
IEEE XXX XXX, VOL. XX, NO. XX, XXX 2019 1

Superimposed Coding Based CSI Feedback Using
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Chaojin Qing, Member, IEEE, Qingyao Yang, Bin Cai, Borui Pan and Jiafan Wang

Abstract—In a frequency division duplex (FDD) massive multi-
ple input multiple output (MIMO) system, the channel state infor-
mation (CSI) feedback causes a significant bandwidth resource
occupation. In order to save the uplink bandwidth resources,
a 1-bit compressed sensing (CS)-based CSI feedback method
assisted by superimposed coding (SC) is proposed. Using 1-bit CS
and SC techniques, the compressed support-set information and
downlink CSI (DL-CSI) are superimposed on the uplink user data
sequence (UL-US) and fed back to base station (BS). Compared
with the SC-based feedback, the analysis and simulation results
show that the UL-US’s bit error ratio (BER) and the DL-CSI’s
accuracy can be improved in the proposed method, without using
the exclusive uplink bandwidth resources to feed DL-CSI back
to BS.

Index Terms—Channel state information (CSI), compressed
sensing (CS), feedback, superimposed coding (SC).

I. INTRODUCTION

AS one of the key technologies for fifth-generation (5G)
wireless networks, frequency division duplex (FDD)

massive multiple-input multiple-output (MIMO) has drawn
increased attention due to the improvement in spectral and
energy efficiencies [1], [2]. With a large number of antennas
deployed at base station (BS), the performance improvement
of massive MIMO system significantly relies on accurate
channel state information (CSI). In time-division duplexing
(TDD) system, the downlink CSI (DL-CSI) can be obtained
at BS via the channel reciprocity [3]. However, the channel
reciprocity is not available in FDD massive MIMO system due
to the different uplink and downlink spectral bands. Therefore,
the DL-CSI should be fed back to base station (BS) through
the uplink channel [4], [5].

The codebook-based approaches are usually adopted to re-
duce feedback overhead. Nevertheless, due to the exponential
measurement complexity caused by large number of antennas
at BS, this approach is not practical in FDD massive MIMO
system [6]. In [7]–[11], the research results have indicated
that many wireless channels have sparse feature. To reduce
CSI feedback overhead, compressed sensing (CS)-based CSI
feedback scheme is widely used. The approaches exploit the
sparsity structures of CSI (e.g., CSI’s temporal correlation [8],
spatial correlation [9], and the sparsity-enhancing basis for CSI
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[10], [11]) to reduce the channel dimension. Even so, these
methods inevitably occupy some uplink bandwidth resources.

In order to avoid CSI feedback independently occupying
uplink bandwidth resources, superimposed coding (SC) tech-
nique has been introduced into CSI feedback scheme. [12] is
one of the few works known to us, which combines the SC
technology and CSI feedback. In [12], after spread processing,
the DL-CSI is superimposed on uplink user data sequences
(UL-US) and fed back to BS. Although the uplink bandwidth
resources have not been occupied, the application of SC results
in superposition interference. This degrades the DL-CSI’s
normalized mean squared error (NMSE) and the UL-US’s bit
error ratio (BER).

To improve the DL-CSI’s NMSE and the UL-US’s BER,
this paper combines 1-bit CS [13], SC technique and support-
set feedback method. In practice, 1-bit quantization is par-
ticularly attractive because the construction of the quantizer
is simple and cost-effective [14], [15]. To the best of our
knowledge, the SC-based CSI feedback using 1-bit CS method
for FDD massive MIMO systems has not been studied in
existing literatures. The main contributions of this paper are
summarized as follows:

1) Introducing “1-bit CS” technique into the SC-based CSI
feedback scheme improves DL-CSI’s NMSE and UL-
US’s BER. In [12], an unquantized and uncoded DL-
CSI is estimated, and then the estimated DL-CSI is used
to reduce superimposed interference. Unlike the case
in [12], 1-bit CS transforms a CSI estimation problem
into the problem of bit (or sign) information detection
and then 1-bit CS reconstruction. Since only the bit (or
sign) information needs to be detected, the interference
cancellation is more effective than that of [12]. Thus, both
UL-US’s BER and DL-CSI’s NMSE can be improved.

2) The support-set of CSI is superimposed on UL-US and
fed back to BS to further improve the NMSE of DL-CSI.
In CS-based CSI feedback schemes, the support-set of
CSI is required to be recovered at BS [16], [17]. Without
recovering the support-set, the number of measurements
could be significantly reduced [17] and the superimposed
data is sharply reduced. And then, the spread spectrum
gain of SC-based CSI feedback is effectively improved.

3) From [18], the accuracy of reconstruction algorithm can
be effectively improved with the priori information of
support-set. Based on the de-spread support-set and bi-
nary iterative hard thresholding (BIHT) algorithm [19]
(other similar reconstruction algorithms can be applied
as well), a SC-aided BIHT (SCA-BIHT) algorithm is
proposed to improve the recovery of the compressed DL-
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CSI at BS.
Notation: Boldface letters are used to denote matrices and

column vectors; (·)T , (·)H and (·)−1 denote the transpose,
conjugate transpose, matrix inversion. Ip is the identity matrix
of size P×P , 0 is the matrix or vector with all zero elements,
the l2 norm of a vector x is written as ‖x‖2. � denotes the
operation of Hadamard product for two vectors or matrices.
ηk(x) represents computing the best k-term approximation of
x by thresholding. dec(·) is the hard decision operation, in
which the current data is determined as the modulated data
with the smallest Euclidean distance from current data. sgn(·)
denotes an operator that performs the sign function element-
wise on the vector, e.g., the sign function returns +1 for
positive numbers and (0) otherwise.

II. SYSTEM MODEL

We consider a massive MIMO system consists of a BS
with N antennas and K single-antenna users. The DL-CSI
is superimposed on UL-US and then fed back to BS. In this
way, the overhead of uplink bandwidth resources, particularly
used to feed back DL-CSI, is avoided. Similar to [8]–[11], we
assume the DL-CSI has been estimated at users and mainly
focus on CSI feedback1. After the processing of matched-
filter (MF) (i.e., the conventional multiuser detector structure
consists of a MF bank front [20]), the received signal Ỹk sent
by the k-th user, k = 1, 2, . . . ,K can be given by

Ỹk =GX + ñk

=G(
√
ρEksk +

√
(1− ρ)Ekdk) + ñk,

(1)

where G is a N×1 uplink channel matrix, ρ ∈ [0, 1] stands for
the power proportional coefficient of DL-CSI, Ek represents
the total transmitting power, dk ∈ C1×P denotes the UL-US
signal; ñk ∈ CN×P represents the feedback link noise whose
elements are with zero-mean and variance σ2

n [6]; In particular,
the sk ∈ C1×P in (1) is the superposition signal that consists
of compressive DL-CSI, sparsity and support-set. III-A would
expatiate the sk to this paper.

III. THE PROPOSED FEEDBACK METHOD USING 1-BIT CS

In this section, we first present how to introduce 1-bit CS
technique into the SC-based CSI feedback scheme (see III-
A). Then, in III-B, the DL-CSI reconstruction and UL-US
detection are described, where we especially explain the details
of proposed SCA-BIHT. Finally, the analysis of computational
complexity for SCA-BIHT is given.

A. SC based DL-CSI Feedback

After exploiting the sparsity structure (by using methods
mentioned in [7]–[11]), the sparse DL-CSI hk can be com-
pressed according to 1-bit CS technique, i.e.,{

yreal = sgn (Re (hkΦk))
yimag = sgn (Im (hkΦk))

, (2)

1Note that, due to limited computational power, the users should employ
some low-complexity channel estimation methods, which require considera-
tion but go beyond the scope of this letter. Since we mainly focus on CSI
feedback, we assume that the DL-CSI has been estimated perfectly at user.

where Φk is a N ×M measurement matrix and the DL-CSI
hk is a 1×N vector. In (2), yreal and yimag are used to
represent the DL-CSI compression’s real and imaginary parts,
respectively.

We assume the DL-CSI hk features ξk-sparsity, i.e., only
ξk non-zero elements in hk [7]. For convenience, a set zk ∈
{0, 1}1×N is employed to label the set of indices of DL-CSI’s
non-zero elements (i.e., the support-set). That is, the index
of DL-CSI’s zero elements is labeled by 0 and the index of
DL-CSI’s non-zero elements is labeled by 1. For example,
hk = (h1, h2, . . . , h5) and zk = [1, 1, 0, 0, 1] mean the value
of h1, h2 and h5 are non-zero elements, h3 = h4 = 0.

With the bit-form of ξk as kbin ∈ {0, 1}B , the feedback
vector wk, which merges yreal, yimag , zk and kbin, can be
expressed as

wk = [yreal,yimag, zk,kbin]. (3)

It is worth noting that the elements of wk only contain 0
and 1, which can be viewed as a bit stream. With digital
modulation, such as the quadrature phase shift keying (QPSK),
wk is mapped to a 1×L modulated vector xk. Without loss of
generality, the UL-US’s length P is larger than L due to main
task of the user services. Thus, a spreading method can be
utilized to capture a spread spectrum gain. The superposition
signal sk can be obtained via the using of pseudo-random
codes (e.g., the Walsh codes) to spread xk, i.e.,

sk = xkq
T , (4)

where q ∈ RP×L consists of L codes of length P satisfying
qTq = P · IL. Then the superposition signal sk and UL-
US dk are weighted and superimposed, i.e.,

√
ρEksk +√

(1− ρ)Ekdk,
and fed back to BS, which is described in (1) as well.

B. UL-US Detection and DL-CSI Reconstruction

1) UL-US Detection: With the received signal Ỹk in equa-
tion (1), the de-spread signal can be obtained by

x̃ =
1

P
Ỹkq

=
√
ρEkGxk +

1

P

√
(1− ρ)EkGdkq +

1

P
ñkq.

(5)

Subsequently, the estimation that contains DL-CSI and
support-set can be acquired via minimum mean square error
(MMSE) detection, i.e.,

x̃MMSE = dec
(
P
√
ρEk

[
(1 + (P − 1) ρ)EkG

HG

+ σ2
n

]−1
GH x̃ ) .

(6)

Then, taking advantage of interference cancellation described
in [12], the interference caused by DL-CSI can be eliminated
in such a way:

d̂k =Ỹk −
√
ρEkGx̃MMSEq

T

=
√

(1− ρ)EkGdk +
√
ρEkG (xk − x̃MMSE)q

T + ñk.
(7)

With the application of MMSE detection in (7), the estimated
UL-US d̂k is obtained, then wk can be recovered from
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Fig. 1. The BER and NMSE of different schemes.

TABLE I
SCA-BIHT ALGORITHM

Input: measurement matrix Φk, real part and imaginary part
of 1-bit noise measurement (ỹreal and ỹimag), sparsity ξ̃k,
and received support-set z̃k.

Initialize: maximum number of iterations Itermax, iteration
count t = 0, the real part and imaginary part of reconstruct-
ed data are set to zero, i.e., r0real = 0 and r0imag = 0.

Begin:
1) Increment: t = t+ 1;
2) Gradient update:

rtreal = ηξ̃k(r
t−1
real + (ỹreal − sgn(rt−1

realΦk))Φ
T
k ),

rtimag = ηξ̃k(r
t−1
imag + (ỹimag − sgn(rt−1

imagΦk))Φ
T
k ),

supp(rt) = supp(rtreal) ∪ supp(rtimag);
3) Go to step 5) if supp(rt) ∩ z̃k = ∅, else

go to the next step;
4) Auxiliary correction:

rtreal = rtreal � z̃k,
rtimag = rtimag � z̃k;

5) Go to step 1) if t < Itermax, else go to next step;
6) Combination:

H̃ = rtreal + i× rtimag;
7) Normalization:

ĥk = H̃/‖H̃‖2;
End
Output: Reconstructed DL-CSI ĥk.

TABLE II
COMPUTATIONAL COMPLEXITY

Algorithm Complexity

BIHT O((MN) ∗ Iter1)
SCA-BIHT O((MN) ∗ Iter2)

x̃MMSE. The sign information ỹreal, ỹimag , sparsity ξ̃k, and
support-set z̃k can be restored via the position relation in
equation (3).

2) DL-CSI Reconstruction: BS can recover the DL-CSI via
the SCA-BIHT algorithm, with the recovered sign information
ỹreal, ỹimag , sparsity ξ̃k, and support-set z̃k. The details of
SCA-BIHT are shown in TABLE I. Similar to [14] [21],
the direction of the reconstructed signal is obtained via the
normalization step, i.e., step 7) in SCA-BIHT. Need to mention
that, we propose SCA-BIHT to improve BIHT, and other
similar reconstruction algorithms can naturally be improved
according to the same approach. In SCA-BIHT, the input
and auxiliary correction are different from BIHT, which are
described as follows:

• Input and Initialization of SCA-BIHT: The input in-
cludes the received support-set z̃k, which is not contained
in BIHT [19]. Since BS does not need to reconstruct
support-set, the proposed method has fewer iterations and
lower computational complexity (see III-C for details).

• Auxiliary Correction: As shown in step 4), the re-
constructed values are corrected by using the received
support-set z̃k. That is, according to the position of 0
elements in z̃k, the elements at the corresponding position
in the reconstructed value are set to 0, and the remaining
elements are unchanged. But the BIHT doesn’t contain
support-set correction.

Compared with the BIHT, the proposed SCA-BIHT is more
concise, due to the auxiliary of support-set.

C. Computational Complexity

The comparison of computational complexity between
BIHT and SCA-BIHT is given in TABLE II, where Iter1 and
Iter2 denote the iteration number of BIHT and SCA-BIHT,
respectively. For each iteration, SCA-BIHT and BIHT have
the computational complexity O(MN). Despite all this, SCA-
BIHT has fewer iterations than BIHT, i.e., Iter2 < Iter1, due
to no requirement of support-set reconstruction. Thus, SCA-
BIHT has lower computational complexity than that of BIHT.
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Fig. 2. Performance of Prop-SCA for various ρ and c.

IV. EXPERIMENT RESULTS

In this section, we give some numerical results of the SC
based CSI feedback with 1-bit CS under different conditions.
The basic parameters involved are listed below. hk features
ξk-sparsity, whose elements obey CN (0, 1). The N × M
measurement-matrix Φk is set as a Gaussian random matrix,
whose elements obey N (0, 1) [19] [21]. UL-US is a 1 × P
complex sequence modulated by quadrature phase shift keying
(QPSK). We set P = 1024, N = 64, ξk = 8, and
Itermax = 100. The sampling rate c, signal-to-noise ratio
(SNR) in decibel (dB), and NMSE are defined as c = M/N ,

SNR = 10log10(Ek/σ
2
n) and NMSE =

∥∥∥hk − ĥk

∥∥∥2
2

/
‖hk‖22,

respectively. Three iterations of interference cancellation are
employed for [12], while only one iteration for the proposed
scheme. In [12], simulations show that with three iterations,
the SC-based feedback algorithm nearly converges. According
to (5)–(7) and DL-CSI reconstruct algorithm in TABLE I,
the interference cancellation in proposed scheme is performed
only one time. More iterations could not obtain significant
improvement but merely increase the complexity. According
to [22], a feedback method based on 1-bit CS is also employed
for time division multiplexing (TDM) mode in our experi-
ments, where P modulated UL-US and cN modulated DL-
CSI are up-transmitted with an additional 12.5% of uplinking
bandwidth are occupied, i.e., cN/P = 12.5% with c = 2.

For simplicity, “Prop-SCA” is used to denote the proposed
SC-based CSI feedback; “Prop-BIHT” represents the SC-
based CSI feedback without support-set zk, and BS adopts
BIHT for DL-CSI reconstruction; “Ref [12]” denotes the SC
method in [12]; “Ref [22]” denotes the feedback method in
[22] with TDM mode, i.e., the TMD-based feedback.

To verify the effectiveness of proposed scheme. We
first make the performance comparison between Ref [12],
Ref [22], Prop-BIHT and Prop-SCA in Fig. 1. Where ρ = 0.2,
the sampling rates of scheme Ref [22], Prop-BIHT and Prop-
SCA are respectively set as c = 2, c = 2 and c = 1.5. It
is worth noting that this parameter setting of sampling rate
is employed to promote Ref [22], Prop-BIHT and Prop-SCA

have the same bit-overhead to bear CSI feedback. For Prop-
BIHT and Ref [22], the bit-overhead is 256 bits according
to c × N × 2 = 2 × 64 × 2 = 256, where we product 2
is due to the consideration of real and imaginary parts. The
same bit-overhead can be obtained in Prop-SCA by computing
c × N × 2 + N = 1.5 × 64 × 2 + 64 = 256 bits, where we
add N is due to the bit-overhead of support-set feedback.

Fig. 1(a) shows that the BER performance of the proposed
scheme is better than Ref [12] and worse than Ref [22]. The
interference cancellations in Prop-BIHT and Prop-SCA are
effective than that of Ref [12] due to the introducing of 1-bit
CS. Since the same modulation, power proportional coefficient
and SC model are utilized, the identical bit-overhead brings
UL-US the equal superimposed interference from DL-CSI (see
(1)). Thus, the similar BERs of Prop-BIHT and Prop-SCA are
observed in Fig. 1(a). Without any superimposed interference,
Ref [22] obtains lower BER than that of superimposition
modes (i.e., Ref [12], Prop-BIHT and Prop-SCA) at the cost
of additional 12.5% uplink bandwidth resources.

In Fig. 1(b), the NMSEs of proposed Prop-BIHT and Prop-
SCA are much smaller than that of Ref [12] and Ref [22],
where the parameter settings are the same as those in Fig. 1(a).
The NMSE of Prop-BIHT is no more than 0.08 in the entire
SNR, while the much larger NMSEs are encountered by
Ref [12] and Ref [22], e.g., 0.274 and 0.237 for Ref [12]
and Ref [22], respectively, when SNR = 4dB. Obviously,
the proposed Prop-BIHT and Prop-SCA improve the NMSEs
of Ref [12] and Ref [22]. Furthermore, it can be observed
that, Prop-SCA can further improve the NMSE performance of
Prop-BIHT. In Fig. 1(b), Prop-SCA reaches smallest NMSE,
which is clearly lower than that of Prop-BIHT. With the same
bit-overhead as Prop-BIHT, Prop-SCA further improves the
NMSE of DL-CSI by feeding support-set back to BS.

From Fig. 1(a) and Fig. 1(b), introducing 1-bit CS technol-
ogy into SC-based CSI feedback can improve the DL-CSI’s
NMSE and UL-US’s BER. Furthermore, due to the increase of
spread spectrum gain, the support-set feedback promotes the
proposed Prop-SCA further improve the NMSE of Prop-BIHT.
Compared to Ref [22] (i.e., TMD-based feedback), although
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the BERs are sacrificed due to the superimposed interference,
the 12.5% uplink bandwidth savings and much lower NMSE
are captured by of Prop-BIHT and Prop-SCA.

To demonstrate the impacts of different ρ and c on Prop-
SCA, the BER and NMSE performances are respectively given
in Fig. 2(a) and Fig. 2(b), where different ρ (i.e., ρ = 0.1 and
ρ = 0.2) and different c (i.e., c = 2.0, c = 2.5, and c = 3.0)
are considered.

Fig. 2(a) illustrates the BER performance of Prop-SCA with
SNR varying from 0dB to 10dB. It is obvious that the Prop-
SCA evidently improves the BER when compared to Ref [12]
with the equal ρ, especially for a relatively high SNR, e.g.,
SNR > 2dB. For each ρ, the impact of c on BERs of Prop-
SCA and Ref [12] is not clear, that is because the identical
bit-overhead (superimposed on UL-US with the same length
P = 1024) makes the equal superimposed interference (from
DL-CSI) encountered by UL-US. On the whole, compared to
Ref [12], Fig. 2(a) shows that the BER improvement of Prop-
SCA possesses a good robustness against the impacts of ρ and
c. In addition, a smaller ρ narrows the BER gap between Prop-
SCA and Ref [22] due to a weaker superimposed interference
(encountered by Prop-SCA).

To validate the robustness of NMSE against the impact of
ρ and c on Prop-SCA, the NMSE performance is given in
Fig. 2(b). This figure reflects that, compared with Ref [12] and
Ref [22], Prop-SCA obtains smaller NMSEs. As c increases,
the NMSE of Prop-SCA can be improved due to the increase
of measurements, and not significantly affected by the change
of ρ. The reason is that the Prop-SCA transforms a CSI
estimation problem into the sign detection problem. With
the using of SCA-BIHT in TABLE I, the detected noise
measurements (i.e., ỹreal and ỹimag) leads to less obvious
reconstruction differences of DL-CSI with the various ρ.

To sum up, compared to SC-based feedback, the proposed
Prop-BIHT and Prop-SCA can improve the UL-US’s BER
and the DL-CSI’s NMSE. Compared to Prop-BIHT, the Prop-
SCA can further improve the DL-CSI’s NMSE performance.
Without using the exclusive uplink bandwidth resources, the
Prop-SCA can improve the DL-CSI’s NMSE performance of
TMD-based feedback (i.e., Ref [22]). A small ρ (e.g., ρ = 0.1)
guarantees the UL-US’s BER of Prop-SCA is only slightly
degraded relative to Ref [22], while saving 12.5% uplink
bandwidth resources and keeping improvement of DL-CSI’s
NMSE. In addition, the Prop-SCA possesses a good robustness
against the impact of ρ and c. Thus, introducing “1-bit CS”
technique into SC-based CSI feedback brings us great benefits,
and the support-set feedback is attractive.

V. CONCLUSION

In the proposed method, SC technique avoids the occupation
of uplink bandwidth resources, 1-bit CS method transforms
the DL-CSI estimation problem into a bit (or sign) information
detection problem, feeding support-set back to BS significantly
reduces the superimposed data, and then the interference
cancellation and spread spectrum gain can be effectively
improved. Meanwhile, proposed method also adopts SCA-
BIHT algorithm to reconstruct DL-CSI at BS as well. The

analysis and simulation results show that the proposed method
can improve the UL-US’s BER and the DL-CSI’s NMSE,
compared with traditional SC-based DL-CSI feedback method.
Although the UL-US’s BER is affected by the application of
SC, a relatively small power proportional coefficient can still
guarantee the BER performance of the proposed method is
only slightly degraded relative to TMD-based feedback, while
significantly saving uplink bandwidth resources and improving
DL-CSI’s NMSE.
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