
362 IEEE COMMUNICATIONS LETTERS, VOL. 24, NO. 2, FEBRUARY 2020

Coded Decentralized Learning With Gradient Descent for Big Data Analytics

Jing Yue , Member, IEEE, and Ming Xiao , Senior Member, IEEE

Abstract— Machine learning is an effective technique for big
data analytics. We focus on the study of big data analytics
with decentralized learning in large-scale networks. Fountain
codes are applied to the decentralized learning process to
reduce communication load for exchanging intermediate learning
parameters among fog nodes. Two scenarios, i.e., disjoint datasets
and overlapping datasets, are analyzed. Comparison results show
that communication load can be reduced significantly by the
Fountain-based scheme for large-scale networks, especially when
the quality of communication links is relatively bad and/or the
number of fog nodes is large.

Index Terms— Big data, decentralized learning, gradient
descent, Fountain codes, communication load.

I. INTRODUCTION

THE volume of data increases explosively with the rapid
development of social media and Internet of Things

(IoTs). Big data gathered by different devices from various
sources is stored in a distributed manner. To extract useful
information or insights from big data for data-driven decision
making, strong processing resources are required. Cloud is
able to provide sufficient resources for big data analysis.
However, transferring a large amount of distributed stored
data to a remote cloud is infeasible due to time or bandwidth
limitations [1]. Having data processing close to the sources
or devices is the key to overcome these limitations. Thus,
distributed machine learning [2] with fog computing [3] is a
potential solution for big data analytics.

Coding has been applied to distributed fog computing and
machine learning for dealing with the problem of stragglers [4]
and reducing the usage of computation and communication
resources [5]. For coded distributed machine learning [2],
matrix multiplication [6], [7] and gradient descent [8], [9]
have attracted considerable attention.

In most of the previous works for distributed machine
learning, codes with maximum distance separable (MDS)
properties are used [1]. For example, MDS codes were utilized
in [2], [10] to speed-up distributed matrix multiplication and
data shuffling. In [11] and [12], MDS codes were used to

Manuscript received June 14, 2019; accepted July 14, 2019. Date of
publication July 23, 2019; date of current version February 11, 2020. The work
of Jing Yue was supported by Swedish Strategic Research Foundation (SSF)
project “Cyber Security for Next Generation Factory” (SSF grant RIT17-
0032). The work of Ming Xiao is supported in part by SSF project “High-
reliable Low-latency Industrial Wireless Communications” and in part by
EU Marie Sklodowska-Curie Actions project “High-reliability Low-latency
Communications with network coding”, and ERA-NET, “SMART-MLA”. The
associate editor coordinating the review of this letter and approving it for
publication was S. Yu. (Corresponding author: Jing Yue.)

J. Yue is with the Reliable Wireless Lab, RISE Research Institutes of
Sweden, 22370 Lund, Sweden (e-mail: jing.yue@ri.se).

M. Xiao is with the Division of ISE, School of EECS, KTH Royal Institute
of Technology, 11428 Stockholm, Sweden (e-mail: mingx@kth.se).

Digital Object Identifier 10.1109/LCOMM.2019.2930513

mitigate the effect of stragglers in distributed gradient descent.
In [6], scheme based on Reed-Solomon (RS) codes was pro-
posed to minimum the recovery threshold while allowing
efficient decoding using polynomial interpolation.

However, in a large-scale network with thousands of nodes,
these MDS-based codes become impractical [1], [7] because
of high computation and communication costs associated with
encoding and decoding [13]. In addition, most of the previous
works consider the master-worker pattern. A master assigns
computation or learning tasks to workers. Workers complete
tasks on a subset of data and return intermediate results to
the master for aggregation. In general, it is assumed that
the entire data is available for processing at the time of
training, etc. Big data breaks these ideal assumptions and leads
to the cluster pattern, e.g., master-work pattern, in which a
centralized master control task assign, impractical. Big data
analytics in decentralized manner is in urgent needed.

We focus on the study of decentralized learning with
gradient descent in large-scale networks. It has been proved
in [14] that Fountain-based scheme for distributed computing
is one of the optimal choices for the applications with high
reliability and low latency requirements. Fountain codes [15]
are capable of recovering the original information from any
subset of output symbols with a size slightly larger than the
original information. In addition, Fountain codes are of high
coding flexibility and low complexity.

High communication load is the bottleneck of decentralized
processing for big data analytics. Therefore, we consider
applying Fountain codes to the decentralized learning process
to reduce communication load. Our main contributions are
listed as follows,

• A novel coded decentralized scheme based on Fountain
codes is proposed to reduce the communication load for
exchanging intermediate leaning parameters among fog
nodes during the learning process.

• Two situations, i.e., disjoint datasets and overlapping
datasets, are studied. The decoding process of the
Fountain-based scheme is analyzed for the two situations.

• Finally, comparison results are given to show that com-
munication load can be reduced significantly by using the
Fountain-based scheme through proper code design.

To the best of our knowledge, we are the first to use Fountain
codes for the design of coded decentralized learning and
also the first to analyze the Fountain-based scheme for the
situations with disjoint datasets and overlapping datasets.

II. SYSTEM MODEL

We consider a network with F fog nodes and S storage
units, as shown in Fig. 1. The fog nodes, which could be

1558-2558 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on October 28,2020 at 20:41:08 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7423-7196
https://orcid.org/0000-0002-5407-0835

YUE AND XIAO: CODED DECENTRALIZED LEARNING WITH GRADIENT DESCENT FOR BIG DATA ANALYTICS 363

Fig. 1. Distributed fog nodes and their available storage units.

mobile devices or edge servers, etc., are with limited com-
putation and/or storage capacity. Let FNf represent the f th
fog node and SUs be the sth storage unit, f ∈ {1, 2, . . . , F}
and s ∈ {1, 2, . . . , S}. The fog nodes are scattered over a
wide area. The storage units are in geo-separated locations.
In Fig. 1, we use cubes with different shapes to represent the
variety of data stored in different storage units.

If a fog node is able to access to a storage unit, the storage
unit is said to be available for the fog node. The storage units,
which are located in a spherical space with fog node FNf

as the center and radius of Rf , are all available to FNf .
That is, FNf is able to access to and process the data in
the storage units located in its spherical space. This spherical
space is named the available space of FNf . Let Df be the
dataset that FNf will process for completing a computation or
learning task. The data in dataset Df is stored in the storage
units located in FNf available space. The size of Df is |Df |.
Each fog node processes the data in its dataset and exchanges
intermediate results with other fog nodes to complete common
computation or learning tasks.

There are two possible scenarios, i.e., disjoint datasets and
overlapping datasets. Let γa,b represent the ratio of overlap-
ping data in storage unit SUa with SUb, (0 ≤ γa,b ≤ 1). The
parameter γa,b is proportional to the number of overlapping
data in SUa and SUb. γa,b = 0, (∀a, b ∈ {1, 2, . . . , S}, a �=
b), corresponds to the scenario of disjoint, and γa,b > 0
corresponds to overlapping. Fog nodes, which access to the
storage units with overlapping data, have overlapping datasets.
The overlapping parameters of these datasets can be obtained
according to the storage units which the fog nodes access to
for forming their datasets.

III. FOUNTAIN-BASED DECENTRALIZED

GRADIENT DESCENT

In this section, a brief introduction of the distributed gra-
dient descent algorithm is given. Then, decentralized learning
with gradient descent based on Fountain codes is proposed.

A. Distributed Gradient Descent

Consider a scenario, where we want to learn model para-
meters β = (β1, β2, . . . , βW) by minimizing a generic loss
function L(D; β) =

�N
i=1 �(xi, yi; β) over a given dataset

D = {(xi, yi)|i ∈ {1, 2, . . . , N}}. The model parameters

β are obtained through multiple iterations of operations.
For distributed gradient descent, in the tth iteration, workers
calculate gradients on their own datasets and send the inter-
mediate gradients to the master. The full gradient ∇L(t) =�F

f=1

�
(x,y)∈Df

∇�(x, y; β(t−1)) is aggregated at the master.
After that, the master updates parameters through β(t) =
h(β(t−1),∇L(t)) and sends the updated parameters β(t) to
workers for the calculation of gradients in the t+1th iteration.
h(·) is a gradient-based optimizer [16].

B. Decentralized Learning With Gradient Descent

For decentralized learning with gradient descent, three
phases, i.e., computation, exchanging and decoding phases,
are carried out in each iteration. We take the tth iteration as
an example to illustrate the decentralized learning process.

1) Computation Phase: Each fog node updates its model
parameters and calculates the gradients through training its
dataset. At fog node FNf , the intermediate gradients and
model parameters after training all the data in Df can
be written as gf = (gf,1, gf,2, . . . , gf,|Df |) and βf =
(βf,1, βf,2, . . . , βf,Wf

), respectively. gf,a = ∇�(xa, ya; βf),
(xa, ya) ∈ Df , a ∈ {1, 2, . . . , |Df |}. Wf represents the length
of model parameter learned at fog node FNf .

Then, encoding operations are performed on gf and βf ,
respectively. The encoding process for gf is as follows:

• A number dg is selected according to degree distribution
Ω(x) =

�|Df |
dg=1 Ωdgxdg with probability Ωdg .

• Then, dg intermediate gradients are selected uniformly
at random from gf to perform combination to form one
coded intermediate gradient.

• The above two steps repeated until Qg
f = (1 + ηf)|Df |

coded intermediate gradients are formed. The formed
coded intermediate gradients cg

f can be written as

cg
f = (gf,1, gf,2, . . . , gf,|Df |)G

g
f = gfG

g
f , (1)

where Gg
f is the generator matrix at fog node FNf with

size |Df |×Qg
f . 1+ηf represents the expanding coefficient

of the Fountain codes used, 1 + ηf =
Qg

f

|Df | and ηf ≥ 0.

The encoding process for βf is the same as that for gf .
The only difference is that encoding operations are performed
according to degree distribution μ(x) =

�Wf

dw=1 μdwxdw .
The formed Qw

f = (1 + ηf)Wf coded intermediate model
parameters can be written as cw

f = βfGw
f . Gw

f is the generator
matrix at FNf with size Wf × Qw

f .
2) Exchanging Phase: The coded intermediate parameters

cg
f and cw

f (f ∈ {1, 2, . . . , N}) are exchanged among fog
nodes. Let M be the total number of all different data in
F datasets, and M ≤ �F

f=1 |Df |. M =
�F

f=1 |Df | if F

datasets are disjoint, and M <
�F

f=1 |Df | if these datasets
are overlapping.

3) Decoding Phase: The generator matrices correspond
to the received coded intermediate gradients and model
parameters from fog node FNi (i ∈ {1, 2, . . . , F} \ {f})
at FNf are G̃g

i,f with size |Di| × Qg
i,f and G̃w

i,f with
size Wi × Qw

i,f , respectively, where Qg
i,f = (1 − �i,f)Qg

i

and Qw
i,f = (1 − �i,f)Qw

i . �i,f is the probability of data

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on October 28,2020 at 20:41:08 UTC from IEEE Xplore. Restrictions apply.

364 IEEE COMMUNICATIONS LETTERS, VOL. 24, NO. 2, FEBRUARY 2020

loss from FNi to FNf due to channel erasure, decoding
failure, etc. The generator matrices correspond to the received
coded intermediate gradients and model parameters from
the F − 1 fog nodes at FNf can be written as G̃g

f =
[11G̃

g
1,f , . . . , 1f−1G̃

g
f−1,f , 1f+1G̃

g
f+1,f , . . . , 1F G̃g

F,f] and
G̃w

f = [11G̃w
1,f , . . . , 1f−1G̃w

f−1,f , 1f+1G̃w
f+1,f , . . . , 1F G̃w

F,f],
respectively. � = (11, . . . , 1f , . . . , 1F) is an indicator
parameter. Let λ be the probability of a straggler node.
Then, the f th element of the indicator parameter, 1f

(f ∈ {1, 2, . . . , F}), can be written as

1f =

�
1, with probability 1 − λ,

0, with probability λ.
(2)

The matrices G̃g
f and G̃w

f are respectively with size�
i∈{1,2,...,F}\{f} |Di| × �

i∈{1,2,...,F}\{f} 1fQg
i,f and�

i∈{1,2,...,F}\{f} Wi ×
�

i∈{1,2,...,F}\{f} 1fQw
i,f .

Fog node FNf decodes its received coded intermediate
parameters through G̃g

i,f and G̃w
i,f , (i ∈ {1, 2, . . . , F} \

{f}), and recoveries N − |Df | new gradients and
Γw

�
i∈{1,2,...,F}\{f} Wi model parameters corresponding to

these intermediate gradients. Here Γw is a threshold and
could be set to different values in [0, 1] for different learning
algorithms1. The decoding process is essentially a linear
calculation process for finding the solution of polynomials.

IV. ANALYSIS OF THE DECODING PROCESS OF THE

FOUNTAIN-BASED SCHEME

In this section, the decoding processes for the scenarios
with disjoint datasets and overlapping datasets are analyzed
separately. The effect of coding and network parameters on
the computation and communication loads is also analyzed.

A. For Disjoint Datasets

For the scenario with disjoint datasets, the possible number
of new intermediate gradients that can be recovered at fog
node FNf is in the range of [0, M − |Df |]. To decode
A = N − |Df | new intermediate gradients from the received
coded data, the rank of the generator matrix G̃g

f , denoted by
rk(G̃g

f), must be equal to or larger than A, i.e., rk(G̃g
f) ≥ A.

Since the datasets for different fog nodes are disjoint, we have
rk(G̃g

f) =
�

i∈{1,2,...,F}\{f} 1irk(G̃g
i,f).

The probability that rk(G̃g
i,f) = ki, ki ∈

{0, 1, . . . , min{|Di|, Qg
i,f}}, can be calculated using

the method given in [17]. It can be written as
Pr(rk(G̃g

i,f) = ki) =
�Qg

i
j=1

�
Qg

i
j

�
(1− �i,f)j(�i,f)Qg

i −jζ
j,|Di|
ki

,

where ζ
j,|Di|
ki

can be calculated by

ζ
j,|Di|
ki

=
ξj
ki

ξ
|Di|
ki

ξki

ki
q(j−ki)(|Di|−ki)

, (3)

where ξn
m can be written as

ξn
m =

��m+1
a=0 (1 − q−(n−a)), if m > 0,

1, if m = 0.
(4)

1As far as we known, it is still an open problem for the setting of optimal
values Γw for different learning algorithms considering different factors. As it
is beyond the scope of this article, this problem will be studied in depth in
our future works.

Let Pr

��
i∈{1,2,...,F}\{f} 1iki ≥ A

�
be the probability

that at least A new intermediate gradients can be recovered
at fog node FNf . Since the datasets are disjoint, we have

Pr

��
i∈{1,2,...,F}\{f} 1iki

�
=
�

i∈{1,2,...,F}\{f} 1iPr(ki).
As N ≤ M , there are two possible situations, i.e., N = M

and N < M .
1) For N = M : If N = M , the probability

Pr

��
i∈{1,2,...,F}\{f} 1iki > A

�
= 0. For updating parame-

ters βf at FNf , each generator matrix G̃g
i,f must be full rank

and no straggler occurs, i.e., ki = |Di| (i ∈ {1, 2, . . . , F} \
{f}) and λ = 0, and the probability Pr

�
rk(G̃w

i,f) ≥ ΓwWi

�
for each ki > 0 should be bigger than a threshold, say
Γ. The threshold Γ can be set to different values according
to the various requirements in different applications and the
corresponding learning algorithm used.

The probability that all the generator matrices
at FNf , i.e., G̃g

i,f , are full rank with λ = 0

can be written as Pr

��
i∈{1,2,...,F}\{f} ki = A

�
=�

i∈{1,2,...,F}\{f} Pr(rk(G̃g
i,f) = |Di|). The probability

Pr

�
rk(G̃w

i,f) ≥ ΓwWi

�
can be obtained by calculating�Wi

k′
i=ΓwWi

Pr

�
rk(G̃w

i,f) = k�
i

�
.

2) For N < M : We use αiA to represent ki, i.e., ki =
αiA. All F − 1 elements form set Φ = {α1, α2, . . . , αF } \
{αf}. Then we have Pr

��
i∈{1,2,...,F}\{f} 1iki ≥ A

�
= 1−

Pr

��
αi∈Φ 1iαi < 1

�
, where Pr

��
αi∈Φ 1iαi < 1

�
can be

calculated by

Pr

	

αi∈Φ

1iαi < 1

�
=

�
1, λ = 1,�

ατ

�F−1
j=1 Pr(ατj), λ < 1,

(5)

where ατ is set formed by all possible values of ατ and ατ =�
ατ | arg{�j∈{1,2,...,(1−λ)(F−1)}ατj < 1}, ατj ∈

0,

|Dτj
|

A

��
.

ατj is the τj th element in set Φ. The probability Pr(ατj) can
be calculated by Pr(ατj) = Pr(rk(G̃g

τj ,f) = ατj A).

The range of αi is

0,

min{|Di|,Qg
i,f}

A

�
,

i.e.,

0,

|Di|·min{1,(1−�i,f)(1+ηi)}
A

�
. Thus, we obtain the value

range of
�

αi∈Φ αi as

0,
�

αi∈Φ(|Di|·min{1,(1−�i,f)(1+ηi)})
A

�
.

If (1−�i,f)(1+ηi) ≥ 1, then we have the upper bound of the

value range as
�

αi∈Φ |Di|
A > 1 since M > N . The value range

[0, 1) is a subarea of the whole value range of
�

αi∈Φ αi.
The value of

�
ατ

�F−1
j=1 Pr(ατj) is determined by the size of

datasets of the other fog nodes. A larger size of datasets means
smaller value of

�
ατ

�F−1
j=1 Pr(ατj) and higher probability

of success update model parameters βf at fog node FNf .
However, the data size cannot be infinitely large. Larger
dataset size corresponds to possible higher computation load
at each fog node. Here, communication load is defined as the
total number of fog nodes computing one common task.

If (1− �i,f)(1+ ηi) < 1, then the upper bound of the value

range can be written as
�

αi∈Φ |Di|(1−�i,f)(1+ηi)

A . If we keep
the other parameters, e.g., |Di| and �i,f , unchanged, the whole
value range of

�
αi∈Φ αi extends with increasing ηi. There-

fore, with increasing ηi, the subarea [0, 1) becomes relatively

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on October 28,2020 at 20:41:08 UTC from IEEE Xplore. Restrictions apply.

YUE AND XIAO: CODED DECENTRALIZED LEARNING WITH GRADIENT DESCENT FOR BIG DATA ANALYTICS 365

smaller, and the value of
�
�

i∈{1,2,...,F−1} ai<1

�
j Pr(αi =

ai) becomes smaller as well. The probability of success update
model parameters βf at fog node FNf becomes higher.
Therefore, larger ηi means a higher probability of success
update model parameters βf . However, ηi cannot be infinite
large. Larger ηi corresponds to higher communication load
for exchanging intermediate parameters among fog nodes.
For success update model parameters βf , we have to choose
the coding parameter ηi carefully to ensure

�
αi∈Φ |Di|(1 −

�i,f)(1 + ηi) > A.
At each fog node, before decoding its received coded para-

meters, the probabilities Pr

��
i∈{1,2,...,F}\{f} 1iki ≥ A

�
and

Pr

�
rk(G̃w

i,f) ≥ ΓwWi

�
for each ki > 0 should be compared

with threshold Γ. If these probabilities are higher than Γ,
decoding starts on the received coded parameters.

B. For Overlapping Datasets

As defined in Section II, γa,b is the ratio of overlapping
data in storage unit SUa with that in SUb. For simplification,
we assume that each storage unit corresponds to one fog node.
Then, the overlapping parameters for the datasets of the F fog
nodes can be written out in matrix form as follows,

γ =

⎡
⎢⎢⎢⎣

1 γ1,2 . . . γ1,F

γ2,1 1 . . . γ2,F

...
...

. . .
...

γF,1 γF,2 . . . 1

⎤
⎥⎥⎥⎦ , (6)

where γa,b �= γb,a (a �= b, ∀a, b ∈ {1, 2, . . . , F}).
At FNf , |Df | intermediate gradients are known. Thus A =

N−|Df | new intermediate gradients are required for updating
model parameters βf .

Theorem 1: The total number of new intermediate gradients
received from the other fog nodes at FNf can be calculated
by Δ =

�F−1
πi,i=1 1πi · ((1 − γπi,f)ϕ(i, f)) · |Dπi |, where the

parameter ϕ(i, f) can be written as

ϕ(i, f) =

�
1, if i = 1,�i−1

a=1(1 − γπi,πi−πa|Θa,f
), if 2 ≤ i ≤ F − 1,

where Θa,f is a set formed by the indices of fog nodes, and
it can be written as

Θa,f =

�
{f}, if a = 1,

{f, π1, . . . , πa−1}, if a > 1.

Proof: Let ri be the parameter for calculating the num-
ber of new intermediate gradients from fog node FNi at
FNf , where i ∈ {1, 2, . . . , F} \ {f}, and we have r =
(r1, . . . , rf−1, rf+1, . . . , rF). The total number of new inter-
mediate gradients at FNf can be written as

Δ = �� r � [|D1|, |D2|, . . . , |DF |]
=

i∈{1,2,...,F}\{f}

1iri|Di|. (7)

Next, we will calculate ri. The number of received coded
intermediate gradient from FNi at FNf is Qg

i,f , where
Qg

i,f = (1 − �i,f)Qg
i = (1 − �i,f)(1 + ηi)|Di|. Thus, we have

|Di| =
Qg

i,f

(1−�i,f)(1+ηi)
. We calculate the new intermediate

gradient from the other fog nodes in order π. Here π =
(π1, π2, . . . , πF−1) is an order of the other F − 1 fog nodes,
πi ∈ {1, 2, . . . , F −1}\{f}. The number of new intermediate

gradients from FNπ1 at FNf is (1 − γπ1,f)
Qg

π1,f

(1−�π1,f)(1+ηπ1) .

Thus, the parameter rπ1 = 1−γπ1,f

(1−�π1,f)(1+ηπ1) . Ticking out the
new intermediate gradients contributed by FNπ1 , the num-
ber of new intermediate gradients from FNπ2 at FNf is

(1− γπ2,π1|f)(1− γπ2,f)
Qg

π2,f

(1−�π2,f)(1+ηπ2) , and we have rπ2 =
(1−γπ2,π1|f)(1−γπ2,f)

(1−�π2,f)(1+ηπ2) . γπ2,π1|f represents the overlapping ratio
of the dataset Dπ2 with dataset Dπ1 after ticking out their
common data with dataset Df .

By the same method, we have

rπi =
ωπi,f

(1 − �πi,f)(1 + ηπi)
, (8)

where ωπi,f = (1 − γπi,πi−1|f,π1,...,πi−2)(1 −
γπi,πi−2|f,π1,...,πi−3) · · · · · (1 − γπi,π1|f)(1 − γπi,f).
Thus, the total number of new intermediate gradients from
other fog nodes at fog node FNf can be rewritten as
Δ =

�F−1
πi,i=1 1πi · ((1 − γπi,f)ϕ(i, f)) · |Dπi |.

If the parameters γi,i−1|f,1,...,i−2, γi,i−2|f,1,...,i−3, . . ., γi,f

are known at each fog node, the parameter Δ can be cal-
culated. The computation and communication loads can be
controlled relatively small through properly task assignment.
If these parameters are unknown at fog nodes, the computation
and communication loads may increase.

V. COMPARISON AND DISCUSSION

In what follows, we shall compare the communication load
by using the Fountain-based coded scheme with the uncoded
scheme for decentralized learning. Communication load is
defined as the ratio of the total number of data transmitted
by all the fog nodes to the data required at these fog nodes.
Here “data required at these fog nodes” means the total number
of new intermediate parameters required at all the fog nodes.
Uncoded scheme means that no coding operation is performed
on the intermediate parameters at each fog node.

The communication load for the uncoded and the
Fountain-based coded schemes can be calculated respectively
by

Buncoded =
1

1 − λ

F

f=1

1i
|Df |lg + Wf lw�

i∈{1,2,...,F}\{f}(1 − �i,f)
, (9)

Bcoded = ρλ,γ

F

f=1

1i(1 + ηf)(|Df |lg + Wf lw), (10)

where lg and lw represent the length of one intermediate
gradient and one model parameter, respectively. The parameter
ρ(λ, γ) can be written as

ρλ,γ =

⎧⎨
⎩

1
1 − λ

, if γ is unknown or ∀γa,b < κ,

1, if γ is known and ∀γa,b ≥ κ,
(11)

where ∀γa,b represents the overlapping parameter of datasets
of two arbitrary fog nodes FNa and FNb, (a, b ∈

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on October 28,2020 at 20:41:08 UTC from IEEE Xplore. Restrictions apply.

366 IEEE COMMUNICATIONS LETTERS, VOL. 24, NO. 2, FEBRUARY 2020

Fig. 2. An example of the comparison of communication load reduction by
the Fountain-based coded scheme.

{1, 2, . . . , F}). κ is a threshold for the parameter ∀γa,b
2. When

∀γa,b is known and large enough, there would be enough
redundancy of coded data to overcome stragglers by using
the coded scheme and thus we have ρλ,γ = 1.

We assume that the coding parameter ηf = η and 1 + η =
(1 + ηr)(1 + ηc). Here 1 + ηc is the expanding coefficient for
covering all original information for encoding, and 1 + ηr is
the expanding coefficient confronting data loss. The parameter
1 + ηr = 1

1−�w
, where �w = max{�i,f |i ∈ {1, 2, . . . , F} \

{f}}. Assume that the data loss parameter �i,f = � (i ∈
{1, 2, . . . , F} \ {f}). The ratio of Bcoded and Buncoded can
be written as

Bcoded

Buncoded
= ρλ,γ(1 − λ)(1 + ηc)(1 − �)F−2. (12)

The parameter � represents the probability of data loss due
to channel erasure, channel decoding failure, etc. A smaller
value of � means more reliable environments. The parameter
ηc is determined by the code design. For MDS codes, ηc could
be as small as 0. However, it is impractical to construct MDS
codes for large-scale networks with thousands of nodes. For
Fountain codes, ηc is determined by the degree distributions
used for encoding. By properly design the degree distributions,
the original information could be covered with 1 + ηc only
slightly larger than 1. The overhead of Fountain codes could
be relatively small through properly design.

When λ = 0, � = 0, there is no straggling node and data
loss. Since ηc > 0, the coding operations create redundancy
data at fog nodes, the uncoded scheme requires lower commu-
nication load for exchanging intermediate parameters. When
0 < λ < 1 or/and 0 < � < 1, compared with the uncoded
scheme, the coded scheme can reduce the communication load
at 1 − ρλ,γ(1 − λ)(1 + ηc)(1 − �)F−2 scale if 1 + ηc <

1
ρλ,γ (1−λ)(1−�)F−2 .

Fig. 2 shows the minimum communication load reduction
by using the Fountain-based coded scheme when ρλ,γ = 1

1−λ .
Note that η = 0, i.e., 1 + η = 1.0, corresponds to the
performance achieved by the MDS-based scheme with ideal
quality of communication links. If the environment is relatively
reliable and the number of fog nodes F is relatively small, e.g.,
� = 10−4 and F = 1000, only limited communication load

2So far as we know, the setting of optimal threshold κ is still an open
problem. This problem will be studied in depth in our future works.

reduction can be achieved. When the environment becomes
less reliable or F becomes larger, e.g., � = 10−3 or F ≥ 5000,
significant communication load reduction can be achieved by
the coded scheme through properly code design.

VI. CONCLUSION

We studied decentralized learning with gradient descent
for big data analytics in large-scale networks. A Fountain-
based coded scheme was proposed to reduce communication
load for exchanging intermediate learning parameters. The
decoding process was analyzed for the scenarios with disjoint
datasets and overlapping datasets. Comparison results shown
that significant communication load reduction can be achieved
by the Fountain-based scheme through proper code design.

ACKNOWLEDGMENT

The authors would like to thank Dr. Urban Bilstrup, Man-
ager of Reliable Wireless Lab at RISE, Sweden, for his
valuable suggestions and great assistance to this work.

REFERENCES

[1] A. L’Heureux, K. Grolinger, H. F. Elyamany, and M. Capretz, “Machine
learning with big data: Challenges and approaches,” IEEE Access, vol. 5,
pp. 7776–7797, 2017.

[2] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans.
Inf. Theory, vol. 64, no. 3, pp. 1514–1529, Mar. 2018.

[3] Fog Computing and the Internet of Things: Extend the Cloud to Where
the Things are White Paper, Cisco, San Jose, CA, USA, pp. 1–6, 2015.

[4] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental
tradeoff between computation and communication in distributed comput-
ing,” IEEE Trans. Inf. Theory, vol. 64, no. 1, pp. 109–128, Jan. 2018.

[5] J. Yue, M. Xiao, and Z. Pang, “Distributed fog computing based on
batched sparse codes for industrial control,” IEEE Trans. Ind. Informat.,
vol. 14, no. 10, pp. 4683–4691, Oct. 2018.

[6] Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes: An opti-
mal design for high-dimensional coded matrix multiplication,” in Proc.
Adv. Neural Inf. Process. Syst., 2017, pp. 4403–4413.

[7] T. Baharav, K. Lee, O. Ocal, and K. Ramchandran, “Straggler-proofing
massive-scale distributed matrix multiplication with D-dimensional
product codes,” in Proc. IEEE ISIT, Vail, CO, USA, Jun. 2018,
pp. 1993–1997.

[8] Z. Charles and D. Papailiopoulos, “Gradient coding using the stochas-
tic block model,” in Proc. IEEE ISIT, Vail, CO, USA, Jun. 2018,
pp. 1998–2002.

[9] W. Halbawi, N. Azizan, F. Salehi, and B. Hassibi, “Improving distributed
gradient descent using Reed–Solomon codes,” in Proc. IEEE ISIT, Vail,
CO, USA, Jun. 2018, pp. 2027–2031.

[10] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” in Proc. ISIT,
Barcelona, Spain, Jul. 2016, pp. 1143–1147.

[11] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
coding,” Dec. 2016, arXiv:1612.03301. [Online]. Available: https://arxiv.
org/abs/1612.03301

[12] N. Raviv, I. Tamo, R. Tandon, and A. G. Dimakis, “Gradient coding from
cyclic MDS codes and expander graphs,” Jul. 2017, arXiv:1707.03858.
[Online]. Available: https://arxiv.org/abs/1707.03858

[13] A. Vardy, “The intractability of computing the minimum distance of
a code,” IEEE Trans. Inf. Theory, vol. 43, no. 6, pp. 1757–1766,
Nov. 1997.

[14] A. Severinson, A. G. I. Amat, and E. Rosnes, “Block-diagonal and LT
codes for distributed computing with straggling servers,” IEEE Trans.
Commun., vol. 67, no. 3, pp. 1739–1753, Mar. 2019.

[15] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A digital
fountain approach to reliable distribution of bulk data,” in Proc. ACM
SIGCOMM, Vancouver, BC, Canada, Sep. 1998, pp. 56–67.

[16] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gra-
dient coding: Avoiding stragglers in synchronous gradient descent,”
Mar. 2017, arXiv:1612.03301v2. [Online]. Available: https://arxiv.org/
abs/1612.03301v2

[17] H. H. F. Yin, S. Yang, Q. Zhou, and L. M. L. Yung, “Adaptive recoding
for BATS codes,” in Proc. IEEE ISIT, Barcelona, Spain, Jul. 2016,
pp. 2349–2353.

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on October 28,2020 at 20:41:08 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

