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Dynamic Content Update for Wireless Edge

Caching via Deep Reinforcement Learning

Pingyang Wu, Jun Li, Long Shi, Ming Ding, Kui Cai, and Fuli Yang

Abstract—This letter studies a basic wireless caching network
where a source server is connected to a cache-enabled base station
(BS) that serves multiple requesting users. A critical problem is
how to improve cache hit rate under dynamic content popularity.
To solve this problem, the primary contribution of this work
is to develop a novel dynamic content update strategy with
the aid of deep reinforcement learning. Considering that the
BS is unaware of content popularities, the proposed strategy
dynamically updates the BS cache according to the time-varying
requests and the BS cached contents. Towards this end, we model
the problem of cache update as a Markov decision process and
put forth an efficient algorithm that builds upon the long short-
term memory network and external memory to enhance the
decision making ability of the BS. Simulation results show that
the proposed algorithm can achieve not only a higher average
reward than deep Q-network, but also a higher cache hit rate
than the existing replacement policies such as the least recently
used, first-in first-out, and deep Q-network based algorithms.

Index Terms—Content update, Markov decision process, deep
reinforcement learning, cache hit rate, long-term reward.

I. INTRODUCTION

The rapid increase in the number of ubiquitous wireless

devices will inevitably produce the sheer volume of traffic

load, resulting in the network congestion in the near future.

With the advent of the 5G networks, caching at the wire-

less edge has been used to accelerate the content download

speed and improve the performance of wireless networks [1].

Wireless caching features high temporal variability of the user

requests. To meet the time-varying requests, base stations

(BSs) with limited cache size frequently replace their local

caches according to cache replacement policies, e.g., the least

recently used (LRU) and first-in first-out (FIFO) [2], [3].

Due to the complexity of the real environment, these

conventional replacement policies cannot accurately capture

dynamic characteristics of content popularity [4]. Inspired by

the reinforcement learning (RL) in solving complicated control

problem [5], the works in [6], [7] relied on strong feature
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representation ability of deep neural network (DNN) [8] and

adopted the model-free deep RL (DRL) to maximize the

long-term system reward in mobile edge caching. In [6]–[8],

the edge node fetches the missed content from the source

server and replaces its local cache with newly fetched content.

However, it is possible that the newly fetched content is less

popular than the cached content. In this context, the fetch-and-

replace strategy in the cache miss case may not be efficient.

Driven by this issue, we propose a novel content update

strategy in the wireless caching network to improve cache

hit rate in the BS. To our best knowledge, few existing

work on the cache replacement has taken into account either

dynamic characteristics of content popularity [4] or advanced

content update strategy rather than the intuitive fetch-and-

replace strategy in [6], [8]. The update strategy evicts or

retains content in the BS by taking both the BS cache and

user requests into consideration (see Section III). We first

formulate the problem of content update as a Markov decision

process (MDP) with the state space consisting of the BS cache

and user requests and the action space including evicting and

retaining (see Section IV). Then, we put forth a DRL-based

algorithm to enhance the decision making ability of the BS,

by leveraging the long short-term memory (LSTM) network

and external memory (see Section V). Our simulation results

show that, superior to LRU and FIFO replacement and deep

Q-network (DQN) algorithm, the proposed external memory-

based recurrent Q-network (EMRQN) algorithm significantly

improves cache hit rate and long-term system reward.

II. SYSTEM MODEL

Considers a basic wireless caching network consisting of a

source server, a single cache-enabled BS, and K users, where

the BS is connected to the source server through wireless

backhaul. Let O = {o1, o2, . . . , o|O|} denote a set that collects

all |O| contents in the server. The BS with limited cache

storage can predownload N contents from the server. Suppose

that contents in the server cover all possible requests from all

users in real time.

This letter studies a caching scenario where only a small

portion of contents in the server are requested and thereby

prefetched by the BS. That is, |O| ≫ N . Given the limited

cache storage of the BS, the maximum number of contents

requested by each user is N . Consider that the BS can receive

these requests from multiple users without knowing content

popularities. To efficiently meet the time-varying requests, the

BS should update its local cache accordingly.
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Fig. 1. The flowchart of content delivery and content update.

III. PROPOSED CACHE UPDATE STRATEGY

This section first shows a flowchart of content delivery

and content update and then illustrates the content update

procedure by a toy example.

A. Flowchart

Fig. 1 shows the flowchart of the caching strategy consisting

of conventional delivery phase and proposed content update

phase. This system operates in a discrete time fashion with

time slot t ∈ T = {1, 2, . . . , T } and integer T ≤ ∞. Let

Mt denote a set of contents cached in the BS in time slot t.
Consider that the BS cache is fully loaded in any time slot

(i.e., |Mt| = N ). The distinct contents requested by K users

are included in Lt = {o1, o2, . . . , oL}.

In the delivery phase, if the requested content on is stored

in the BS (i.e., cache hit), the BS directly delivers on to the

user. Otherwise, if on is missed in the BS cache (i.e., cache

miss), the BS fetches on from the server and delivers it to the

user. As such, all user requests are fulfilled.

Existing works in [2], [4], [6] directly replace the BS cache

with the newly fetched contents. In the content update phase,

we propose to update the BS cache by taking into account

both the newly fetched contents and its cache in current time

slot. The BS first evicts or retains some contents in Mt ∪ Lt

according to an action indicator H{·}. As Section IV-B will

elaborate, the BS evicts content o if H{o} = 0 or retains

o if H{o} = 1. Second, the BS checks if the current cache

is fully loaded after evicting or retaining. If the BS cache is

fully loaded, the procedure ceases. Otherwise, the BS fetches

new contents with high normalized cumulative request from

the server to fully load the BS cache (see Section IV-A).

As Section V will elaborate, the BS updates its cache by a

DRL-based algorithm. It is known that the decision making in

the DRL is not perfect. Therefore, the BS still needs to update

its cache based on Mt only to further improve the update

accuracy, even if there is no user request (i.e., Lt = ∅).

B. A Toy Example

Let us see a toy example in Fig. 2 to illustrate the pro-

posed content update. Consider that the server owns O =
{o1, o2, o3, o4, o5, o6}, the BS is fully loaded in time slot t by

storing Mt = {o1, o2, o3}, and users request Lt = {o3, o5}.

Fig. 2. An illustrating example of proposed content update.

First, the BS fetches o5 from the server and delivers {o3, o5} to

the requesting users. Second, according to H{o1, o2, o3, o5} =
{0, 0, 1, 1}, the BS evicts o1, o2 and retains o3, o5. To be fully

loaded, the BS fetches o4 from the server, as o4 has the largest

normalized cumulative request among {o1, o2, o4, o6}. Finally,

the BS cache in time slot t+ 1 is updated as {o3, o4, o5}.

IV. MDP FORMULATION

A. State Space

Without loss of generality, consider that the BS stores Mt =
{o1, o2, . . . , oN} in time slot t. Let S = {s|s = 〈B, L〉} be

the set of system state space. In this set, each system state st,
consisting of a BS state Bt and a user request state Lt in time

slot t, is given by st = 〈Bt, Lt〉, where Lt = {ℓt1, ℓ
t
2, . . . , ℓ

t
K}

with ℓtk being a set that collects the contents requested by user

k in time slot t. We stress that ℓtk can be any subset of O with

|ℓtk| ≤ N, ∀k, due to the limited cache size in the BS. If ℓtk =
∅, there is no request from user k in time slot t. Moreover,

Bt = {(on, qton)|on ∈ Mt}, includes content on in the BS

cache and the normalized cumulative request qton of on in time

slot t, which evolves in a time-homogeneous Markov chain as

qt+1
on

= qton+δton , n ∈ {1, 2, . . . , N}, where δton =
cton∑

N

n′=1
cto

n′

denotes the normalized number of request times of on in time

slot t with cton being the times of on requested in time slot t.
In addition, qt+1

on
accumulates the number of times that on is

requested over time slots {1, 2, . . . , t} with increment of δton .

If there is no user request, the BS updates its cache based

on Bt only. In this case, the BS will evict on if its associated

qton is below a designated threshold q̄t =
∑

N
n=1

qton
N

[9].

B. Action Space

Given any content o, the BS decides whether to evict or

retain this content by a binary indicator H{o} ∈ {0, 1}. If

H{o} = 0, the BS evicts o, otherwise the BS retains o. Given

any system state st, the BS carries out action in time slot t
according to

αt
s =

{

H{Mt}, if Lt ⊆ Mt or Lt = ∅

H{Mt ∪ Lt}, if Mt ∩ Lt 6=∅ andLt*Mt
, (1)

where αt
s is a collection that contains 0’s or 1’s. To be specific,

the BS only updates its own cache Mt, if all user requests

hit (i.e., Lt ⊆ Mt) or there is no user request (i.e., Lt = ∅).

Otherwise, the BS updates contents Mt ∪Lt consisting of its

own cache and newly fetched contents, if some user requests

miss (i.e., Mt ∩ Lt 6= ∅ and Lt * Mt).



Algorithm 1 EMRQN for Dynamic Content Update

Initialization:
1: Q-value and network parameter; cache size of the BS; the

long-term reward G = 0; the average reward g = 0.
Iteration:

2: for episode = 1 to E do
3: Initialize system state s0;
4: for t = 1 to T do
5: Update parameters according to ε-greedy method [5];
6: Select the action αt

s=argmaxQ(st, αt
s) with prob-

ability of 1− ε; or randomly select an action with
probability of ε;

7: Take actionαt
s, receive a rewardRt and next state st+1;

8: Store transition (st, αt
s, R

t, st+1) in experience replay;
9: Compute states similarity and modify Q-value for

state-action pairs according to (6);
10: Update Q-value and network parameter;
11: Calculate Gt.
12: end for

13: g =
∑T

t=1
Gt

T
.

14: end for

Consequently, the action space corresponding to the state

space S can be expressed as A =
⋃

t∈T αt
s, ∀s ∈ S.

C. Reward Function

Let Dt
+ denote the set that collects the newly cached

contents in the BS in time slot t, and Dt
∗ denote the set that

collects the contents not only cached in time slot t−1 but also

retained in time slot t. In this context, we design the positive

reward as

Rt
+(s

t, αt
s) =

∑

o∗∈Dt
∗

v(cto∗) +
∑

o+∈Dt
+

ηv(cto+), (2)

where v(cto) is the normalized amount of requests for content

o ∈ Dt
∗ ∪ Dt

+, to represent the reward induced by content

delivery in time slot t. Note that the fetching of o+ ∈ Dt
+ from

the server in the cache miss case deserves a scaled reward by

0 < η < 1, where η is used to bias the BS toward improving

cache hit rate.

In addition, let Dt
− be the set that collects the contents

evicted in time slot t − 1. In some cases, we find that the

cache miss occurs in time slot t, when the content is evicted

in time slot t − 1 but is requested in time slot t. In view of

this, we define a negative reward as

Rt
−(s

t, αt
s) =

∑

o∈Dt
+
∪Dt

−

m(cto) , (3)

where m(cto) is the normalized amount of requests for content

o ∈ Dt
+ ∪ Dt

−, to represent the cost caused by evicting or

fetching in time slot t.

Finally, the immediate system reward induced by action αt
s

at state st in time slot t is given by [10]

Rt(st, αt
s) = Rt

+(s
t, αt

s)−Rt
−(s

t, αt
s), (4)

Fig. 3. The architecture of the proposed EMRQN algorithm.

which is used to reward the BS with the cache hit and punish

the BS for the cache miss.

V. EXTERNAL MEMORY-BASED RECURRENT Q-NETWORK

In this section, we propose the EMRQN algorithm (see

Algorithm 1) to maximize the long-term system reward Gt =
∑∞

k=0
γkRt+k, where Rt is defined in (4) and the discount

factor γ ranges between 0 and 1 [5]. The output of Algorithm

1 is the average reward g =
∑

T
t=1

Gt

T
(see step 13 of Algorithm

1). Building upon DQN, we tentatively employs LSTM to

enable the BS with stronger decision making ability as well

as external memory to modify the Q-value as shown in

Fig. 3. Note that this work adopts the DNN for function

approximation, since DNN has better characterization and

generalization ability than linear function approximation [5].

A. Long Short-Term Memory Recurrent Network

LSTM can alleviate the vanishing gradient problem of com-

mon NN and recurrent neural network (RNN), which provides

an easy path for gradient flow during back-propagation [11].

In the sequential decision-making problem, LSTM can extract

useful information from historical data and incorporate con-

textual information from past inputs to predict Q(s, αs) of the

current state-action pair (s, αs). We first determine the value

of H{·} from step 6 of Algorithm 1 for each time slot, and

then the BS decides to either evict or retain content based on

this H{·}. With the aid of LSTM, the BS can make better

decisions by using historical data effectively.

B. External Memory

We use a finite-size external memory to store (s, αs) and

the corresponding maximum Q-value. Note that the external

memory discards the first stored samples if it is full. Let

sex = {Bex,Lex} denote the system state in external memory,

where Bex and Lex represent the BS state and user requests

in external memory respectively, and Mex denotes cached

contents from Bex. In order to improve prediction model

accuracy, we follow the neighborhood method in [12] to

modify the Q-value, where the BS takes similar actions in

the like-minded states. First, the similarity between s and sex
is given by sim(s, sex) = 1/

(

1 + d(s, sex)
)

, where

d(s, sex) =
(

∑

oi∈M∩Mex

(H{oi} −Hex{oi})
2+

∑

oj∈L∩Lex

(H{oj} −Hex{oj})
2
)

1
2 , (5)
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denotes the Euclidean distance between s and sex with Hex{o}
being the action indicator of o in external memory. Then the

Q-value is modified as

Qre(s, αs) = Q(s, αs)+
∑

sex∈Sex

sim(s, sex)[Q(sex, αs)−Q(s, αs)]

∑

sex∈Sex

|sim(s, sex)|
, (6)

where Sex is the set that collects all possible system states in

external memory.

VI. SIMULATION RESULTS

In this section, we compare the performance of proposed

EMRQN algorithm with LRU, FIFO, and DQN algorithms [6].

Note that LRU always evicts the least recently used content,

FIFO evicts the first cached content. In the simulation results,

TABLE I
ALGORITHM HYPERPARAMETERS

Parameters EMRQN DQN

Learning rate 0.00015 0.0002

Experience replay size 100000 100000

Optimizer Adam Adam

Initializer Kaiming Kaiming

Loss function Huber loss Huber loss

we initialize the probability of choosing a random action to be

1 and decay exponentially towards 0.01. We use an external

memory size of 80000 and PyTorch as DNN framework, where

Adam optimizer chooses weight decay of 0.00001 and batch

size of 8 to adjust the effect of model complexity on the loss

function and avoid over-fitting of the network [11]. In addition,

Table I lists the hyperparameters in the simulation results.

Fig. 4 (a) examines the average reward per episode of the

EMRQN and DQN algorithms. We set the discount factor as

γ = 0.999 to give a high weight for future reward [5]. First,

we find that the reward goes up as timestep increases and

reaches the maximum average reward when the learning pro-

cess becomes stable. Second, EMRQN converges to a larger

average reward than DQN. Third, in view of the magnified

areas, EMRQN has smaller fluctuation range than DQN. This

is due to the fact that LSTM is more suitable for sequential

decision-making problem than common NN and RNN. Fig. 4

(b) shows different average step rewards of EMRQN under γ
= 0.999, 0.99, 0.90, and 0.85 respectively. First, we find that

the step reward goes up as timestep increases and reaches the

peak value when the learning process becomes stable. Second,

the higher γ, the slower the convergence becomes. Since the

training is processed offline, the time for training is not a major

concern in this paper. This is due to the fact that the BS pays

more attention to the future rather than the present. Third, the

larger γ also contributes to the larger peak value, which is

beneficial for the BS to make the long-term decision towards

higher cache hit rate.

Fig. 5 compares the average cache hit rates among LRU,

FIFO, DQN, and the proposed EMRQN algorithm with Zipf

parameters of 1.5 and 0.8 respectively. We also consider a

simple strategy that evicts the least requested content. Consider

that the BS serves 20 users and the cache size varies from 250

to 1500. First, the cache hit rate goes up with increase of cache

size. Second, EMRQN significantly outperforms the other four

algorithms, and the simple strategy yields the worst cache hit

rate. Third, cache hit rates of all algorithms are reduced when

the Zipf parameter becomes smaller.

VII. CONCLUSION

In this letter, we have developed a novel content update

strategy to improve cache hit rate in the BS. Meanwhile,

we have formulated the content update process as an MDP

and put forth the EMRQN algorithm to enhance the decision

making ability of the BS. Compared with conventional cache



replacement algorithms, the proposed algorithm has gained a

significant improvement in cache hit rate and long-term system

reward. This work only considered the content update problem

of a single BS. In practice, it is of interest to investigate a

general caching network where multiple BSs cooperatively

serve the users by updating their local caches. Due to the

mutual effects on decisions among the BSs, how to share their

caching states with minimal overhead remains challenging.
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