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Abstract—The probabilistic shaping scheme from Honda and
Yamamoto (2013) for polar codes is used to enable power-efficient
signaling for on-off keying (OOK). As OOK has a non-symmetric
optimal input distribution, shaping approaches that are based
on the concatenation of a distribution matcher followed by
systematic encoding do not result in optimal signaling. Instead,
these approaches represent a time sharing scheme where only
a fraction of the codeword symbols is shaped. The proposed
scheme uses a polar code for joint distribution matching and
forward error correction which enables asymptotically opti-
mal signaling. Numerical simulations show a gain of 1.8dB

compared to uniform transmission at a spectral efficiency of
0.25bits/channel use for a blocklength of 65,536bits.

Index Terms—Polar Code, On-Off Keying, Probabilistic Shap-
ing, Asymmetric Channel

I. INTRODUCTION

Power efficient signaling requires a non-uniform input

distribution for many channels. Combining the optimal in-

put distribution with forward error correction (FEC) is not

straightforward: conventional schemes (e.g., [1, Sec. 6.2],

[2]) place the shaping operation after FEC encoding so that

it needs to be reversed before (or performed jointly with)

the FEC decoding. This is prone to error propagation and

synchronization issues [3].

In [4], the authors build on the reverse concatenation

principle [5] (the shaping operation is performed before the

FEC encoding) and introduce the concept of sparse-dense

transmission. The term “sparse-dense” reflects the composition

of a FEC codeword with a sparse (ones and zeros are not

equally distributed) and dense part (zeros and ones are approx-

imately uniformly distributed). The sparse part is realized with

mapping techniques (e.g., look-up tables) and its distribution

is maintained by systematic encoding.

In general, any communication scheme using this approach

operates in a time sharing (TS) fashion as only a fraction of

the codeword symbols is shaped. The explicit integration of a

variable-to-fixed length distribution matcher (DM) in a sparse-

dense setup is done for the first time in [6, Sec. 7.3]. The

suboptimality of TS can be circumvented by the approach of

[6, Sec. 7.4] which uses a chaining construction to concatenate

subsequent FEC frames. However, this is of limited practical

use because of error propagation and increased latency. In [7],

the authors use sparse-dense transmission with a fixed-to-fixed

length constant composition distribution matching (CCDM)

and low-density parity-check (LDPC) codes for power efficient

signaling with on-off keying (OOK). Herein, gains of about

1 dB are observed for transmission at a spectral efficiency of

0.25bits/channel use (bpcu).
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Recently, probabilistic amplitude shaping (PAS) was pro-

posed [8], which exploits the symmetry of the optimal input

distribution for the additive white Gaussian noise (AWGN)

channel with a bipolar modulation format (e.g., ASK) such

that the suboptimality of a sparse-dense scheme can be circum-

vented. For sign-symmetric input distributions, e.g., Gaussian

or Gaussian like distributions, PAS factors the input distri-

bution into amplitude and sign parts that are stochastically

independent. Using systematic encoding, the non-uniform dis-

tribution on the amplitudes is preserved, while the parity bits

are mapped to the sign. In [9], syndrome shaping is introduced,

an architecture which extends PAS to arbitrary input distribu-

tions and codes with systematic encoding. However, current

implementations support matching rates close to one only.

Non-coherent modulation schemes such as OOK generally

do not have a symmetric input distribution such that PAS can

not be used and schemes like [7] still exhibit a gap to capacity.

In this work, we analyze a probabilistic shaping (PS) approach

for OOK that uses a method by Honda and Yamamoto [10],

[11] where polar codes [12], [13] perform joint distribution

matching and FEC. This idea was also applied in [14] with

the intention to avoid an additional DM [15] and to use a single

component for distribution matching and FEC. We apply this

principle to OOK and show gains of 1.8 dB over uniform

signaling at a spectral efficiency of 0.25 bpcu. The proposed

scheme outperforms sparse-dense signaling [7] with CCDM.

II. PRELIMINARIES

A. Notation

Random variables are denoted by uppercase letters, e.g., X ,

while realizations or deterministic variables are denoted by

lowercase letters, e.g., x. Vectors are denoted by a bold font,

e.g., x for deterministic vectors and X for random vectors.

Bold capital letters are also used for deterministic matrices.

We write x
j
i = [xi, . . . , xj ]. The notation H(X) denotes

the entropy of the random variable X in bits. Similarly,

H(X |Y ) is the conditional entropy of X given Y . The mutual

information (MI) of X and Y is denoted by I(X ;Y ).

B. System Model

Consider an AWGN channel

Y = aX +N (1)

where X ∈ {0, 1}, a, N , and Y denote the transmit signal,

symbol amplitude, additive white Gaussian noise, and received

signal respectively. With OOK modulation, X is distributed

according to

PX (1) = p, PX (0) = 1− p. (2)

http://arxiv.org/abs/1907.08468v1
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Fig. 1. Achievable rates for OOK with uniform and optimized input
distributions.

The additive noise is assumed to have zero mean and unit

variance. The signal-to-noise ratio (SNR) is γ = pa2 and an

achievable rate is I(X ;Y ). Fig. 1 depicts I(X ;Y ) versus the

SNR for two different choices of PX : the blue curve is for

uniform PX (i.e., p = 0.5) and the red curve is for a PX that

is optimized for each SNR, i.e.,

p∗(γ) = argmax
p

I(X ;Y ) s.t. pa2 = γ. (3)

There is a significant gain in power efficiency for non-uniform

input symbols, e.g., for a rate of 0.25bpcu the optimal input

distribution gains approximately 2 dB over uniform inputs.

C. Polar Codes

Polar codes [12], [13] are linear block codes with block

length N = 2n for n ∈ N and dimension K . The codeword

x ∈ F
N
2

is generated from the input u ∈ F
N
2

by using

x = uGn, with Gn = G⊗n
2

and G2 =

[

1 0
1 1

]

. (4)

G⊗n
2

denotes the n-th Kronecker power of G2. The codeword

is transmitted over a memoryless channel PY |X . The received

signals are collected in the vector y ∈ R
N . The bits of u

asymptotically polarize into two sets [13]:

I =
{

i ∈ {1, . . . , N} | H
(

Ui

∣

∣U i−1

1
,Y

)

≤ δ
}

(5)

F =
{

i ∈ {1, . . . , N} | H
(

Ui

∣

∣U i−1

1
,Y

)

≥ 1− δ
}

(6)

for δ > 0. For finite N we have a vanishing fraction of

bits with δ < H
(

Ui

∣

∣U i−1

1
,Y

)

< 1 − δ. With successive

cancellation (SC) decoding, bit i in u is reliable if i ∈ I.

Otherwise, the bit i is unreliable. The unreliable bits are

frozen, i.e., they are set to a fixed value that is known both

at the encoder and the decoder. The reliable bits are used for

information transmission.

Arıkan [13] showed that for a binary input discrete memo-

ryless channel (B-DMC), we asymptotically have

lim
N→∞

1

N
|I| = 1−H(X |Y ) (7)

lim
N→∞

1

N
|F| = H(X |Y ). (8)

For symmetric channels (i.e., H(Y |X) = H(Y |X = x), ∀x),

the capacity achieving distribution PX is uniform, and we have

I(X ;Y ) = H(X)−H(X |Y ) = 1−H(X |Y ). (9)

Thus polar codes achieve the symmetric capacity of B-DMCs.

III. POLAR CODES WITH NON-UNIFORMLY DISTRIBUTED

CODEWORDS

A. Polarization for Non-Uniformly Distributed Codewords

Suppose that we want to create a codeword x, where the

codeword symbols have a non-uniform distribution. Honda and

Yamamoto [10] showed that this is possible using a non-linear

coding scheme based on polar codes. With the constraint on

the distribution of the codewords, the bit positions in u do not

only polarize asymptotically into I and F , but also into

U =
{

i ∈ {1, . . . , N} | H
(

Ui

∣

∣U i−1

1

)

≥ 1− δ
}

(10)

D =
{

i ∈ {1, . . . , N} | H
(

Ui

∣

∣U i−1

1

)

≤ δ
}

. (11)

The i-th bit position of u can be used for uniform data if

i ∈ U . If, however, i ∈ D, then the value of ui is (almost)

deterministic given the previous values ui−1

1
. Thus the bit

positions i ∈ D can not be used for data transmission, but are

frozen to a value that depends (non-linearly) on the previous

input. We describe the encoding procedure in Sec. III-B.

In [10], it was additionally shown that

lim
N→∞

1

N
|U| = H(X), (12)

lim
N→∞

1

N
|D| = 1−H(X). (13)

Therefore, the fraction of bits that can be used for uniform

data is asymptotically H(X). Fig. 2 shows a graphical rep-

resentation of the input U . The fraction of bits that can

be transmitted reliably (i.e., where H
(

Ui

∣

∣U i−1

1
,Y

)

≈ 0) is

(asymptotically) 1−H(X |Y ) and the fraction of bits that can

be used for uniform data such that a shaped codeword can

be obtained is (asymptotically) H(X). Conditioning does not

increase entropy and thus H
(

Ui

∣

∣U i−1

1
,Y

)

≤ H
(

Ui

∣

∣U i−1

1

)

. It

follows that for a bit at position i with H
(

Ui

∣

∣U i−1

1
,Y

)

≈ 1,

we also have H
(

Ui

∣

∣U i−1

1

)

≈ 1, i.e., i ∈ F implies i ∈ U and

thus F ⊂ U .

A bit i in u can be used for information if it is reliable

(i.e., i ∈ I) and if uniform data is allowed at this position

(i.e., i ∈ U). The set of bits that can be used for information

transmission is thus U ∩ I = U \ F with

lim
N→∞

1

N
|U ∩ I| = H(X)−H(X |Y ) = I(X ;Y ) (14)

and the scheme can achieve capacity on asymmetric

B-DMCs [10].

In the procedure of encoding, decoding, and code construc-

tion we will handle three different types of bit positions in the

input u:

• If i ∈ U ∩I, bit position i will be used for uniform data.

• If i ∈ F , bit position i will be frozen to a value known

to the encoder and the decoder.

• If i ∈ D, bit position i will be set to a value depending

on the previous input ui−1

1
during encoding. The value

is not known to the decoder.
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Fig. 2. Graphical representation of the polarization of H
(

Ui

∣

∣

∣
U

i−1

1
,Y

)

and

H

(

Ui

∣

∣

∣
U

i−1

1

)

in u (ordered).

B. Encoding

The requirement on PX (x) induces a constraint on the joint

distribution PU (u). The task of the encoder is to generate a

u that contains data and fulfills this constraint. The codeword

x is generated from u as in (4). Honda and Yamamoto [10]

observed that PU (u) can be calculated efficiently using a po-

lar decoder. Using the chain rule, PU (u) can be decomposed

as

PU (u) =

N
∏

i=1

P
Ui |U i−1

1

(

ui

∣

∣ui−1

1

)

. (15)

When a SC polar decoder is initialized just with information

on the distribution of x, i.e., with a log-likelihood ratio (LLR)

L = log(PX (0)/PX (1)), it outputs for bit position i the

probability P
Ui |U i−1

1

(

ui

∣

∣ui−1

1

)

given a realization of ui−1

1
.

Honda and Yamamoto [10] thus proposed an encoding

scheme that successively encodes bit by bit as follows: If

i ∈ U ∩ I, then ui is used for (uniform) data. If i ∈ F , ui is

chosen from a uniform distribution and the value is assumed

to be known at the decoder as well (the value can be chosen

once and kept constant for every block). Otherwise (i.e., if

i ∈ D), ui is set according to

ui =

{

0 with probability P
Ui |U i−1

1

(

0
∣

∣ui−1

1

)

,

1 with probability P
Ui |U i−1

1

(

1
∣

∣ui−1

1

)

.
(16)

This method is called randomized rounding rule in [11].

A simplified approach is an encoding rule called the argmax

rule in [11]. Here, for the values of ui with i ∈ D, one chooses

ui =

{

0 if P
Ui |U i−1

1

(

0
∣

∣ui−1

1

)

≥ P
Ui |U i−1

1

(

1
∣

∣ui−1

1

)

,

1 else.
(17)

The randomized coding rule yields provable capacity

achieving results, whereas the argmax rule yields better finite

length results [11], [16] and does not need any randomness

for encoding or decoding.

C. List Encoding

During successive encoding a hard decision for the bits

ui with i ∈ D must be done using (16) or (17). This hard

decision may not be ideal especially for bit positions where

H
(

Ui

∣

∣U i−1

1

)

is not polarized perfectly. One could thus follow

the idea of [17] and use a successive cancellation list (SCL)

decoder for encoding that branches a list when a hard decision

is done. This idea was also applied in [14]. The list can

be pruned with the usual metric used for SCL decoding. At

the end, the SCL encoder outputs a list of valid codewords,

i.e., all codewords contain the encoded data. We choose the

codeword that has an empirical distribution closest to the target

distribution.

D. Decoding

The decoder estimates u from the noisy channel observa-

tions y. The estimates are stored in a vector û. Decoding is

performed with a SC or SCL decoder [17].

To show the capacity achieving property it is assumed in

[10] that the decoder has knowledge about the values of ui

with i ∈ D. This knowledge can be obtained by running a

SC decoder initialized with the LLR L = log(PX (0)/PX (1))
that mimics the encoder and successively calculates the prob-

abilities P
Ui |U i−1

1

(

ui

∣

∣ûi−1

1

)

(it is assumed that previous bits

have been decoded correctly, i.e., ûi−1

1
= ui−1

1
). The random

choices of (16) can be recovered by using a pseudo-random

number generator at the encoder and the decoder that is

initialized with the same seed.

Simplifications are possible: As H
(

Ui

∣

∣U i−1

1
,Y

)

≤
H
(

Ui

∣

∣U i−1

1

)

, it follows that if H
(

Ui

∣

∣U i−1

1

)

is close to zero

(i.e., if i ∈ D), then also H
(

Ui

∣

∣U i−1

1
,Y

)

is close to zero

(i.e., i ∈ I) and the bits at position i with i ∈ D can be

estimated reliably without running a second decoder. Thus, a

practical SC or SCL decoder implementation works as follows:

if i ∈ F , then ûi is set to the known frozen value. Otherwise

(i.e., if i ∈ U ∩ I or if i ∈ D), ûi is decoded regularly. This

idea is also used in [14], and it keeps the complexity at the

receiver almost identical to a receiver for uniformly distributed

codewords.

E. Code Construction

Code construction consists of finding the four sets I, F ,

U , and D. For finite length simulations, we slightly deviate

from the definitions in (5) and (10) and pursue the following

strategy: we choose the sets D and F . Then, U and I are

given by U = {1, . . . , N} \ D and I = {1, . . . , N} \ F ,

respectively. To choose D and F , we first estimate an ordering

of H
(

Ui

∣

∣U i−1

1

)

and H
(

Ui

∣

∣U i−1

1
,Y

)

, respectively. Second,

for a fixed transmission rate R, we find a tradeoff between

the size of D and F such that |D|+ |F| = N(1−R).
We use a Monte Carlo approach to estimate the ordering

of H
(

Ui

∣

∣U i−1

1

)

and H
(

Ui

∣

∣U i−1

1
,Y

)

as described in the

following. We remark that one can extend the Tal-Vardy

construction [18] by using the method of [19] to estimate

the entropy values with less computational effort. To estimate

H
(

Ui

∣

∣U i−1

1

)

with the Monte Carlo approach, a SC decoder is

initialized with the LLR log(PX (0)/PX (1)). When choosing

the inputs ui successively using the randomized rounding

rule, the SC decoder successively outputs P
Ui |U i−1

1

(

ui

∣

∣ui−1

1

)

.

Sampling over many frames, one can estimate H
(

Ui

∣

∣U i−1

1

)

.

Furthermore, a transmission over the channel with the ran-

domly generated data is simulated and a SC decoder is applied.

If the decoder produces a wrong decision for bit i, the error
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counter for this bit position is increased by one and the error

is corrected. After many trials, the error counter for each bit

position gives a reliability order for the bit positions and —

as the entropy H
(

Ui

∣

∣U i−1

1
,Y

)

is a monotone function of

the error rate of bit position i — an order for the entropies

H
(

Ui

∣

∣U i−1

1
,Y

)

.

We now choose the D bits with lowest H
(

Ui

∣

∣U i−1

1

)

to

form the set D and the N(1 − R) − D bits with highest

H
(

Ui

∣

∣U i−1

1
,Y

)

to form the set F . The optimal D can be

found by numerical simulations. Numerical results show that

one has to choose a D that is only slightly higher than the

asymptotic limit N(1−H(X)) for good results. Depending on

the choice of D, there is a slight mismatch between the target

distribution and the empirical distribution in x. This stems

from the finite length rate loss of the DM process, which is

discussed in Sec. IV-A.

IV. NUMERICAL RESULTS

A. Finite Length Rate Loss Evaluation

The rate loss [8, Sec. V-B] is an important metric to analyze

the finite length performance of a DM scheme. Assume an

output blocklength of N bits. The rate loss is then defined as

Rloss = H(X)−
|U|

N
(18)

for the polar DM. For the CCDM, we have

Rloss = H(X)−

⌊

log
2

(

N

PX(0) ·N

)⌋

/N. (19)

We numerically characterize Rloss for different DM archi-

tectures in Fig. 3. For this, we fix a desired DM rate of

0.5 bits/output symbol and evaluate (18) for different block-

lengths N . We observe that CCDM is superior to the polar

DM for all considered lengths. Its superior performance for

long blocklengths is to be expected from previous results [20],

which showed the optimality of CCDM for fixed-to-fixed

matching and N → ∞. We remark that the polar DM rate

loss can be decreased if the list encoding of Sec. III-C is

used, see Fig. 3.

B. Coded Results

We evaluate the performance of the presented transmission

scheme. For fixed D we estimate the empirical codeword

distribution and scale the amplitude a so that we transmit at

the target SNR, i.e., we choose a such that

1

N

N
∑

i=1

(aE[Xi])
2 = γ. (20)

Fig. 4 shows a numerical example for N = 65,536 and

transmission rate R = 0.25. At this rate gains up to 2 dB can

be expected from Fig. 1. With SC decoding, the shaped polar

code ( ) gains about 1.8 dB at a frame error rate (FER)

of 10−3 compared to the polar code with uniform codewords

( ). With SCL encoding and decoding (both with list size

32) and an outer CRC, the shaped polar code ( ) gains

around 1.8 dB compared to the uniform reference ( ). The

performance of the polar code at this blocklength is limited by

102 103 104 105
10−3

10−2

10−1

N

R
a
te

L
o
ss

Polar SC

Polar SCL, L = 32

CCDM

Fig. 3. Rate loss comparisons for different DM architectures. The DMs have
a binary output alphabet and a matching rate of 0.5 bits/output symbol.

the relatively small list size. Increasing the list size can further

improve the performance, e.g., when choosing L = 256 ( )

the performance improves by 0.2 dB compared to L = 32. We

also include the performance of LDPC codes with blocklength

64,800 bits using the time-sharing based PS scheme from [7].

The LDPC code with uniform signaling ( ) is taken from

the DVB-S2 standard [21]. The difference between the TS1

( ) and TS2 ( ) code is that TS2 uses different signaling

amplitudes on the systematic and parity parts. Both codes

have been optimized individually for the respective scenario.

A CCDM [15] is used in both cases as a DM.

In Fig. 5, we depict the performance for a scenario with

R = 2/3, where gains up to 0.9 dB can be expected. The

polar codes ( : shaped, : uniform) have a blocklength

of 1024 bits, while the reference LDPC codes from the Wimax

standard [22] have a blocklength of 1056 bits and code rates

of 2/3 ( : uniform) and 3/4 ( : shaped). We depict a

curve for TS1 only as it turns out (both by achievable rate

analysis and finite length simulations) that the gain of TS2

over TS1 vanishes with increasing rate [7]. As expected from

previous works [23], polar codes with SCL show an excellent

performance for short to medium blocks. In all LDPC cases,

two hundred belief propagation iterations are performed. We

also include two finite length random coding union (RCU)

bounds based on saddlepoint approximations of the RCU

bound [24]. At a FER of 10−3, we operate within 0.6 dB of

these bounds.

V. CONCLUSION

We applied the shaping scheme by Honda and Yamamoto

for polar codes [10] to OOK transmission. Compared to

previous approaches, the proposed scheme is asymptotically

optimal and shows superior performance for finite length.

Especially for low transmission rates, the performance is

substantially better than a TS based LDPC implementation.

Future work may also compare shaped OOK to pulse position

modulation based schemes such as [25] with a multilevel

coding/multistage decoding architecture.
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Fig. 4. Comparison of shaped and uniform polar and LDPC codes for
N = 65,536 bits and transmission rate R = 0.25 bpcu. The polar codes
with SCL decoding are combined with an outer CRC of length 32 bits. They
were designed at a SNR of −1.25 dB. For the curve with SC encoding
and SCL decoding (list size L = 32, ) we chose D = 25,500 and
performed encoding using the argmax rule. For the curve with SCL encoding
and decoding (both list size L = 32, ) we used D = 25,000. The
performance can be enhanced further by increasing the list size, e.g., to
L = 256 for encoding and decoding ( ).
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