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Analysis and Optimization of Successful Symbol Transmission

Rate for Grant-free Massive Access with Massive MIMO

Gang Chen, Ying Cui, Hei Victor Cheng, Feng Yang, and Lianghui Ding

Abstract—Grant-free massive access is an important technique
for supporting massive machine-type communications (mMTC)
for Internet-of-Things (IoT). Two important features in grant-
free massive access are low-complexity devices and short-packet
data transmission, making the traditional performance metric,
achievable rate, unsuitable in this case. In this letter, we in-
vestigate grant-free massive access in a massive multiple-input
multiple-output (MIMO) system. We consider random access
control, and adopt approximate message passing (AMP) for user
activity detection and channel estimation in the pilot transmission
phase and small phase-shift-keying (PSK) modulation in the data
transmission phase. We propose a more reasonable performance
metric, namely successful symbol transmission rate (SSTR), for
grant-free massive access. We obtain closed-form approximate
expressions for the asymptotic SSTR in the cases of maximal
ratio combining (MRC) and zero forcing (ZF) beamforming at the
base station (BS), respectively. We also maximize the asymptotic
SSTR with respect to the access parameter and pilot length.

I. INTRODUCTION

Grant-free massive access is an important technique for

supporting massive machine-type communications (mMTC)

for Internet-of-Things (IoT), which is one of the three main

use cases for 5G. In grant-free massive access, there are

two phases, i.e., the pilot transmission phase and the data

transmission phase. A main technical challenge in massive

access is to detect active users and estimate their channels in

the pilot transmission phase in the presence of an excessive

number of potential users. As only a small subset of users is

active at any given time, the user activity detection and channel

estimation problem can be modeled as a compressed sensing

problem. Among the existing algorithms for compressed sens-

ing, approximate message passing (AMP) algorithm is widely

adopted, as it provides a good tradeoff between performance

and complexity. In [1], [2], the authors adopt AMP for user

activity detection and channel estimation in massive multiple-

input multiple-output (MIMO) systems. The asymptotic per-

formance of user activity detection and channel estimation is

analyzed in [1], and the asymptotic achievable rate is analyzed

in [2] (assuming perfect user activity detection). In [3], the

authors propose channel-based access control and modified

AMP for user activity detection, and analyze the performance

of user activity detection. Note that in [1] and [3], performance

analysis of the data transmission phase is not considered.

Two main features of data transmission in mMTC distinct

it from data transmission in traditional human-type commu-

nications. Firstly, most data packets are short, i.e., usually
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contain a few bytes. Secondly, low-complexity devices are

used, and thus small modulation and simple channel coding

are preferable. Thus, the achievable rate adopted in [2], which

is an information-theoretic limit in the infinite blocklength

regime, may not be a suitable performance metric for data

transmission in mMTC. To the best of our knowledge, existing

analytical results for data transmission cannot reflect the

aforementioned features of mMTC. In addition, the authors

in [2] optimize the pilot length to maximize the achievable

rate for only one user activity realization, without considering

the activity statistics, making the obtained pilot length less

suitable for the case where the total number of active users

has a large variance. Finally, the authors in [3] optimize the

access control parameter to maximize the user identification

performance, without considering the channel estimation and

data transmission, making the obtained access control appli-

cable only for limited scenarios.

In this letter, we would like to address the above issues. We

study grant-free massive access in a massive MIMO system.

We consider random access control, and adopt AMP for user

activity detection and channel estimation. Considering low-

complexity devices, we adopt small phase-shift-keying (PSK)

modulation, e.g., BPSK and QPSK, for data transmission

according to the standards [4]. In addition, considering trans-

mission of short data packets, we propose a new performance

metric, namely successful symbol transmission rate (SSTR),

which reflects the performance of user activity detection and

channel estimation in the pilot transmission phase and the

performance of detection in the data transmission phase. The

proposed SSTR is a more suitable performance metric for

mMTC than the achievable rate [2], and its analysis is also

more challenging. We first obtain closed-form approximate

expressions for the asymptotic SSTR in the cases of maximal

ratio combining (MRC) and zero forcing (ZF) beamforming

at the base station (BS), respectively. The analytical results

significantly facilitate the evaluation and optimization of the

SSTR. Then, we maximize the asymptotic SSTR by optimiz-

ing the access parameter and pilot length. The optimization

results provide practical guidelines for the design of mMTC

systems. Finally, numerical results demonstrate the accuracy

of the analysis and the importance of the optimization.

II. SYSTEM MODEL

Consider a massive access scenario arising from mMTC in a

single cell with N users (devices) [1], [2], [5]. Let N denote

the set of all users. The BS is equipped with M antennas

while each user is equipped with one antenna. We adopt a

block-fading channel model where the channels within one

coherence interval (CI) of length T symbols remain constant.

We consider transmission in one CI, and denote the complex

uplink channel vector from user n to the BS by hn ∈ CM×1.
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Assume hn ∼ CN (0, γnIM ), where γn represents the path

loss and shadowing component [1]. Assume that γn, n ∈ N
are perfectly known at the BS, and that all users are perfectly

synchronized. We consider random access control with access

parameter ǫ. Within each CI, the users generate data with

probability pa, and access the channel with probability ǫ once

they have data to send, both in i.i.d. manners. Thus, within

each CI, the users send data via the channel (i.e., become

active) with probability paǫ in an i.i.d. manner. Note that pa
is a given system parameter, and ǫ is a design parameter for

access control (controlling transmitting user sparsity) which

will be optimized later. Denote by αn ∈ {1, 0} the random

activity state of user n with Pr[αn=1]=paǫ.
We adopt a grant-free multiple-access scheme, where each

user n ∈ N is assigned a unique pilot sequence with L
symbols, denoted by an , (an,1, · · · ,an,L) ∈ CL×1. The

pilot sequences and their correspondence to the user identities

are known at the BS. In a massive access scenario, the pilot

length is typically much smaller than the total number of users,

i.e., L ≪ N . Thus, it is not possible to assign mutually

orthogonal pilot sequences to all N uses. Note that L is a

design parameter which will be optimized later. As in [1]–

[3], [5], assume that for all n ∈ N , the entries of an are

independently generated according to CN (0, 1/L). Each CI

has two phases which will be illustrated below.

A. Pilot Transmission Phase

In the first phase, i.e., the pilot transmission phase, the

active users synchronously send their pilot sequences to the

BS. Therefore, the matrix of received signals at M antennas

Ypilot ∈ CL×M is given by:

Ypilot =
∑

n∈N

√
Lρpilotn αnanh

T
n + Z, (1)

where Lρpilotn represents the transmit energy for the pilot

sequence of user n, and Z ∈ CL×M is the additive noise

at the BS with each element following CN (0, σ2). Denote

xn , αnhn ∈ CM×1, n ∈ N . The goal of the BS in the pilot

transmission phase is to detect user activities and estimate the

channels of active users by recovering xn, n ∈ N from the

noisy observations Ypilot. As paǫ ≪ 1, a lot of xn, n ∈ N
are zero vectors. Thus, such a reconstruction problem is a

compressed sensing problem. Following [1], this paper adopts

a low-complexity AMP algorithm to recover xn, n ∈ N ,

as it provides a good tradeoff between performance and

computational complexity. For all n ∈ N , based on the

estimate x̂n of xn, the detected user activity α̂n ∈ {0, 1}
can be obtained by hard-decision detection, and if α̂n = 1,

the estimated channel vector ĥn for hn is x̂n. Denote ∆hn

as the corresponding channel estimation error for each user

n, i.e., hn = ĥn + ∆hn. Moreover, the convergence results

of AMP provide the distributions of the estimates x̂n, n ∈ N
and estimation errors ∆xn , xn − x̂n, n ∈ N .

B. Data Transmission Phase

In the second phase, i.e., the data transmission phase, the

active users directly send their data to the BS using the

remaining T − L symbols. We adopt PSK modulation for

data transmission, e.g., BPSK and QPSK, as suggested in the

standards [4]. Let sWn denote a W -array PSK symbol of user

n with unit power, i.e., ‖sWn ‖2 = 1, where W ∈ {2, 4, · · · }.

Therefore, the received signal at the BS is expressed as:

ydata =
∑

n∈N :αn=1

√
ρdatan hns

W
n + zdata, (2)

where ρdatan represents the transmit power for a data symbol

of user n, and zdata ∈ C
M×1 is the additive noise at the BS

with each element following CN (0, σ2).
Based on the detected user activities and estimated channels,

the BS tries to decode the data symbols of the users that are

detected to be active using two linear receive beamforming

strategies, namely MRC and ZF. Denote:

Ûi ,

{
Ĝ, i = MRC

Ĝ
(
ĜHĜ

)−1

, i = ZF
, (3)

where Ĝ , (ĥn)n∈N :α̂n=1 ∈ C
M×K̂ with K̂ ,

∑
n∈N α̂n

denoting the number of the users that are detected to be active.

Let ûi
n denote the column of Ûi that corresponds to user n

with α̂n = 1. Employing beamforming vector ûi
n, by (2) and

hn = ĥn +∆hn, we have:

r̂i,Wn = ûiH
n ydata

= ûiH
n

(
∑

n∈N :αn=1

√
ρdatan

(
ĥn +∆hn

)
sWn + zdata

)

=
√
ρdatan ûiH

n ĥns
W
n + ûiH

n

∑

n′∈N :α
n′=1,n′ 6=n

√
ρdatan′ ĥn′sWn′

+ ûiH
n

∑

n′∈N :α
n′=1

√
ρdatan′ ∆hn′sWn′ + ûiH

n zdata. (4)

Then, the BS performs the minimum-distance detection on

r̂i,Wn by treating the term induced by channel estimation errors

and interference from other users as additional noise, and

obtains the estimated symbol ŝi,Wn for user n with α̂n = 1.

III. PERFORMANCE METRIC

In this letter, we use the SSTR, which represents the total

number of symbols that can be correctly detected at the BS

within a CI, as the performance metric for data transmission

in grant-free massive access.

Definition 1: For given pilot length L and access parameter

ǫ, the SSTR under the receive beamforming strategy i and the

PSK modulation of size W is defined as:

Φ(i,W )(L, ǫ),
T−L
T

E

[
∑

n∈N
I[αn=1, α̂n=1, ŝWn =sWn ]

]
, (5)

where I[·] represents the indicator function, and the expectation

is taken over all sources of randomness.

Note that the SSTR captures user activity detection errors,

channel estimation errors and data detection errors. The SSTR

is a more suitable performance metric for grant-free massive

access. However, in the general case, the analytical form of

Φ(i,W )(L, ǫ) is not tractable, due to the complicated signal pro-

cessing in grant-free massive access. Thus, as in [2], we focus
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on the asymptotic case. Specifically, in Section III and Section

IV, we consider the asymptotic analysis and optimization of

the SSTR at large M,N and L and high SNR under a simple

power control policy, i.e., statistical channel inversion, which

can reduce the channel gain differences between users, and is

especially beneficial to users with relatively weaker channel

gains [5].

With statistical channel inversion, ρpilotn , n ∈ N and

ρdatan , n ∈ N are chosen such that ρpilotn γn=ρ
data
n γn=γ, n∈

N , where γ denotes the receive power for both pilot symbols

and data symbols at each user. That is, the transmission powers

of users scale inversely proportionally to their path-loss and

shadowing components. With the same receive power, all users

are statistically the same. Therefore, we can drop the user

index n, and some dependence on (αn)n∈N reduces to the

dependence on the number of active users K,
∑

n∈N αn.

Note that K follows binomial distribution B(N, paǫ), i.e.,

Pr[K=k]=Ck
N (paǫ)

k(1−paǫ)N−k,q(N,k), (6)

where k=0 · · ·N . When there are k active users and the pilot

length is L, all k active users have the same average probability

of missed detection, denoted by p(k,L) , EH[Pr[α̂n =
0|H,K = k, αn = 1]], and the same average symbol error

rate (SER) under receive beamforming strategy i and PSK

modulation of size W , denoted by ψ(i,W )(k,L),EH[Pr[ŝWn 6=
sWn |H,K=k, α̂n=αn=1]], where n represents the index of a

typical active user, and H,(hn)n∈N .

IV. ANALYSIS OF SSTR

In this section, we derive an approximate expression of the

asymptotic Φ(i,W )(L, ǫ) at large M,L,N and high SNR. In

the regime of L ≤ k where AMP does not work, we assume

that activity detection and data detection fail, i.e., p(k, L) =
1 and ψ(i,W )(k, L) = 1. In the following, we focus on the

asymptotic analysis of p(k, L) and ψ(i,W )(k, L) in the regime

of k < L. First, we use the asymptotic expression of p(k, L)
at large L,N, k and high SNR obtained in [1, Theorem 4] as

an approximation for p(k, L) at large L,N and high SNR and

k < L.

Lemma 1: [1, Theorem 4] At large L, N and high SNR,

for all k < L,

p(k,L)≈ exp(−M(b(k,L)−1−log(b(k,L))))

2
√
2πM

(
(1−b(k,L))−1

+
(√

2(b(k, L)−1−log (b(k, L)))
)−1
)
, (7)

where b(k, L), σ2

γ(L−k) log
(
1+ γ(L−k)

σ2

)
.

Next, we derive an asymptotic approximation of ψ(i,W )(k,L).
Lemma 2: At large M,L,N and high SNR, for all k < L,

ψ(i,W )(k,L)≈





Q
(√

2Γi(k,L)
)
, W=2

2Q
(√

Γi(k,L)
)
−
(
Q
(√

Γi(k,L)
))2
,W=4

,(8)

where Q(x)= 1√
2π

∫∞
x

exp
(
−t2

2

)
dt, and

Γi(k, L)=





Mγ2

(

γ+ σ2

L−k

)

(kγ+σ2)
, i = MRC

(M−k)(L−k)γ2

σ2(γL+σ2) ,M > k, i = ZF

. (9)

Proof: For notation simplicity, let C−n denote the event

that αn′= α̂n′ , n′∈N , n′ 6=n. At large M , we have:

Pr[ŝWn 6=sWn |H,K=k, α̂n=αn=1]

= Pr[ŝWn 6=sWn |H,K=k, α̂n=αn=1, C−n]Pr[C−n|H,K=k,

α̂n=αn=1]+Pr[ŝWn 6=sWn |H,K=k, α̂n=αn=1, C−n]

× Pr[C−n|H,K=k, α̂n=αn=1]

(a)≈ Pr[ŝWn 6=sWn |H,K=k, α̂n=αn=1, C−n],

where (a) is due to Pr[C−n|H,K=k, α̂n=αn=1]→1 and

Pr[C−n|H,K=k, α̂n=αn=1]→0 as M→∞. Accordingly, we

assume at large M , αn= α̂n, n∈N [1], [2]. In the following,

we analyze Pr[ŝWn 6= sWn |H,K= k, α̂n=αn=1, C−n] as an

approximation of Pr[ŝWn 6=sWn |H,K=k, α̂n=αn=1] at large M .

The SINR at a particular channel real-

ization is Γ̃i
n(k, L) =

ρdata
n

|ûiH

n
ĥn|2

F
, where

F =
∑

n′∈N :α
n′=1,n′ 6=n ρ

data
n′ E[|ûiH

n ĥn′ |2] +∑
n′∈N :α

n′=1 ρ
data
n′ E[|ûiH

n ∆hn′ |2] + E[|ûiH
n zdata|2]. At

large M , in the regime of k < M ,

Γ̃ZF
n (k, L)

(b)
=

ρdatan

E

[[(
ĜHĜ

)−1]

nn

]( ∑
n′∈N :α

n′=1

ρdatan′ E [‖∆hn′‖2]+E[‖zdata‖2]
)

(c)≈ (M−k)(L−k)γ2
σ2 (γL+σ2)

, ΓZF(k, L),

where (b) is due to (3), and (c) is due to that

ĥn ∼ CN
(
0,

ρpilot
n

(L−k)γ2
n

ρ
pilot
n (L−k)γn+σ2

IM

)
and ∆hn ∼

CN
(
0, γnσ

2

ρ
pilot
n (L−k)γn+σ2

IM

)
, as M → ∞ [1], and

ĜHĜ∼Wk

(
M,

ρpilot
n

(L−k)γ2
n

ρ
pilot
n (L−k)γn+σ2

IM

)
[6]. At large M ,

Γ̃MRC
n (k, L)

(d)≈ ρdatan (E[|ĥH
n ĥn|])2

D
(e)≈ Mγ2(

γ + σ2

L−k

)
(kγ + σ2)

, ΓMRC(k, L),

where D =
∑

n′∈N :α
n′=1,n′ 6=n ρ

data
n′ E[|ĥH

n ĥn′ |2] +∑
n′∈N :α

n′=1 ρ
data
n′ E[|ĥH

n ∆hn′ |2] + E[|ĥH
n zdata|2] +

ρdatan E[|ĥH
n ĥn|2]− ρdatan (E[|ĥH

n ĥn|])2, (d) is from [7], and

(e) is due to the distributions of ĥn and ∆hn, as M → ∞
[1]. Then, by [8], Pr[ŝWn 6=sWn |H,K=k, α̂n=αn=1, C−n] ={
Q
(√

2Γi(k,L)
)
, W = 2

2Q
(√

Γi(k,L)
)
−
(
Q
(√

Γi(k,L)
))2
, W = 4

, ψ̃(i,W )(k,L).

As ψ(i,W )(k, L) ≈ EH[Pr[ŝWn 6= sWn |H,K = k, α̂n = αn =
1, C−n]] = ψ̃(i,W )(k, L), we complete the proof.

Based on Lemma 1 and Lemma 2, we obtain an approximate

expression of Φ(i,W )(L, ǫ) at large M , N , L and high SNR.

Theorem 1: At large M , N , L and high SNR,

Φ(i,W )(L, ǫ)≈T−L
T

N∑

k=1

kq(k)(1−p(k,L))
(
1−ψ(i,W )(k, L)

)

, Φ̃(i,W )(L, ǫ),

where p(k, L) is given by Lemma 1 and ψ(i,W )(k, L) is given
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by Lemma 2.

Proof: We have:

Φ(i,W )(L, ǫ)
(a)
=
T−L
T

NEH

[
Pr[αn=1, α̂n=1, ŝWn =sWn |H]

]

=
T−L
T

N

N∑

k=1

EH

[
Pr[αn = 1|H]Pr[K = k|H, αn = 1]

×Pr[α̂n=1|H,K=k, αn=1]Pr[ŝ
W
n=s

W
n |H,K=k, αn=1, α̂n=1]

]

(b)
=
T−L
T

NPr[αn=1]

N∑

k=1

Pr[K=k|αn=1]EH

[
Pr[α̂n=1|H,

K=k, αn=1]Pr[ŝWn =sWn |H,K=k, αn=1, α̂n=1]
]

(c)≈ T−L
T

NPr[αn=1]

N∑

k=1

Pr[K=k|αn=1]EH

[
Pr[α̂n=1|H,

K=k, αn=1]
]
EH

[
Pr[ŝWn =sWn |H,K=k, αn=1, α̂n=1]

]
(10)

(d)
=
T−L
T

N∑

k=1

kq(k) (1−p(k, L))
(
1− ψ(i,W )(k, L)

)
,

where (a) is due to (5) and the statistical channel inversion,

(b) is due to the independence between α, and H, (c) is due

that Pr[α̂n=1|H,K=k, αn=1] and Pr[ŝWn =sWn |H,K=k, αn=
α̂n=1] become approximately independent at large M [1], and

(d) is due to Pr[αn=1]=paǫ, Pr[K=k|αn=1]=q(N−1, k−1),
EH[Pr[α̂n=1|H,K=k, αn=1]]=1−p(k, L) and EH[Pr[ŝWn =
sWn |H,K=k, αn=α̂n=1]]=1−ψ(i,W )(k, L).

In Fig. 1, each analytical curve and the correspond-

ing Monte-Carlo points indicate T−L
T

(1−p(k, L)) (1 −
ψ(i,W )(k, L)) and T−L

T
EH[Pr[α̂n=1|H,K=k, αn=1]Pr[ŝ

W
n =

sWn |H,K=k, αn= α̂n=1]], respectively. From Fig. 1, we can

see that each analytical curve and the corresponding Monte-

Carlo points closely match. This demonstrates the accuracy

of the approximations in (10), Lemma 1 and Lemma 2,

and hence demonstrates the accuracy of Theorem 1. In Fig.

2, each analytical curve and the corresponding Monte-Carlo

points indicate Φ(i,W )(L, ǫ) and Φ̃(i,W )(L, ǫ), respectively.

The fact that each analytical curve and the corresponding

Monte-Carlo points closely match further demonstrates the

accuracy of Theorem 1. The computational complexity for

evaluating Φ̃(i,W )(L, ǫ) is O(N3). The closed-form expression

Φ̃(i,W )(L,ǫ) in Theorem 1 can be used for efficiently evaluating

and optimizing the SSTR in practical systems.

From Lemma 1 and Lemma 2, we know that as M or SNR

increases, p(k, L) and ψ(i,W )(k, L) decrease, which results

in the increment of Φ̃(i,W )(L, ǫ). Other system parameters

influence Φ̃(i,W )(L, ǫ) in very complex manners, and their

impacts have to be obtained using numerical evaluation. For

example, from Fig. 2, we can see that when N, pa, ǫ or L
is small, Φ̃(i,W )(L, ǫ) increases with it and when N, pa, ǫ or

L is large, Φ̃(i,W )(L, ǫ) decreases with it. The reasons are

as follows. As N, pa or ǫ increases, on average, the number

of users sending data (i.e., the number of transmitted data

symbols) increases. When N, pa or ǫ is small, the accuracy

of user activity detection and channel estimation decreases

slowly with N, pa or ǫ, and hence Φ̃(i,W )(L, ǫ) increases with

N, pa or ǫ. When N, pa or ǫ is large, the accuracy of user

activity detection and channel estimation decreases fast with

M

Fig. 1: SSTR for an active user at N = 2000, k = 100, L = 110, T = 200,

SNR = 10dB and W = 4.

N

(a) SSTR versus N at ǫ = 0.5,
L = 110, pa = 0.1.

p
a

(b) SSTR versus pa at ǫ = 0.5,
L = 110, N = 2000.

(c) SSTR versus ǫ at L = 110,
N = 2000, pa = 0.1.

L

(d) SSTR versus L at ǫ = 0.5,
N = 2000, pa = 0.1.

Fig. 2: SSTR versus N, pa, ǫ and L at M = 128, T = 200, SNR = 10dB

and W = 4.

N, pa or ǫ, and hence Φ̃(i,W )(L, ǫ) decreases with N, pa or

ǫ. In addition, a longer pilot length L leads to better user

activity detection and channel estimation but fewer transmitted

data symbols. When L is small, the accuracy of activity

detection and channel estimation increases fast with L, and

hence Φ̃(i,W )(L, ǫ) increases with L. When L is large, the

accuracy of activity detection and channel estimation increases

slowly with L, and hence Φ̃(i,W )(L, ǫ) decreases with L.

V. OPTIMIZATION OF SSTR

Fig. 2(c) and Fig. 2(d) indicate that it is important to

carefully select the system design parameters ǫ and L so as

to improve the SSTR. In this section, we consider the SSTR

maximization with respect to ǫ and L.

A. Optimization of Access Parameter

In this part, we maximize the SSTR Φ̃(i,W )(L, ǫ) with

respect to ǫ for given L:1

g(L) , max
0≤ǫ≤1

Φ̃(i,W )(L, ǫ). (11)
The problem in (11) is not in a convex form. By exploiting

its structural properties, we have the following result.

Lemma 3: The optimization in (11) is equivalent to:

g(L) =max
ǫ,t

N∑

k=1

f(k, L)ǫktN−k

s.t. 0 ≤ paǫ + t ≤ 1, 0 ≤ ǫ ≤ 1,

(12)

1This problem is important for adjusting ǫ under abnormal conditions (e.g.,
pa is far from its typical value).
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where f(k, L)= T−L
T
Ck

Npa
kk (1−p(k, L)) (1−ψ(i,W )(k, L)).

Proof: By Theorem 1, we have:

Φ̃(i,W )(L, ǫ) =

N∑

k=1

f(k, L)ǫk(1− paǫ)
N−k.

By introducing an auxiliary variable t = 1 − paǫ, the opti-

mization in (11) can be equivalently transformed to:

max
ǫ,t

N∑

k=1

f(k, L)ǫktN−k

s.t. t = 1− paǫ, 0 ≤ ǫ ≤ 1.

As
∑N

k=1 f(k, L)ǫ
ktN−k is increasing in t, replacing the

equality constraint t = 1 − paǫ with the inequality constraint

t ≤ 1 − paǫ, i.e., paǫ + t ≤ 1, in the optimization will not

change the optimal solution (the inequality constraint is active

at the optimal solution). In addition, as t = 1−paǫ, we can

add t+paǫ ≥ 0 in the optimization without loss of optimality.

Therefore, we complete the proof.

The optimization problem in (12) is a signomial geometric

programming (SGP). A stationary point of it can be obtain

using complementary geometric programming (CGP) [9]. We

can run CGP multiple times, each with a random feasible

initial point, and choose the stationary point with the largest

objective value as a suboptimal solution of the optimization

problem in (12). We omit the details due to page limitation.

Fig. 2(c) demonstrates that the optimization with respect to ǫ
for given L is of critical importance for SSTR improvement.

B. Optimization of Pilot Length

In this part, we maximize the SSTR Φ̃(i,W )(L, ǫ) with

respect to L for given ǫ:2

max
L∈{1,2,··· ,T−1}

Φ̃(i,W )(L, ǫ). (13)

This is a discrete optimization problem. Solving it requires

computing Φ̃(i,W )(L,ǫ) (which is a sum of N terms) for all

L ∈ {1, 2, · · · , T−1}. To reduce computational complexity,

we adopt the mean approximation (i.e., approximating the

expectation of a function of a random variable by the function

of the expectation of the random variable) for Φ̃(i,W )(L,ǫ):

Φ̃(i,W )(L, ǫ)

=

(
L−1∑

k=1

q(k)

)
T−L
T

L−1∑

k=1

q(k)
∑L−1

k=1q(k)
k(1−p(k,L))

(
1−ψ(i,W )(k,L)

)

≈ T−L
T

K̄<L

(
1−p(K̄<L, L)

)(
1−ψ(i,W )(K̄<L, L)

)L−1∑

k=1

q(k)

=
T−L
T

(
1−p(K̄<L, L)

)(
1−ψ(i,W )(K̄<L, L)

)L−1∑

k=1

kq(k), (14)

where K̄<L ,

∑

L−1

k=1
kq(k)

∑

L−1

k=1
q(k)

. Given the approximation of

Φ̃(i,W )(L, ǫ) in (14), we only need to compute p(K̄<L, L)
and ψ(i,W )(K̄<L, L), and find the optimal L for given ǫ
using exhaustive search (i.e., calculate Φ̃(i,W )(L, ǫ) for all

L ∈ {1, 2, · · · , T−1}, and select L that achieves the maximum

2This problem is important for the optimization of L without access control.

among them). Fig. 2(d) shows that the error due to mean

approximation is negligible. Fig. 2(d) also demonstrates that

the optimization with respect to L for given ǫ is of great

importance for SSTR improvement.

C. Joint Optimization of Pilot Length and Access Parameter

In this part, we jointly optimize L and ǫ to maximize the

SSTR Φ̃(i,W )(L, ǫ):

max
0≤ǫ≤1,L∈{1,2,··· ,T−1}

Φ̃(i,W )(L, ǫ), (15)

which is equivalent to:

max
L∈{1,2,··· ,T−1}

max
0≤ǫ≤1,

Φ̃(i,W )(L, ǫ) = max
L∈{1,2,··· ,T−1}

g(L),

where g(L) is given by (11). Thus, we can solve the joint

optimization problem in (15) based on the optimal solution

of the problem in (11), and exhaustive search over L ∈
{1, 2, · · · , T − 1}.

VI. CONCLUSION

In this letter, we investigated grant-free massive access

in a massive MIMO system. We considered random access

control, and adopted AMP for user activity detection and

channel estimation in the pilot transmission phase and PSK

modulation in the data transmission phase. We proposed a

more reasonable performance metric, i.e., SSTR. We focused

on the analysis and optimization of the asymptotic SSTR.

Both analysis and optimization results offer important design

insights for practical mMTC systems.
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