete omnidirectional precoding design, our pro-

posed omnidirectional QOSTBCs for a ULA configuration has

flatter BER performance for all angles of DoA. In addition, the

proposed omnidirectional QOSTBCs for a UPA configuration

can realize omnidirectional transmission in any azimuth and

elevation angles.

APPENDIX A

PROOF OF THEOREM 1

Let wn = (wn,m)1≤m≤M be the n-th column vector of

precoding matrix W, the Fourier transform of wn is

Wn(ω) =

M
∑

m=1

wn,me−j(m−1)ω. (18)

Thus, Wn(ω)W
∗
k (ω) can be written as

Wn(ω)W
∗

k (ω) =
M
∑

m=1

M
∑

l=1

wn,mw
∗

k,le
−j(m−l)ω

(a)
=

M−1
∑

a=0

M−a
∑

m=1

wn,mw
∗

k,m+ae
jaω+

−1
∑

a=1−M

M
∑

m=1−a

wn,mw
∗

k,m+ae
jaω

(b)
=

M−1
∑

a=1−M

Rwnwk
(a) ejaω

(19)

where (a) follows by letting a = l − m , and (b) is due to
the definition of AACF and ACCF in (15). Letting {w1,w2}
and {w3,w4} be mutually orthogonal complementary, with
the properties (14) of OCC, it is easy to know that

4
∑

n=1

|Wn(ω)|
2=

M−1
∑

a=1−M

4
∑

n=1

Rwn (a)e
jaω=

4
∑

n=1

Rwn(0),

2
∑

n=1

Wn(ω)W
∗

n+2(ω)=

M−1
∑

a=1−M

2
∑

n=1

Rwnwn+2
(a)ejaω = 0.

Therefore, (10) can be rewritten as
4
∑

t=1

|St(ω)|
2 = α

4
∑

n=1

Rwn (0) = α · tr
(

WW
H
)

= 4α (20)

which is constant for all θ ∈ (−π, π], and proves the theorem.
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