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Abstract—This work studies the spectral efficiency achiev-

able when a very large number of terminals are connected

simultaneously to a central node (uplink) through indepen-

dent and identically-distributed flat-fading channels. Assuming

that terminals only have statistical channel state information

(CSI), the optimum random transmitted-energy allocation is

formulated considering a non-orthogonal direct-sequence code-

division multiple access (DS-CDMA) where all users transmit

using the same modulation and error correcting code and the

receiver implements successive interference cancellation (SIC).

Focusing on low-power terminals, optimization is carried out

by imposing constraints on both the average and peak per-

user transmitted energy. Simulations have revealed that a limited

number of random energy levels, whose number is determined

by the channel power gain variance, is sufficient to achieve

approximately the maximum spectral efficiency that would be

obtained under direct optimization of the received energy profile.

Index Terms—Non-orthogonal multiple access, DS-CDMA,

successive interference cancellation, random energy allocation.

I. INTRODUCTION

I
N the context of the Internet of Things and 5G applications,
new multiple access techniques enabling the connection of

a large number of low-rate devices need to be developed [1][2].
In this kind of massive access scenarios, the system throughput
is fundamentally limited by multiple-access interference, and
advanced interference management strategies are required to
boost the system spectral efficiency.

A classical result in information theory states that the cor-
ners of the multiple access channel capacity region are achiev-
able by means of non-orthogonal multiple access (NOMA) in
conjunction with SIC at the receiver [3, Sec. 6.1]. However, to
attain this bound, each terminal has to transmit in the uplink
using a distinct capacity-achieving forward error correcting
(FEC) code with a coding rate dependent on the instantaneous
CSI. Unfortunately, if we focus on applications involving hun-
dreds, or even thousands of users, it is not feasible to generate
and distribute this large collection of low-rate near-capacity-
achieving codes. A prevalent, practical alternative is to assign
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the same (moderate coding rate) FEC code to all users and
to distinguish users using different non-orthogonal spreading
sequences, following a so-called code-domain NOMA [1][2].
Among all the existing code-domain NOMA techniques, in
this letter we consider the classical (non-orthogonal) DS-
CDMA presented in the seminal paper by Verdú et al. [4].
A prominent implementation of non-orthogonal DS-CDMA,
which exploits the multipacket reception capability of SIC, has
been developed and standardised in recent times [5][6]. For
the interested reader, a comprehensive enumeration of other
relevant code-domain NOMA techniques is given in [1][2][7].

In the case of non-orthogonal DS-CDMA, it is crucial to
unbalance the users’ received energy appropriately, as is done
in power-domain NOMA [8], with the aim of enhancing SIC
performance [9] and approaching the sum capacity of DS-
CDMA [4]. If every transmitter is aware of its individual
(instantaneous) CSI, the optimum user-asymptotic (determin-
istic) energy allocation was derived in [10] for an arbitrary
modulation and coding scheme (MODCOD). In the case of
power-domain NOMA without spreading and two colliding
users having perfect CSI, Xu et al. investigate in [11] the
random energy probability distribution that maximizes the SIC
throughput when using capacity-achieving codes, concluding,
as was already conjectured in [12], that a multilevel discrete
energy distribution is the optimum distribution. In the same
line as above, a simplified random discrete multilevel energy
allocation method is proposed in [13] for the Gaussian channel
that extends [11] to deal with an arbitrary number of users.

In this paper, we go one step forward and determine the
random energy allocation strategy that maximizes the system
spectral efficiency when a massive number of DS-CDMA users
access the central SIC receiver sharing the same practical

MODCOD and having only statistical CSI. Two main results
are obtained in this case: 1) the aggregate spectral efficiency
is maximized by transmitting a limited, discrete number of
energy levels; 2) random energy allocation achieves roughly
the spectral efficiency of deterministic energy allocation with
perfect instantaneous CSI [10] as well as the maximum
spectral efficiency that could be attained in case of a constant
channel and direct energy profile design at reception [14].

II. PROBLEM STATEMENT

We consider K wireless terminals transmitting simultane-
ously to a central receiver using slotted random access. The
received baseband signal in the slot of interest is given by

y(t) =
KX

k=1

p
Ex [k]h[k]

X

i

ai[k]ck, i (t � iT � ⌧[k]) +w(t) (1)

where Ex [k] is the (average) energy per symbol transmitted by
user k, h[k] the channel (power) gain between user k and the
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central receiver, ai[k] is the sequence of unit-variance coded
symbols sent by user k, ck, i (t) the unit-energy waveform of
effective duration T and limited bandwidth B assigned to user
k during the transmission of symbol i, and w(t) complex
zero-mean white Gaussian noise of two-sided power spectral
density N0. The information of all users is encoded using the
same practical modulation and coding scheme (MODCOD),
which packs Rc information bits in every transmitted symbol
ai[k]. Thus, all users transmit at the same fixed rate: Rc

information bits per channel use.
We consider a DS-CDMA system based on long pseudo-

random spreading sequences spanning many symbol intervals
[4]. The long spreading signal ck (t) ⌘

P
i ck, i (t� iT ) assigned

to user k fulfils
⇤

ck, i (t)ck 0, i0 (t)dt = 1
SF for k , k

0 and all
i, i0 with SF ⌘ B · T the spreading factor [4]. For the sake of
clarity, we restrict ourselves to a quasi-synchronous scenario
in which users are received with almost identical delay and
the receiver is correctly synchronized, i.e. ⌧[k] ⇡ 0.

At every time slot, each user selects randomly its transmitted
symbol energy Ex [k] from the ordered set {0, x1, x2, . . . , xM },
with probabilities {px [m]}m=0, ...,M , where px [0] is the backoff
probability associated with the null energy level. Accordingly,
there will be, on average, K0 ⌘ (1� px [0])K users that decide
to transmit during the slot (active users) and K �K0 = px [0]K
that decide to remain silent (idle users).

A frequency-flat slow block fading channel model is con-
sidered, in which the channel (power) gain h[k] of user k

is constant during the time slot. Moreover, the K channel
gains are independent and identically distributed according to a
known probability distribution function Fh (h) ⌘ Pr(h[k]  h).

At every time slot, the K received packets are sorted
according to the received symbol energy Ey [k] ⌘ Ex [k]h[k],
and decoded sequentially from the strongest to the weakest
user. If all users share the same MODCOD and thus transmit
at the same rate, this decoding order is the one that maxi-
mizes the aggregate spectral efficiency. Moreover, to enable
mathematical tractability, we consider that users are always
decoded in the correct order despite errors in the estimation
of the received symbol energies {Ey [k]}k=1, ...,K . Finally, note
that the order of individual users changes at every time slot
due to the randomness of Ey [k]. With some abuse of notation,
index k will be used hereinafter to reindex users at every time
slot according to their instantaneous received energy Ey [k]
from k = K (strongest user) to k = 1 (weakest user).

After ordering the K users, the following SIC policy is
implemented; if packet k is decoded successfully, which is
checked using a Cyclic Redundancy Check (CRC) code1, the
signal of user k is reconstructed and subtracted from the
received signal y(t). Due to reconstruction errors, cancellation
will be imperfect in that case. Otherwise, if the packet is not
correctly decoded, this user is not cancelled and the receiver
proceeds with the next user. For this SIC architecture [14], the
SINR of user k is given by the following expression:

�[k] =
Ey [k]

N0 +
1
SF

Pk�1
j=1 Ey [ j] + 1

SF

PK
j=k+1 ✏[ j]Ey [ j]

(2)

1To simplify the analysis, we will consider hereinafter that the CRC code
is error-free, that is, that its misdetection probability is null.

where ✏[k] stands for the fraction of residual interference
energy from user k that remains in the received signal y(t)
after processing this user. To characterize ✏[k], two positive
decreasing functions of the SINR are required: RI(�), which
models the fraction of residual interference energy after im-
perfect cancellation, and PSR(�) ⌘ 1 � PER(�), which is the
Packet Success Rate (PSR) curve of the selected MODCOD
(Rc information bits per symbol). Thus, in the adopted SIC
policy, ✏[k] is a Bernouilli random variable that can take two
different values: if user k is correctly decoded (CRC ok), ✏[k]
is equal to RI(�[k]) < 1 (imperfect cancellation) with prob-
ability PSR(�[k]), whereas, if user k is incorrectly decoded,
✏[k] = 1 (no cancellation) with probability PER(�[k]).

To facilitate the system analysis and optimization in Sec. III,
the received symbol energies {Ey [k]}k=1, ...,K are discretized
using N + 1 equally-spaced energy levels {n�y }n=0, ...,N with
�y a sufficiently small step size, and N a large integer that
limits the probability of Ey [k] exceeding the maximum energy
level N�y . Thus, the probability of quantizing Ey [k] with the
nth quantization level yn ⌘ n�y is given by

py [n] =
MX

m=0

ph (yn |xm )px [m] (3)

with

ph (yn |xm ) ⌘
8><>:

�(yn ) xm = 0
Fh

⇣ yn+�y /2
xm

⌘
� Fh

⇣ yn��y /2
xm

⌘
xm , 0

(4)
If the number of users and the spreading factor go to infinity

while their ratio ↵ ⌘ K/SF (load factor) remains constant,
from the law of large numbers2 and after some manipulations,
we obtain the following asymptotic approximation to the SINR
of all the users whose received energy Ey [k] is quantized with
the energy level yn ⌘ n�y :

�n ⌘
yn

N0 + ↵Ēy � ↵
PN

i=n+1(1 � RI(�i ))PSR(�i )yipy [i]
(5)

where Ēy =
PN

n=1 ynpy [n] is the per-user long-term average
received symbol energy. Note that the negative term in the
denominator of (5) corresponds to the interference energy that
the SIC has removed after processing all the stronger users
(i > n) but none of the K py [n] users that are received with the
same quantized energy level (i = n). Thus, the approximation
in (5) is actually a lower bound to the true SINR, which is
tight if �y is sufficiently small.

After some straightforward manipulations, it can be shown
that �n can be computed iteratively, starting at n = N � 1 and
running the following nonlinear difference equation:

�n = �n+1
cn

1 � ↵�(�n+1)py [n + 1]
(6)

where cn ⌘ n/(n + 1), �(�) ⌘ (1 � RI(�))PSR(�)� is
an implementation-dependent function of the SINR, py [n] is
given in (3) and, the initial value of (6) is �N =

N�y
N0+↵Ēy

.

2If the number of users K goes to infinity, the number of users that are
received with energy level yn converges to Kpy [n]. In addition, the ratio
K/SF converges to constant ↵ (load factor). Note that ↵ can exceed 1 in
the studied NOMA setup while it is limited to 1 (K  SF) in the case of
code-domain orthogonal multiple access (OMA) [2].
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The objective of this letter is to find the optimum probability
distribution {px [m]}m=0, ...,M and the associated energy levels
{xm }m=1, ...,M that maximize the asymptotic aggregate spectral
efficiency (bps/Hz):

SE1 ⌘ lim
K,SF!1

Rc

SF

KX

k=1

PSR(�[k]) = ↵Rc

NX

n=1

PSR(�n )py [n]

(7)
subject to a maximum transmitted symbol energy constraint,
xM  Emax, and a per-user long-term average transmitted
symbol energy constraint:

MX

m=1

xmpx [m]  Ēx . (8)

Note that, although the instantaneous spectral efficiency
of individual users changes from slot to slot due to the
randomness of the received symbol energy, in the studied
setup, all users achieve eventually the same long-term average
spectral efficiency when the average is carried out over many
time slots. Thus, long-term fairness is ensured to all the
network terminals. The long-term average spectral efficiency
of any user is therefore a fraction 1/K of the aggregate spectral
efficiency (7). Moreover, the normalized throughput, which is a
traditional performance metric in the random access literature,
is given by the product of (7) and the constant factor 1/(Rc↵).

III. PROBLEM SOLUTION

By introducing the following vector definitions

px ⌘
⇥
px [1], px [2], . . . , px [M]

⇤T (9)
x ⌘ [x1, x2, . . . , xM ]T (10)
� ⌘ [�1, �2, . . . , �N ]T , (11)

the asymptotic spectral efficiency SE1 in (7) can be recast
using vectorial notation as follows

SE1 = v
T
1 (�)H1(x)px (12)

where

[v1(�)]n ⌘ ↵RcPSR(�n ) (13)
[H1(x)]n,m ⌘ ph (yn |xm ) (14)

are the nth element of vector v1(�) and the element in the nth
row and mth column of H1(x), respectively.

Regarding the SINR vector � in (12), it follows from (6)
that � is an implicit nonlinear function of px and x, that is
solved recursively by iterating (6). This equation constitutes
a constraint on the set of admissible SINR vectors that, after
rearranging terms and stacking below the initialization of �N ,
can be compacted into the following vectorial equation:

f(�, px, x) ⌘ v2(�) � ↵
"
�(�)H2(x)

e
T
NH1(x)

#
px = 0 (15)

with the following definitions:

[v2(�)]n ⌘
(

1 � cn
�n+1
�n

1  n < N

N/�N � N0/�y n = N
(16)

[�(�)]n,n0 ⌘
(
�(�n+1) n = n

0

0 n , n
0 (17)

[H2(x)]n,m ⌘ ph (yn+1 |xm ) (18)

Consequently, the optimization problem at hand reads

max
px,x

v
T
1 (�)H1(x)px (19)

subject to equation (15) and the following set of constraints:

x
T

px  Ēx (20)
xM  Emax (21)

px [0] = 1 � 1
T

px � 0 (22)
px � 0 (23)
Dx < 0 (24)

to which we have appended the following definitions:

eN ⌘ [1, 2, . . . , N]T (25)
1 ⌘ [1, 1, . . . , 1]T (26)

[D]m,m0 =
8>><>>:
�1 m = m

0

1 m = m
0 + 1

0 otherwise
(27)

Note that equation (20) is the vectorial counterpart of (8),
which imposes the per-user long-term average transmitted
energy. The maximum transmitted energy is limited by (21).
The rest of equations are structural constraints imposing non-
negative backoff probability (22), probability positiveness (23)
and energy levels ordering, i.e. 0 < x1 < . . . < xM (24).

Finally, omitting the argument of H1(x) and v1(�) for the
sake of clarity, the gradient of (19) can be written as follows:

dSE1
dpx

=

 
dv1

dp
T
x

!T
H1px +H

T
1 v1 (28)

dSE1
dx

=

 
dv1

dxT

!T
H1px + Dg (px ) Ḣ

T
1 v1 (29)

where Dg(px ) is a diagonal matrix whose main diagonal is
px , and matrices dv1

dp
T
x

, dv1
dxT

and Ḣ1 are derived in Appendix A.

IV. NUMERICAL RESULTS

In this Section, the transmitted-energy probability distri-
bution is optimized in a typical wireless environment in
which the signal suffers log-normal shadowing. In particular,
we consider that the channel (power) gain of all users is
independent and follows the log-normal distribution Fh (h) =
1 � Q

⇣ ln h�µ
0.1 ln(10)�

⌘
with Q(·) the Gaussian tail probability

function. The parameter µ is set to � ln2(10)�2/200 in order to
fix the average channel gain E{h} to 1 whereas the parameter �
(log-gain standard deviation in dB) is varied from 0 (constant
channel) to 4dB in order to test different degrees of shadowing.

The average and maximum energy per symbol of all users
is set to Ēx = 0.25 and Emax = 1, respectively. The average
Es/N0 (Ēx/N0) is set to 20dB (interference-limited scenario).
The received energy is discretized in the interval [0, ymax]
using N +1 = 500 · ymax energy levels where ymax = hmaxEmax
and hmax is selected so that Fh (hmax) = 1 � 10�3.

As in [14][16][17], a simple imperfect cancellation model
is adopted in which the fraction of residual interference
energy is independent of the SINR. In particular, we consider
RI(�) = 0.1 because this is the simulated value in [14]. In that
reference, the aggregate spectral efficiency is optimized for a
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Fig. 1. Asymptotic aggregate spectral efficiency as a function of the
shadowing standard deviation � for different values of M and ↵ =
1.5. The asymptotic aggregate spectral efficiency derived in [14] for
the constant channel (� = 0) is also represented (green dashed upper
line). For finite SF, a Monte Carlo simulation for M = 2 and SF =
1000 is superimposed using asterisks and vertical interval bars.

constant deterministic channel (i.e., h[k] = 1 for all k) and it
constitutes therefore an upper-bound to the spectral efficiency
that can be achieved when dealing with independent random
channel gains, as considered in this paper.

In order to exemplify the optimization in Sec. III, in this
section we show numerical results for a typical MODCOD
consisting of QPSK and a convolutional code of rate 1/2
and constraint length 7. While QPSK is the usual choice
in low-rate reliable communications, convolutional coding is
selected because its reduced decoding latency, which makes it
suitable for the studied large-user setup. Note, however, that
optimization in Sec. III can be applied to any other MODCOD
provided that its PSR(�) curve is available.

The optimization problem in Section III is solved numeri-
cally with Matlab using a state-of-the-art Sequential Quadratic
Programming (SQP) algorithm [15, Sec. 15.3]. To accelerate
its execution, the solver is assisted with the closed-form
expression of the cost function gradient given in (28) and (29).

In Fig. 1, the asymptotic aggregate spectral efficiency (7)
is depicted as a function of the shadowing log-gain standard
deviation � for different values of M . For every value of M

and �, the optimum energy allocation is determined (Sec. III).
It is found that on-off transmission (i.e., M = 1) is optimum
for � greater than a scenario-dependent threshold �th1 . For
lower values of �, the number of active energy levels depends
on �. In particular, M > 1 energy levels are optimum for �
in the interval �thM < � < �thM�1 where �thM stands for
the value of � that maximizes the spectral efficiency for M

active transmitted levels. If the channel is constant (� = 0),
the continuous energy profile derived in [14] is optimum and
is attained asymptotically as M ! 1. Otherwise, for any
random channel (� > 0), we conclude that the optimum energy
distribution is discrete, as already announced in [11][12].
Moreover, it is evidenced in Fig. 1 that some degree of channel
randomness allows to attain practically the maximum spectral
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Fig. 2. Received energy probability distribution for several values of
M and ↵ = 1.5. For each M , the channel standard deviation � is set
to �thM

, which is the value that maximizes the spectral efficiency in
Fig. 1. The optimal energy distribution for � = 0 (constant channel)
in [14] is also depicted (green dashed curve). Note that the backoff
probability py [0] ⇡ px [0] is not plotted here but is given in Fig. 3.
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Fig. 3. Asymptotic aggregate spectral efficiency as a function of the
load factor ↵ for different values of M . For each M , the channel gain
standard deviation � is the one maximizing the spectral efficiency
in Fig. 1. The maximum spectral efficiency for � = 0 (constant
channel) given in [14] is represented (green dashed upper curve).
The transmission probability t0 ⌘ 1� px [0] is superimposed showing
how t0 decreases when the system enters into saturation (↵ > ↵sat).
Lastly, the aggregate spectral efficiency of orthogonal DS-CDMA is
represented (4 markers). In the orthogonal case, the denominator of
the SINR (5) is interference-free for ↵  1, where we have found
that on-off transmission (M = 1) is optimum for any value of �. For
↵ > 1, orthogonal DS-CDMA does not admit more than SF users
and it is surpassed by non-orthogonal DS-CDMA.

efficiency [14] with a reduced number of transmitted energy
levels (e.g., M = 3), although the received energy distribution
for small M is only a rough approximation to the optimum
one, as illustrated in Fig. 2.

In order to validate the user-asymptotic analysis, we have
computed, via Monte Carlo simulations, the aggregate spectral
efficiency that is achieved by a large but finite number of users.
In particular, we have simulated a system with K = 1500 users
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(SF = 1000, ↵ = 1.5) that transmit using M = 2 non-zero
energy levels. In the finite-user case, the aggregate spectral
efficiency changes in every slot randomly. For this reason, in
Fig. 1, we have plotted the mean value (red asterisks) and ±
the standard deviation (interval bars) of the aggregate spectral
efficiency computed over 1000 time slots.

Finally, the asymptotic aggregate spectral efficiency is rep-
resented in Fig. 3 as a function of the load factor ↵ for different
values of M . For whichever value of M , the spectral efficiency
curve exhibits an inflection point at ↵ = ↵sat, as indicated in
Fig. 3. When the system enters into saturation (↵ > ↵sat), the
number of active terminals in a given slot, K0 = (1� px [0])K ,
is automatically limited to Ksat ⌘ ↵satSF without the need
of adding a new constraint to the optimization program. The
remaining K � K0 = px [0]K terminals stay silent during the
slot, saving energy to transmit in subsequent time slots. The
saturation load ↵sat is characteristic of the adopted MODCOD
as well as other system parameters (e.g., Es/N0). However, it
is quite insensitive to M . In the simulated scenario (Fig. 3),
↵sat ranges from 1.05 (M = 1) to 1.08 (M ! 1).

The probability of transmission t0 ⌘ 1 � px [0] is also
represented in Fig. 3 to visualize how users refrain from
transmitting when the system is overloaded (↵ > ↵sat). Note
that t0 can be interpreted as the duty-cycle of the terminals,
i.e., the fraction of time that users are active on average.

V. CONCLUSION

Discrete random energy allocation is shown to be optimum
when a massive number of users access a central receiver in
the presence of random frequency-flat fading. If users know
the channel gain variance, they can select the number of
transmitted energy levels in an optimum way to maximize
the system spectral efficiency. For moderate channel gain
variance, a reduced number of energy levels suffices to reach
approximately the maximum spectral efficiency attainable in
the case of a deterministic constant channel.

APPENDIX A
GRADIENT CALCULATION

Using the chain rule, we have that
dv1

dp
T
x

=
dv1

d�T
d�
dp

T
x

. (30)

The first factor in (30) is given by"
dv1

d�T

#
n,n0
=

(
↵RcPSR0(�n ) n = n

0

0 n , n
0 (31)

where PSR0(�) ⌘ dPSR(�)
d� . The second factor in (30) is

obtained invoking the implicit function theorem:

d�
dp

T
x

= �
 
@f

@�T

!�1 @f

@p
T
x

= ↵

 
@f

@�T

!�1 "
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(32)

where f(�, px, x) is the implicit function imposed in (15) and
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n n
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(33)

where cn ⌘ n/(n + 1) and �0(�) ⌘ d�(�)
d� is the derivative of

the function �(�) introduced previously.
Regarding vector x, we have that
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(34)
and Ḣ1 and Ḣ2 are N ⇥M and N � 1⇥M matrices defined as

f
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(35)

f
Ḣ2

g
n,m
⌘

d [H2]n,m
dxm

=
f
Ḣ1

g
n+1,m

(36)

with fh (h) ⌘ dFh (h)
dh the channel probability density function.
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