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Deep Learning-Based Downlink Channel Prediction for
FDD Massive MIMO System
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Abstract— In a frequency division duplexing (FDD) massive
multiple-input multiple-output (MIMO) system, the acquisition
of downlink channel state information (CSI) at base station (BS)
is a very challenging task due to the overwhelming overheads
required for downlink training and uplink feedback. In this letter,
we reveal a deterministic uplink-to-downlink mapping function
when the position-to-channel mapping is bijective. Motivated
by the universal approximation theorem, we then propose a
sparse complex-valued neural network (SCNet) to approximate
the uplink-to-downlink mapping function. Different from general
deep networks that operate in the real domain, the SCNet is
constructed in the complex domain and is able to learn the
complex-valued mapping function by off-line training. After
training, the SCNet is used to directly predict the downlink CSI
based on the estimated uplink CSI without the need of either
downlink training or uplink feedback. Numerical results show
that the SCNet achieves better performance than general deep
networks in terms of prediction accuracy and exhibits remark-
able robustness over complicated wireless channels, demonstrat-
ing its great potential for practical deployments.

Index Terms— FDD, massive MIMO, downlink CSI prediction,
deep learning, complex-valued neural network.

I. INTRODUCTION

MASSIVE multiple-input multiple-output (MIMO) has
been widely recognized as a promising technique in

future wireless communication systems for its high spec-
trum and energy efficiency, high spatial resolution, and large
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beamforming gains [1]. To embrace these benefits, accurate
downlink channel state inforamtion (CSI) is usually required
at both the base station (BS) (for beamforming, user schedul-
ing, etc) and the user side (for signal detection). However,
the acquisition of downlink CSI is a very challenging task
for frequency division duplexing (FDD) massive MIMO sys-
tems due to the prohibitively high overheads associated with
downlink training and uplink feedback.

In fact, there are two important observations that can help
reduce the overheads. First, the wireless channels between BS
and users only have a small angular spread (AS) as demon-
strated in [2]–[4]. Due to the small AS and the large dimension
of the channels, massive MIMO channels exhibit sparsity in
the angular domain. Secondly, there exists angular reciprocity
between the uplink and the downlink channels since the uplink
and the downlink share the common physical paths [4]. Since
the acquisition of the uplink CSI is convenient in massive
MIMO systems, many studies have suggested to extract partial
information of the downlink CSI from the uplink CSI, thereby
reducing the downlink training overhead or to employ com-
pressive sensing (CS) based algorithms to reduce the overhead
of the uplink feedback [5], [6]. For example, in [5], the down-
link channel covariance matrix (CCM) is first estimated from
the uplink CCM and then the eigen-beamforming is used to
reduce the overhead for the downlink training when AS is less
than 5◦. In [6], the channels are first parameterized by distinct
paths, each characterized by path delay, angle, and gain. Then,
the frequency-independent parameters, i.e., path delays and
angles, are extracted from the uplink CSI to help reduce the
downlink training. Nevertheless, the method in [6] is applica-
ble as long as the propagation paths are distinguishable and
the path number is small. Besides, several CS-based channel
feedback schemes for massive MIMO have been proposed to
reduce the feedback overhead but are sensitive to the model
errors and suffer from high complexity.

Due to its excellent performance and low complexity [7],
deep learning has been introduced recently to the wireless
physical layer and has achieved superior performance over
various topics, such as channel estimation [8], detection [9],
CSI feedback [10], etc. In [11], a convolutional neural net-
work (CNN) is trained to predict the downlink CSI based
on the CSI of multiple adjacent uplink subcarriers for
single-antenna FDD systems. In [12], a fully-connected neural
network (FNN) is trained for uplink/downlink channel calibra-
tion for massive MIMO systems. In this letter, we propose
a sparse complex-valued neural network (SCNet) for the
downlink CSI prediction in FDD massive MIMO systems. Due
to the richer representational capacity offered by complex rep-
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resentations, the SCNet can further improve the performance
of channel prediction. Our contributions are summarized as
follows.

1) Inspired by [14], we reveal a deterministic uplink-to-
downlink mapping function for a given communication
environment when the position-to-channel mapping is
bijective. Then, we prove that the uplink-to-downlink
mapping function can be approximated with an arbitrar-
ily small error by a feedforward network.

2) We propose a SCNet for downlink CSI prediction in
FDD massive MIMO systems, which is applicable to
complex-valued function approximation with complex-
valued representations. Moreover, sparse network struc-
ture is adopted to reduce the complexity and improve
the robustness.

3) Experiment results demonstrate that SCNet outperforms
the FNN of [12] in terms of prediction accuracy and
exhibits remarkable robustness over the number of paths.

II. SYSTEM MODEL

Fig. 2 illustrates an FDD massive MIMO system, where the
BS is equipped with M � 1 antennas in the form of uniform
linear array (ULA)1 and the user is equipped with a single
antenna. Since the proposed approach works for different users
separately, we only need to illustrate for a single user. The
channel between the user and the BS is assumed to consist of
P rays and can be expressed as2 [13],

h (f) =
P∑

p=1

αpe
−j2πfτp+jφpa (θp), (1)

where f is the carrier frequency, and αp, φp, τp and θp are the
attenuation, phase shift, delay, and direction of arrival (DOA)
of the p-th path, respectively. Moreover, a (θp) is the the array
manifold vector defined as,

a (θp) =
[
1, e−jχ sin θp , · · · , e−jχ(M−1) sin θp

]T

, (2)

where χ = 2πdf/c, d is the antenna spacing, and c is the
speed of light. According to [2]–[4], the incident AS with
mean DOA θ seen by the BS is limited in a certain region,
i.e., θp ∈ [θ − Δθ/2, θ + Δθ/2].

Note that αp depends on (i) the distance between the user
and the BS, denoted by D, (ii) the transmitter and receiver
antenna gains, (iii) the carrier frequency, and (iv) the scattering
environment. The phase φp depends on the scatterer materials
and wave incident/impinging angles at the scatterers. The
delay τp depends on the distance travelled by the signal along
the p-path [4].

1We adopt the ULA model here for simpler illustration, however, the
proposed approach does not restrict the specifical array shape, and therefore
is applicable for an array of arbitrary geometry.

2Note that we have ignored spatial- and frequency- wideband effects [1] as
most of the literature. In fact, an accurate mathematical model is unnecessary
for the proposed approach since the network can be trained by data from
practical systems.

Fig. 1. Downlink CSI prediction for FDD Massive MIMO systems.

Fig. 2. The SCNet architecture.

III. CHANNEL MAPPING FORMULATION

Denote h (fU) and h (fD) as the uplink and the downlink
channels of the user with fU and fD being the uplink and the
downlink frequencies, respectively. As indicated in Eq. (1),
h (fD) cannot be simply obtained from the h (fU) for FDD
systems. However, since the downlink and the uplink expe-
rience the same propagation environment with the common
physical paths and the spatial propagation characteristics of
the wireless channels are nearly unchanged within certain
bandwidth [4], there is an intrinsic relation between the uplink
and the downlink CSI.

In the following, we first define an uplink-to-downlink
mapping function, following the approach in [14], and prove
its existence. Then, we leverage deep learning to find the
mapping function.

A. Existence of Uplink to Downlink Mapping

Consider the channel model in Eq. (1), where the channel
function h(f) is completely determined by the parameters αp,
φp, τp, P , Δθ, and θ. As discussed at the end of Section II,
αp, φp, τp, P , and Δθ are the functions of the communication
environment (including the antenna gains, scatterers, etc.),
mean DOA θ and distance D.

Definition 1: The position-to-channel mapping Φf can be
written as follows,

Φf : {(D, θ)} → {h(f)} , (3)

where the sets {(D, θ)} and {h(f)} are the domain and
codomain of the mapping Φf , respectively.

Then, we adopt the following assumption for further
analysis.

Assumption 1 [14]: The position-to-channel mapping func-
tion, Φf : {(D, θ)} → {h(f)}, is bijective.

The Assumption 1 means that every user position has a
unique channel function h(f), and vice versa. Although it
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cannot be proved analytically, the probability that Φf is bijec-
tive is actually very high in practical wireless communication
scenarios, and approaches 1 as the number of antennas at
the BS increases [14]. Therefore, it is reasonable to adopt
Assumption 1 in massive MIMO systems.

Under Assumption 1, the channel-to-position mapping,
i.e., the inverse mapping of Φf , exists, which can be written
as follows:

Φ−1
f : {h(f)} → {(D, θ)} . (4)

Next, we investigate the existence of the uplink-to-downlink
mapping, as given in Proposition 1.

Proposition 1: With Assumption 1, the uplink-to-downlink
mapping exists for a given communication environment, and
can be written as follows,

ΨU→D = ΦfD ◦ Φ−1
fU

: {h(fU)} → {h(fD)} , (5)

where ΦfD ◦Φ−1
fU

represents the composite mapping related to
ΦfD and Φ−1

fU
.

Proof: From the Definition 1, we have the mappings
ΦfD : {(D, θ)} → {h(fD)} and ΦfU : {(D, θ)} → {h(fU)}
exist in position candidate set {(D, θ)}. Under Assumption 1,
the mapping Φ−1

fU
exists with its codomain equal to the domain

of ΦfD . Therefore, the composite mapping ΦfD ◦ Φ−1
fU

exists
for any possible position (D, θ). A more general proposition
can be found in [14].

B. Deep Learning for Uplink-to-Downlink Mapping

Proposition 1 proves the existence of the uplink-to-downlink
mapping function. However, the function cannot be depicted
by known mathematical models, which motivates us to resort
to deep learning algorithms. Based on the universal approxi-
mation theorem [15], we obtain Theorem 1 as following.

Theorem 1: For any given small error ε > 0, there always
exists a positive constant N large enough such that

sup
x∈H

�NETN (x,Ω) − ΨU→D (x)� ≤ ε, H = {h(fU)} ,

(6)

where NETN (x,Ω) is the output of a three-layer feedforward
network with x, Ω and N denoting the input data, network
parameters, and the number of hidden units, respectively.

Proof: (i) Since h(fU) is bounded and closed, H is a
compact set; (ii) Since ΦfD and Φ−1

fU
are continuous map-

ping and the composition of continuous mappings is still a
continuous mapping, we know that for ∀x ∈ H such that
ΨU→D (x) is a continuous function. Based on (i), (ii), and the
universal approximation theorem [15, Theorem 1], Theorem 1
is proved.

According to Theorem 1, the uplink-to-downlink mapping
function can be approximated with an arbitrarily small error
by a feedforward network with a single hidden layer. Thus,
we can train a network to predict the downlink CSI from
the uplink CSI and can significantly reduce the overhead
required for downlink training and uplink feedback at the cost
of off-line training.

IV. SCNET BASED DOWNLINK CSI PREDICTION

In this section, we will first introduce the architecture of
the SCNet. Then, we discuss how to train and deploy it in
massive MIMO systems.

A. SCNet Architecture

Although it has been proven in Theorem 1 that a three-layer
network is able to predict the downlink CSI, we propose the
SCNet instead of the three-layer network for practical consid-
erations as follows: (i) A deep network with an appropriate
number of layers learns better than a three-layer network;
(ii) A spare network can reduce the network parameters, and
therefore is easier to train and is more robust; (iii) Compared
with the real-valued networks, the complex ones have richer
representational capacities and therefore are more powerful in
learning complex-valued functions [16].

As shown in Fig. 2, the input of the SCNet is the uplink
CSI h(fU). The output of the SCNet is a cascade of nonlinear
transformation of h(fU), i.e.,

ĥ(fD) = NET (h(fU),Ω) = f (L−1)
(
· · ·f (1) (h ((fU))

)
,

(7)

where L is the number of layers and Ω Δ=
{
W (l), b(l)

}L−1

l=1

is the network parameters to be trained. Moreover, f (l) is the
nonlinear transformation function of the l-th layer and can be
written as,

f (l) (x) =

{
g

(
W (l)x + b(l)

)
, 1 ≤ l < L − 1;

W (l)x + b(l), l = L − 1,
(8)

where g is the activation function and is given by

g(z) = max {	[z],0} + j max {
[z],0} (9)

with 	[·] and 
[·] being the real and imaginary parts of the
vectors, respectively.

We set the number of neurons in the middle hidden layer to
be much fewer than that in the output layer, which forces the
SCNet to compress the representation of the input. We would
like to emphasize that the compression task would be very
difficult if the elements of input x are independent of each
other. However, since there exists the sparse structure3 in
the uplink channel h(fU), the SCNet is able to discover
the intrinsic sparsity of h(fU) in massive MIMO systems.
As a result, the SCNet can not only reduce the redundancy
of network parameters but also become more functional and
robust [17].

B. Training and Deployment

The proposed downlink CSI prediction has two stages,
i.e., the off-line training and the on-line deployment stages.
In the off-line training stage, the BS collects both the downlink
and the uplink CSI as training samples to train the SCNet.
Specifically, during a coherence time period, the downlink CSI

3Since AS is narrow, the massive MIMO channels exhibit sparsity in the
angular domain. See more details in [1].
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Fig. 3. The NMSE performance of the SCNet and the FNN based downlink CSI predictors versus AS (a) and the frequency difference fD − fU (b).

is first estimated at the user side by downlink training and
then fed back to the BS. The uplink CSI is estimated at the
BS by uplink training. The SCNet is trained to minimize the
difference between the output ĥ(fD) and the supervise label
h(fD). The loss function is

Loss (Ω) =
1

V Nh

V −1∑
v=0

∥∥∥ĥ(fD)(v) − h(fD)(v)
∥∥∥2

2
, (10)

where V is the batch size,4 the superscript (v) denotes the
index of the v-th training sample, �·�2 denotes the 	2 norm,
and Nh is the length of the vector h(fD). The loss function
Loss (Ω) is minimized by the complex designed adaptive
moment estimation (ADAM) algorithm [16] until the SCNet
converges.

In the deployment stage, the parameters of the SCNet are
fixed. The SCNet directly generates the prediction of the
downlink CSI ĥ(fD) based on the uplink CSI h(fU).

C. Complexity Analysis

Denote nl as the number of neurons in the l-th layer.
The required number of floating point operations (FLOPs)
is used as the metric of complexity. For real-valued net-
work, the total number of FLOPs required is

∑L−1
l=1 nl−1nl.

However, as a complex multiplication is 4 times of its real
counterpart, the total number of FLOPs required in the SCNet
is 4

∑L−1
l=1 nl−1nl. Nevertheless, it should be noted that in

a real-valued network, the input complex data are typically
separated to real and imaginary parts and then fed to the
network. Therefore, the size of the real-valued network is lager
than that of a complex-valued network.

V. SIMULATION RESULTS

Unless otherwise specified, the system parameters are set
as follows: the BS is equipped with 128 antennas; the uplink
frequency follows the 3GPP R15 standard, i.e., fU = 2.5 GHz.

4Batch size is the number of samples in one training batch.

In the simulation of Section V-A, the attenuation of each
path follows Rayleigh distribution. The phase and delay
of each path follow uniform distribution over [−π, π) and
[0, 10−4]s. The number of paths is 200 in both the training and
deployment stages. While in the simulation of Section V-B,
the parameters of each path are generated according to the
ray-tracing simulator [18]. The number of paths is 200 in the
training stage and varies in the deployment stage.

An FNN in [12] is originally designed for uplink/downlink
channel calibration for massive MIMO systems, which can
also be used for the downlink channel prediction in the FDD
massive MIMO systems. Therefore, the FNN is used as a
benchmark in this letter. Keras 2.2.0 is employed as the
deep learning framework for both the SCNet and the FNN.
We choose the number of neurons in the hidden layer as
(128, 64, 128) by trails and adjustments. The initial learning
rate of the ADAM algorithm is 0.001. The batch size is
128. The parameters of the SCNet are initialized as complex
distribution with normalized variance.5 The uplink CSI fed
to the SCNet is estimated by the minimum mean-squared-
error (MMSE) algorithm when the signal-to-noise ratio (SNR)
is 25 dB. The network is trained for each AS degree and
each downlink frequency separately. The number of training
samples is 102,400, and the number of epochs is 400.

A. Prediction Accuracy Versus AS and Frequency Difference

Normalized MSE (NMSE) is used to measure the prediction
accuracy, which is defined as

NMSE = E

[∥∥∥hD − ĥD

∥∥∥2

2
/ �hD�2

2

]
, (11)

where E [·] represents the expectation operation.
Fig. 3 depicts the NMSE performance of the SCNet and

the FNN based downlink CSI predictors versus AS Δθ and
frequency difference fD − fU, respectively. Fig. 3(a) shows

5The weights of neurons in the l-th layer are initialized as complex normal
variables with variance 1/nl.
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Fig. 4. The NMSE performance of the SCNet and the FNN [12] based
downlink CSI predictors when mismatches occur between the training and
deployment stages.

that the NMSE performance of both the SCNet and the
FNN degrades as AS increases while the slope of the NMSE
curve decreases as AS increases. This is because that as AS
increases, the sparsity of channels in the angular domain
decreases, and thus it is harder for the networks to learn
the structure of the channels and to accurately predict the
downlink CSI. The networks are less sensitive to AS in
the wider AS case,6 which accounts for the decrease of
the slope in the wide AS case. Fig. 3(b) shows that the
NMSE performance of both the SCNet and the FNN degrades
as the frequency difference increases. This is because the
correlation of CSI between the uplink and the downlink tends
to vanish as the frequency difference increases. As shown
in Fig. 3, the proposed the SCNet outperforms the FNN
in all scenarios, which validates that the SCNet can benefit
from the rich representational capacity offered by complex
representations.

B. Robustness Analysis

In Sections V-A, the channels are generated based on Eq. (1)
with the same statistics. However, channels in real-world may
be more complicated and the statistics mismatches between
the training and deployment stages are also inevitable. To
test the robustness of both the SCNet and the FNN, data
generated from Wireless InSite [18] under different scenarios
are used to train and test. As shown in Fig. 4, the number
of paths in the training stage is 200 while it varies in the
deployment stages. The results show that the variations on sta-
tistics of channel degrade the performance, but the SCNet and
the FNN still exhibit remarkable prediction accuracy, which
validates the excellent generalization ability of deep neural
networks.

6More specifically, AS increases by 100% from 5◦ to 10◦ while it increases
by 25% from 20◦ to 25◦ . The decreasing proportion renders the SCNet less
sensitive to AS in wide AS case.

VI. CONCLUSION

In this letter, we revealed the existence of a deterministic
uplink-to-downlink mapping function for a given communi-
cation environment. Then, we proposed the SCNet for the
downlink CSI prediction in FDD massive MIMO systems.
Simulation results have demonstrated that the SCNet per-
forms better than the existing network in terms of predic-
tion accuracy. Furthermore, the remarkable robustness of the
SCNet with respect to the statistic characteristics of wire-
less channels has shown its great potential in real-world
applications.
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