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Abstract—In this article, deep learning is applied to esti-
mate the uplink channels for mixed analog-to-digital converters
(ADCs) massive multiple-input multiple-output (MIMO) systems,
where a portion of antennas are equipped with high-resolution
ADCs while others employ low-resolution ones at the base station.
A direct-input deep neural network (DI-DNN) is first proposed
to estimate channels by using the received signals of all antennas.
To eliminate the adverse impact of the coarsely quantized signals,
a selective-input prediction DNN (SIP-DNN) is developed, where
only the signals received by the high-resolution ADC antennas
are exploited to predict the channels of other antennas as
well as to estimate their own channels. Numerical results show
the superiority of the proposed DNN based approaches over
the existing methods, especially with mixed one-bit ADCs, and
the effectiveness of the proposed approaches on different ADC
resolution patterns.

Index Terms—massive MIMO, mixed-ADC, channel estima-
tion, deep learning.

I. INTRODUCTION

MASSIVE multiple-input multiple-output (MIMO) is a

promising technique to achieve high transmission rate

and continuous wide coverage for future cellular communica-

tion systems [1]−[3]. In massive MIMO, the hardware cost

and power consumption are the main obstacles to equipping

the large-scale array with the dedicated radio frequency (RF)

chain for each antenna at the base station (BS). To address this

problem, low-resolution analog-to-digital converters (ADCs),

e.g. one to three bits, are employed to replace the power-

hungry and expensive high-resolution ADCs [4], [5]. However,

the low-resolution ADCs incur the severely nonlinear distor-

tion, which poses daunting challenges in channel estimation

and data detection.

Mixed-ADC is proposed in [6] to achieve a good tradeoff

between the cost and the performance. It has also been

revealed by [7] that the mixed-ADC architecture can reduce

the channel estimation overhead and signal processing com-

plexity remarkably. In addition, mixed-ADC also guarantees

the backward compatibility with current cellular networks by

directly placing antennas with low-resolution ADCs at the

BS. The closed-form approximation of the achievable rate
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is derived in [8] for the mixed-ADC massive MIMO uplink

under Rician fading channels. For the massive MIMO uplink

with different ADC resolution levels at different antennas, the

approximation of the outage probability is developed in [9].

The sum rate performance of the multi-user massive MIMO

relaying system with mixed-ADC at the BS is analyzed in

[10]. [11] considers mixed-ADC/digital-to-analog converters

(DACs) at the massive MIMO relay and derives achievable

rate expressions for further system optimization.

Although the mixed-ADC can reduce hardware cost and

signal processing complexity significantly, it still limits the

performance of the tranceiver, especially for mixed one-bit

ADC. Machine learning (ML) has been recently introduced

into wireless communications and achieved attractive success

by extracting the inherent correlation from data [12], [13]. It

is a potential way to efficiently improve the performance with

mixed-ADC. ML algorithms have been used to address the

intractable problems that the traditional methods are unable to

handle well. In [14], deep learning (DL) is successfully used in

joint channel estimation and signal detection with interference

and non-linear distortions. In [15], channel correlation is

exploited by deep convolutional neural network (CNN) to

improve the channel estimation accuracy and to reduce the

computational complexity for millimeter wave massive MIMO

systems. In [16], a supervised learning based successive inter-

ference cancellation is developed for MIMO detection with

low-resolution ADCs. More results on DL for physical layer

communications can be found in [12].

In this article, we propose the DL based channel estimation

framework for mixed-ADC massive MIMO uplink, which to

our knowledge has not been considered in literature. The

novelty and contribution of this article can be summarized

as follows:

1) We first propose the direct-input deep neural network

(DI-DNN) based approach by simply inputting the sig-

nals of all antennas into a fully-connected DNN. To

eliminate the adverse impact of the severely distorted sig-

nals quantized by the low-resolution ADCs on estimation

accuracy, we propose a novel prediction mapping from

the channels of high-resolution ADC antennas to those

of low-resolution ADC antennas. The inherent nonlinear

relationship between them is intractable to be modeled

by the traditional methods but can be well captured

by the DNN and thus we develop the selective-input

prediction (SIP-DNN) based approach to implement it.

This novelty coincides with the prior works that exploit

the mature DNN to address the intractable problems that

the traditional methods are unable to handle well [14],

[15].

2) Numerical results show that the proposed DNN based

http://arxiv.org/abs/1908.06245v1
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Fig. 1. System model of a massive MIMO uplink with mixed-ADC.

channel estimation approaches outperform the state of

the art methods and can be applied to different ADC

resolution patterns in practical systems. We also find that

the DI-DNN is suitable to the case with fewer high-

resolution ADC antennas or low signal-to-noise ratio

(SNR) while the SIP-DNN is preferable otherwise.

Notations: In this article, we use upper and lower case

boldface letters to denote matrices and vectors, respectively.

‖·‖, (·)T , and E{·} represent the Euclidean norm, transpose,

and expectation, respectively. |X | denotes the cardinality of

set X . CN (µ, σ2) represents circular symmetric complex

Gaussian distribution with mean µ and variance σ2. Re(·) and

Im(·) denote the real part and imaginary part, respectively.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a mixed-ADC massive

MIMO uplink, where M antennas at the BS are divided into

two sets with high- and low-resolution ADCs, respectively.

Denote A and B as the index sets of the antennas with high-

and low-resolution ADCs, respectively, where A∩B = ∅ and

A ∪ B = {1, 2, . . . ,M}. Then we have |A| + |B| = M and

denote η = |A|
M

as the ratio of the number of high-resolution

ADC antennas over the total number of antennas. One single-

antenna user is considered for simplicity even if the proposed

approaches can be also applied to multi-user case. The multi-

path channels from the user to the BS is given by [17]

h =
L
∑

l=1

αla(ϕl), (1)

where L is the number of paths and αl ∼ CN (0, σ2
α) is the

propagation gain of the lth path with σ2
α being the average

power gain. For the lth path, ϕl is the azimuth angles of arrival

(AoA) at the BS and a(ϕl) denotes the corresponding response

vector. For a uniform linear array, a(ϕl) is given by

a(ϕl)=
1√
L

[

1, e−j2π d
λ
sin(ϕl), . . . , e−j2π d

λ
(M−1)sin(ϕl)

]T
, (2)

where d denotes the space between the adjacent antennas at

the BS and λ is the wavelength of the carrier frequency. The

antennas in A and B are placed at the BS with some pattern

with hA and hB denoting the channels from the user to the

antennas in A and B, respectively.

III. DNN BASED CHANNEL ESTIMATION

To estimate the uplink channels, the user transmits a pilot

signal,
√
Px, to the BS with P denoting the transmit power.
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Fig. 2. DNN based channel estimation.

Without loss of generality, we set x = 1 since it is known to

the BS. Then the received pilots at the BS is written as

y =
√
Ph+ n, (3)

where n denotes the additive white Gaussian noise vector at

the BS with independent and identically distributed CN (0, σ2
0)

elements.

Then the elements of y corresponding to A and B are

quantized by the high- and low-resolution uniform quantizers,

respectively, and the mth element of signals input into the

baseband processor for channel estimation is given by

[r]m =

{

[y]m , m ∈ A,

Q ([y]m) , m ∈ B, (4)

where Q (·) denotes the element-wise quantization operation

on the real and imaginary parts separately. In (4), we have

ignored the quantization error of the high-resolution ADCs in

antenna set A. Then the least square (LS) estimation of h is

given by r̄ = r√
P

, which can be divided into two sub-vectors,

r̄A and r̄B, for A and B, respectively.

A. DI-DNN based Approach

The coarsely quantized output of B with low-resolution

ADCs hinder the corresponding channel estimation. Fortu-

nately, the limited number of scattering clusters in the propaga-

tion environment and finite physical space between antennas at

the BS introduce the correlation among the received signal of

each antenna. Then the almost undistorted quantization signals

of A can provide additional channel information in spatial

domain for B to improve the channel estimation accuracy.

Inspired by the aforementioned fact, we propose the DI-

DNN based approach, where the LS estimation of A and B
are simultaneously input into a DNN to predict the channels

of all antennas as shown in Fig. 2(a). That is,

ĥ = fQ (WQfQ−1 (· · · f2 (W2r̄))) , (5)
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TABLE I
ARCHITECTURE OF THE DI-DNN

Neural layer Size Activation function

Input layer 128 -

Dense layer 1 160 ReLU

Dense layer 2 200 ReLU

Dense layer 3 160 ReLU

Output layer 128 tanh

where ĥ is the estimation of h, Q is the total number of

neural layers, Wq and fq(·) denote the weight matrix and

activation function of the qth layer ∀q = 2, . . . , Q. By setting

the activation functions properly and updating weight matrices

in the data-driven manner, the DI-DNN aims to minimize the

MSE over all training samples, which is given by

MSE =
1

Ntr

Ntr
∑

n=1

∥

∥

∥
hn − ĥn

∥

∥

∥

2

, (6)

where Ntr denotes the number of training samples, hn and ĥn

denote the true channel and the channel approximated by the

DI-DNN, respectively, for the nth training sample.

The DI-DNN consists of the input layer, three hidden layers

with rectified linear unit (ReLU) activation function, and the

output layer with hyperbolic tangent activation function. The

nth training sample is denoted as
(

r̄n,
hn

c

)

, where the input

data r̄n is the LS estimation of the true channel, hn, and hn

c

denotes the target data that the DNN tries to approximate.

c > 0 is a scaling constant to make the range of all target

data match the tangent activation function of the output layer.

The approximated channel corresponding to the nth training

sample is expressed as ĥn = ch̄n, where h̄n is the output

of the DI-DNN. Then the MSE in (6) is minimized by using

the backpropagation algorithm. In this article, we consider the

case with M = 64. The LS channel estimation r̄n ∈ C64×1

is first converted to a 128× 1 real-valued vector by vertically

stacking its real and imaginary parts. The real-valued vector

is successively processed by three dense layers with 160, 200,

and 160 neurons, respectively. Finally, the output layer outputs

[Re(h̄T
n ), Im(h̄T

n )]
T ∈ R128×1 and then the approximated

channel ĥn can be obtained. The detailed DNN architecture

is summarized in Table I.

B. SIP-DNN based Approach

The DI-DNN based approach proposed in Section III.A

improves the channel estimation accuracy of B resorting to the

undistorted signals of A, but it ignores the adverse impact of

the severely distorted quantization signals in B on the channel

estimation performance, especially when B is with extremely

low-resolution ADCs. To address this issue, the SIP-DNN

based approach is developed in the following.

The basic idea of the SIP-DNN based approach can be

summarized as follows: 1) Collect the reliable LS channel

estimation of A and propose the prediction mapping from the

channels in A to those in B; 2) Utilize the DNN to implement

this nonlinear mapping. The top figure of Fig. 2(b) illustrates

the algorithm details of the SIP-DNN based approach. The LS

channel estimation of A, r̄A, is first refined by a refinement

DNN (R-DNN), which outputs the more accurate estimation

of hA, i.e., ĥA. Then ĥA is used to predict the channels

corresponding to B, i.e., ĥB, through a prediction DNN (P-

DNN). Finally, ĥA and ĥB are combined to obtain the full

estimated channel, ĥ, as

[

ĥ
]

m
=







[

ĥA
]

um

, m ∈ A,
[

ĥB
]

vm
, m ∈ B,

(7)

where um and vm denote the indexes of the mth element

of ĥ in ĥA and ĥB when m ∈ A and B, respectively. The

serial connection of R-DNN and P-DNN hinders the offline

training and we propose to transform the SIP-DNN based

approach to the bottom figure in Fig. 2(b). In more details,

the P-DNN is replaced by a modified prediction DNN (MP-

DNN), which directly uses r̄A instead of ĥA to predict ĥB
and thus can be trained parallelly with the R-DNN. According

to the simulation trails, this transformation will not cause

performance loss but facilitate the offline training significantly.

For R-DNN and MP-DNN, we have

ĥA = gR,S (USgR,S−1 (· · · gR,2 (U2r̄A))) , (8)

ĥB = gMP,T (VT gMP,T−1 (· · · gMP,2 (V2r̄A))) , (9)

where S and T are the total numbers of neural layers, gR,s(·)
and gMP,t(·) represent the activation function of the sth layer

and tth layer, and Us and Vt denote the corresponding

weight matrices for R-DNN and MP-DNN, respectively, ∀s =
2, . . . , S and ∀t = 2, . . . , T . The objectives of R-DNN and

MP-DNN are to minimize their respective MSEs

MSER =
1

Ntr

Ntr
∑

n=1

∥

∥

∥
hA,n − ĥA,n

∥

∥

∥

2

, (10)

MSEMP =
1

Ntr

Ntr
∑

n=1

∥

∥

∥
hB,n − ĥB,n

∥

∥

∥

2

, (11)

where h∆,n and ĥ∆,n denote the true channel of set ∆
and the channel approximated by the corresponding DNN,

respectively, with ∆ = A or B for the nth training sample.

Similar to the DI-DNN in Section III.A, both R-DNN and

MP-DNN include the input layer, three hidden layers with

ReLU activation function, and the output layer with hyperbolic

tangent activation function. But they have different numbers

of neurons and different weight matrices for each layer due to

their respective tasks. For R-DNN, the nth training sample has

the form of
(

r̄A,n,
hA,n

c

)

, where the input data r̄A,n is the LS

channel estimation of the true channel in A, hA,n, and
hA,n

c

denotes the target data that R-DNN tries to approximate. The

approximated channel corresponding to A of the nth training

sample is written as ĥA,n = ch̄A,n, where h̄A,n is the output

of R-DNN. Then the MSE in (10) is minimized by using

the backpropagation algorithm. The offline training of MP-

DNN is similar to R-DNN except that the nth training sample

is
(

r̄A,n,
hB,n

c

)

. For R-DNN and MP-DNN, the number of

neurons of each layer is dependent on the ratio of high-

resolution ADC antennas, η. The architectures of R-DNN and
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TABLE II
ARCHITECTURES OF THE R-DNN AND MP-DNN

Neural layer
Size of R-DNN Size of MP-DNN Activation

functionη=0.2 0.5 0.8 η=0.2 0.5 0.8

Input layer 26 64 102 26 64 102 -

Dense layer 1 50 120 200 50 120 200 ReLU

Dense layer 2 100 200 400 100 200 100 ReLU

Dense layer 3 50 120 200 140 120 50 ReLU

Output layer 26 64 102 102 64 26 tanh

MP-DNN under some typical values of η are presented in

Table II.1

C. Summarize DI-DNN and SIP-DNN based Approaches

For the channel estimation task in this article, the DI-DNN

based approach can be regarded as the direct application of

DNN. It simply incorporates the LS channel estimation of

all antennas but neglects the adverse impact of the severely

distorted signals quantized by the low-resolution ADCs on

the estimation performance. In contrast, the SIP-DNN based

approach is developed in a different philosophy to cover

the shortage of the DI-DNN based approach by selectively

utilizing the reliable observations corresponding to the high-

resolution ADC antennas. The underlying idea is to establish

a prediction mapping from the channels of high-resolution

ADC antennas to those of low-resolution ADC antennas. We

convert the original network to two parallel DNNs for ease of

offline training. The SIP-DNN and DI-DNN based approaches

have respective performance advantage and the combination

of them makes the DNN based channel estimation framework

quite sound for massive MIMO with mixed-ADC.

IV. NUMERICAL RESULTS

In this section, we evaluate the proposed DNN based

channel estimation approaches by using numerical results.

We set the number of antennas at the BS, M = 64, the

number of paths, L = 8, the average power gain of each

path σ2
α = 1, the AoA, ϕl, is chosen randomly from the set of

2π
20 × [0, 1, 2, . . . , 19]. The proposed DNNs are set as follows.

The training set, validation set, and testing set contain 90, 000,

10, 000, and 10, 000 samples, respectively.2 The architecture of

DI-DNN is detailed in Table I while SIP-DNN is set in Table II

under some typical values of η. Adam is used as the optimizer.

The number of epochs and learning rate are set as 100 and

1×10−3, respectively. The batch size is 128. The scaling factor

is set as c = 3. The state of the art linear and nonlinear channel

estimation methods are used for comparison: liner minimum

mean-squared error (LMMSE) and expectation maximization

Gaussian-mixture generalized approximate message passing

(EM-GM-GAMP) in [18]. According to [5] and [18], the

LMMSE estimator is given by ĥ∆,LMMSE = C∆(αC∆ +
σ2

0

P
I|∆| + (1 − α)diag(h∆h

H
∆))−1r̄∆, where ∆ = A or

1We set different numbers of neurons in hidden layers for R-DNN and MP-
DNN in different values of η to match the corresponding input and output
dimensions. This adaptive setting can balance the estimation accuracy and
DNN complexity.

2When generating the testing set, we use different AoAs from the training
set. Therefore, the proposed DNNs are not the simple fitting on the specific
training set but can learn the inherent channel structure and are suitable for
different channel statistics.
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Fig. 3. NMSE for LMMSE, EM-GM-GAMP, and the proposed NN based
approaches with block ADC resolution pattern.

B, C∆ = E{h∆h
H
∆} denotes the corresponding covariance

matrix, the value of α is set as 0 for ∆ = A and is taken

from [5, Table I] according to the ADC resolution for ∆ = B,

respectively. To evaluate the channel estimation performance,

we use the normalized MSE (NMSE), which is defined as

NMSE = E

{

‖h−ĥ‖2

‖h‖2

}

for the DI-DNN based approach and

as NMSE = ηE
{

‖hA−ĥA‖2

‖hA‖2

}

+ (1 − η)E
{

‖hB−ĥB‖2

‖hB‖2

}

for

LMMSE, EM-GM-GAMP, and the SIP-DNN based approach,

respectively.

Fig. 3(a) shows the NMSE performance versus SNR for

the LMMSE, EM-GM-GAMP, and proposed NN based ap-

proaches with η = 0.5 and block ADC resolution pattern,

where the high- and low-resolution ADC antennas are placed

separately, i.e., A = {1, 2, . . . , 32}. From Fig. 3(a), the DI-

DNN based approach always outperforms LMMSE and EM-

GM-GAMP. However, their performance is limited by the

error floor at the medium and high SNR regime due to the

low-resolution ADCs in B. In contrast, there is no significant

error floor for the SIP-DNN based approach since it does not

utilize those pilots quantized by low-resolution ADCs.3 As

a result, the SIP-DNN based approach outperforms LMMSE

and EM-GM-GAMP at the whole SNR regime and the DI-

DNN based approach at the medium and high SNR regime

3In the low SNR regime, the NMSE performance is limited by the SNR.
When the SNR becomes high, the bottleneck turns to the number of training
set data. So the slope of the SIP-DNN curve decreases as the SNR increases
after 20 dB.
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Fig. 4. NMSE for the proposed DNN based approaches with block and
random ADC resolution patterns.

remarkably, especially with mixed one-bit ADCs. The impact

of η on the NMSE performance is studied in Fig. 3(b) with

SNR = 20 dB. The advantage of the DI-DNN based approach

over LMMSE and EM-GM-GAMP is significant with a small

η and decreases along with the increase of η. The performance

of the SIP-DNN based approach is poor when η = 0.1 but is

improved rapidly as η increases. When η ≥ 0.4, it achieves

the best performance among all approaches. Interestingly, the

points of intersection of the DI-DNN and SIP-DNN based

approaches indicate that the system can select one of them to

guarantee the best channel estimation performance according

to the SNR or η. In addition, to evaluate the effect of different

NN architectures on estimation accuracy, we use the CNN to

replace the fully-connected DNN in SIP-DNN based approach,

which is called a SIP-CNN in Fig. 3(a) and Fig. 3(b). The CNN

consists of the input layer, two convolutional layers, one flatten

layer, one dense layer, and the output layer. It can be seen that

the fully-connected and convolutional networks achieve very

similar performance with different SNRs or η, which reveals

that the basic fully-connected architecture is adequate for the

channel prediction task.

Then we investigate a less structured random ADC resolu-

tion pattern where the antennas with high- and low-resolution

ADCs are placed arbitrarily. Fig. 4(a) and Fig. 4(b) show the

NMSE performance for the proposed DNN based approaches

under block and random ADC resolution patterns versus

SNR and η, respectively. From the figure, there is almost

no performance loss even if the proposed approaches are

applied to the unstructured ADC resolution pattern. Although

the structured block ADC resolution pattern will be the main-

stream configuration in future massive MIMO systems, Fig. 4

is still important to demonstrate useful insights. It shows that

the proposed DNN based approaches are robust to different

ADC resolution patterns instead of dependent on the specific

one. Furthermore, it reveals that the proposed approaches can

learn the inherent spatial correlation in a quite comprehensive

way and thus are promising to be widely applied to various

types of ADC resolution patterns.

V. CONCLUSION

In this article, DL is adopted to address the challenging

channel estimation problem in mixed-ADC massive MIMO

systems. DI-DNN and SIP-DNN based approaches are de-

veloped to exploit the observations associated with all an-

tennas and high-resolution ADC antennas, respectively, for

channel estimation. Numerical results show that the proposed

approaches are superior to the existing methods and are

promising to be widely applied to practical systems with

different ADC resolution patterns. The combination of the DI-

DNN and SIP-DNN based approaches makes the DNN based

channel estimation framework quite sound for massive MIMO

with mixed-ADC.
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