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Approximate ML Decoding of Short Convolutional
Codes over Phase Noise Channels

Lorenzo Gaudio, Balázs Matuz, Tudor Ninacs, Giulio Colavolpe, and Armando Vannucci

Abstract—We propose a decoding algorithm for tail-biting
convolutional codes over phase noise channels. It can be seen
as a reduced complexity approximation of maximum-likelihood
decoding. We target short blocks and extend the wrap-around
Viterbi algorithm to trellises describing the random evolution of
the phase impairment, for which we adopt two different models: a
blockwise non-coherent and a blockwise Wiener channel model.
Numerical results show that the performance of the proposed
algorithm is within a few tenths of dB or less from maximum
likelihood decoding for the setup studied in this paper.

Index Terms—Tail-biting convolutional codes; wrap-around
Viterbi algorithm; phase noise; short blocks; machine-to-machine
communications

I. INTRODUCTION

In the contexts of the 5G mobile standard and internet of
things, one of the defined application scenarios is that of
machine to machine (M2M)-type communications, in which
low-cost sensors transmit small amounts of data, e.g., measure-
ments [1], [2]. The number of connected devices is expected
to reach 50 billion by 2025 [1], so that economies of scale
become a relevant issue. To limit the cost of sensors, low-
cost/low-end oscillators might be employed, which gives rise
to significant phase noise (PN), especially at low datarates, i.e.,
with symbol periods that are not short enough for the limited
phase coherence time. The technical literature on digital re-
ceivers is rich of algorithms that perform exceptionally well in
the presence of PN (see, e.g., [3], [4] and references therein).
However, whenever blocks in the range of a few hundred
bits or less are considered, the aforementioned schemes may
show a loss in performance, since the employed channel codes
and decoding algorithms were not explicitly tailored to short
blocks. An exception is the work in [5] that focuses on M2M-
type communications with block lengths of a few hundreds
of bits. In absence of pilots, [5] derives an approach based
on non-binary low-density parity-check (LDPC) codes with
differential phase-shift keying (PSK). The authors show that
an iterative joint detection and decoding algorithm can be
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employed to achieve results within 1.2 dB from finite-length
performance bounds.

In this work, we propose a novel decoding approach for
tail-biting (TB) convolutional codes (CCs) over PN channels.
Such codes were shown to be a good choice on additive white
Gaussian noise (AWGN) channels when the block length is
short [6], [7]. We characterize the PN process as a blockwise
non-coherent model, where the phase changes randomly and
independently after a block of transmitted symbols. In addition
we also model a more severe phase distortion, considering an
evolution of the phase inside each block, following the usual
Wiener process. In order to deal with such a general channel
model we derive a maximum likelihood (ML) approach that
is able to cope with all the configurations of PN discussed
herein, and show its performance gap with respect to a finite-
length performance benchmark. Furthermore, we propose a
reduced complexity approach by extending the wrap-around
Viterbi algorithm (WAVA) [8], showing its minor loss w.r.t.
ML decoding.

II. SYSTEM MODEL

We consider a trellis code transmitted over an AWGN
channel perturbed by PN. An information word a is mapped
to a modulated codeword c by an encoder. The coded symbols
are denoted by {ck}K−1

k=0 , with K being the codeword length.1

The received samples {rk}K−1
k=0 can thus be expressed as

rk = cke
θk + wk (1)

where wk ∼ CN
(
0, 2σ2

)
and θk is the discrete-time PN

process.
We assume the following model for the PN. Consider

the codeword of K transmitted symbols decomposed into B
blocks of length L, where BL = K. At the beginning of
each block, the channel phase is assumed to be uniformly
distributed in the interval [0, 2π], then it evolves, within the
block, according to the Wiener model, i.e.,

θk+1 = θk + ∆θk (2)

with increments ∆θk ∼ N
(
0, σ2

∆

)
. Once a block has ended,

the phase changes randomly and independently at the begin-
ning of the next block. Thus, the conditional distribution of
the phase p(θk|θk−1) is either Gaussian, θk ∼ N (θk−1, σ

2
∆),

within a block, or is uniform, θk ∼ U [0, 2π], at the beginning
of each block (including the initial PN condition p(θ0) ∼
U [0, 2π]). We refer to this scenario as blockwise Wiener

1We assume that the redundancy introduced by the code is inserted in the
signal space, i.e., by expanding the alphabet size.
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channel. A practical situation that justifies this PN model is,
for instance, the transmission of a long message that is split
in smaller blocks (to comply with system constraints) that are
sent in different time- or frequency-slots (e.g. by frequency-
hopping), i.e., through different subchannels, affected by in-
dependent realizations of PN.

In addition, we consider a simplified scenario where the
channel phase remains constant within each block, while it
changes randomly and independently from block to block. We
call this scenario blockwise non-coherent channel.2 Note that,
in the limit case with B = 1, the received vector contains only
a single block of length L = K with an unknown initial phase
that is constant over the entire codeword, so that the classical
noncoherent channel arises. This is a simplified assumption,
often made in the literature, for which well known algorithms
can be applied to the associated model (see e.g., [9], [10]).

III. MAXIMUM LIKELIHOOD DECODING

Starting from the received samples in (1), a maximum a-
posteriori probability (MAP) sequence decoder is described
by

â = arg max
a

P (a|r) ∝ arg max
a

p (r|a)P (a)

= arg max
a

p (r|c)P (a) . (3)

For independent and uniformly distributed symbols {ak}, as
we assume here, this becomes the ML sequence decoder

â = arg max
a

p (r|c) (4)

which can be efficiently implemented by using the Viterbi
algorithm (VA). Let us denote the symbol index k =
0, 1, . . . ,K − 1 through a pair of indices (n, `), such that

k , nL+ ` (5)

where n = 0, 1, . . . , B − 1 is the block index, while l =
0, 1, . . . , L − 1 is the index of the sample inside each block.
The n-th block of L received samples is given by the vector

r(n) = (rnL, rnL+1, . . . , rnL+L−1) . (6)

The vector c(n) of transmitted symbols is defined accordingly.
Owing to the PN model introduced in Section II, where the

phase changes independently on a block basis, the probability
of the full received vector of K samples, given the transmitted
sequence of coded symbols, obeys the following factorization

p(r|c) =

B−1∏
n=0

p(r(n)|c(n)) . (7)

The trellis structure describing the overall sequence can be
viewed as the concatenation of B blocks of L trellis sections
each, which reflects the factorization in (7). Since a factoriza-
tion similar to (7) does not hold on a symbol basis, for the
general PN channel, the standard VA is not applicable within
the blocks, and the path metrics must be computed for an
entire sequence (see (8) and (9) below). When several blocks

2This is clearly a special case of the more general blockwise Wiener
channel, that occurs whenever σ∆ = 0.

are connected together, as the factors in (7), the standard VA
can still be used for the overall minimization of the paths
weight. Hence, the B blocks of the overall trellis are treated
as if they were the sections of a super-trellis, each with its own
branch metrics. For clearness, the steps of the ML decoding
approach are:

1) For every block of length B, calculate the branch metrics
of the paths from each possible initial state, at k = nL,
to each possible final state, at k = nL+L−1 (according
to (8) and (9) below). Note that, as discussed in Sec.
IV-B, this is computationally costly.

2) Use the standard VA to connect the B blocks of the
overall trellis, which are treated as if they were the
sections of a super-trellis, each with its own branch
metrics.

3) Since the code is TB, at the end, select the most likely
TB path, i.e., the one with minimum weight.

As to the expression of the branch metrics corresponding
to (7), two separate cases arise, depending on the standard
deviation σ∆ of the phase increments ∆θk in (2).

1) Blockwise non-coherent (σ∆ = 0): In this case, the PN is
constant inside each block and a closed form for p(r(n)|c(n))
exists [10], i.e.,

p(r(n)|c(n)) = exp

{
− 1

2σ2

L−1∑
`=0

[
|rnL+`|2 + |cnL+`|2

]}

· I0

(
1

σ2

∣∣∣∣∣
L−1∑
`=0

rnL+`c
∗
nL+`

∣∣∣∣∣
)(

1

2πσ2

)L
. (8)

where (·)∗ stands for the complex conjugate and I0 is the
Bessel function of the first kind of order zero.

2) Blockwise Wiener (σ∆ > 0): In this case, a closed form
for p(r(n)|c(n)) does not exist. However, a good approxima-
tion is proposed in [11], i.e.,

p(r(n)|c(n)) '
L−1∏
`=0

I0(|z`|)e−
|cnL+`|2

2σ2

L−1∏
`=1

I−1
0

(
|z`|

1 + σ2
∆|z`|

)
(9)

where coefficients zl track the evolution of the PN inside each
block and can be recursively computed as

z` =
z`+1

1 + σ2
∆|z`+1|

+
rnL+`c

∗
nL+`

σ2
, ` ∈ [L− 1, . . . , 0] (10)

with a fictitious zL = 0 for the initialization.
In ML decoding, every super-trellis section has S = 2m

states,3 where m is the code memory, so that there are SL

possible transitions, or paths, from initial to final states. The
decoding complexity of this approach is strictly related to the
number of transitions within a super-trellis of length L and
grows exponentially with L and m, thus limiting the use of
the optimal ML approach to cases of very short non-coherent
block lengths and to CCs with small memory. The complexity
analysis will be discussed in detail in Sec. IV-B.
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θ0 = 0

θ1 = 2
3π

θ2 = 4
3π

l = 0 1 2 0 1 2 0 1 2 0 1 2 3

n = 0 1 2 3

Fig. 1: Trellis for a 2-state code for the blockwise non-coherent channel, Q = 3 levels of quantized phase, block length L = 3,
B = 4 blocks, and P∆ = 0. The trellis structure implemented in the decoder consists of a Q-fold replication of the basic
binary-state trellis, where each replica corresponds to a different hypothesis on the phase.

IV. REDUCED COMPLEXITY DECODING

Motivated by the last observation, i.e., by the increased
complexity of ML decoding on a super-trellis, and inspired
by the detectors derived in [3], [4], we propose hereafter
a receiver based on a novel reduced-complexity decoding
approach. For the blockwise non-coherent channel, consid-
ering that the sequences of information symbols ak, trellis
states µk, µk+1, and code symbols ck are in a one-to-one
correspondence, according to generalized likelihood, a joint
strategy for decoding and estimation of the channel phase can
be expressed as a function of the joint distribution of symbols,
encoder states, and PN samples θ = {θk} as

(â, θ̂) = arg max
(a,θ)

P (a, c,µ,θ|r)

∝ arg max
(a,θ)

p(r|a, c,µ,θ)p(θ)P (c,µ|a)P (a)

= arg max
(a,θ)

[
K−1∏
k=0

p(rk|ck, θk)

][
p(θ0)

K−1∏
k=1

p(θk|θk−1)

]

·

[
P (µ0)

K−1∏
k=1

I(ak, ck, µk, µk+1)

]
(11)

where I(ak, ck, µk, µk+1) is the code trellis indicator function,
which is equal to 1 when ak, ck, µk, and µk+1 obey the code
constraints and 0 otherwise. The initial trellis state probability
is P (µ0) = 1/S and the term P (a) has been neglected in
(11), under the assumption that the information symbols are
independent and uniformly distributed. The distribution of the
k-th received sample given the k-th transmitted symbol and
PN sample is

p(rk|ck, θk) =
1

2πσ2
exp

{
− 1

2σ2

∣∣rk − ckeθk ∣∣2} . (12)

Let us uniformly quantize the channel phase with Q levels,
θk ∈ {0, 2π

Q , . . . ,
2π
Q (Q−1)}, so that ∆θk in (2) is also a mul-

tiple of 2π
Q . We let the Wiener process be approximated as a

3Taking into account the possibility to have more bits as input of the
encoder, i.e., kb > 1, the more general definition of the number of states
is S = 2m·kb .

generalized random walk with fixed step, i.e., we approximate
the conditional probability mass function (PMF)4

p(θk|θk−1) '



P∆ if ∆θk = ± 2π

Q

1− 2P∆ if ∆θk = 0

0 otherwise
k 6= nL

U [0, 2π] k = nL

(13)

by assuming that either one of the two neighboring phase
values is selected, or the current value. Although this as-
sumption might seem inacurate, in the presence of strong
PN, results in Section V show that it yields a satisfactory
approximation, even for large values of σ∆, provided that the
transition probability between two adjacent quantized phase
levels, P∆, is optimized as a design parameter.

We then build our reduced-complexity trellis structure,
composed by Q interconnected trellises, one for each value
of the quantized phase. A simple example of this structure
for the blockwise non-coherent channel is depicted in Fig. 1.
Within each of the Q replicas (trellises), the receiver assumes
a different hypothesis on the phase and decoding occurs while
compensating for that phase value. Since each trellis has its
own fixed phase value θ̄k, the branch metric in (12) depends
on the Euclidean distance dE

(
rk, cke

jθ̄k
)

=
∣∣∣rk − ckeθ̄k ∣∣∣.

The idea of discretizing the unknown phase is per se not
novel. It is however the new channel model considered here
that makes the discrete phase estimate and the decoding of
the TB sequence of states interplay in a novel way, such that
the resulting m-WAVA Algorithm, discussed hereafter, is a
generalization of previously known algorithms.

A. Proposed m-WAVA Algorithm

We are interested in TB CCs, that obey a termination
condition requiring that the initial and final encoder states
coincide. For TB CCs with short codeword lengths, the rate
loss due to termination does play a role. The WAVA algorithm
is a modification of the traditional VA that takes into account
such a termination condition. It performs several iterations of
the VA until hopefully the most likely path starts and ends
in the same state [8]. We thus propose to modify the WAVA

4Note that, after the discretization, all probability density functions (PDFs)
become PMFs.
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to be applied on the Q different trellises as illustrated in Fig.
1. The steps of the resulting modified WAVA-based algorithm
(m-WAVA) are:

1) Initialization: consider Q distinct trellises with S states,
each with its own quantized phase value. All states in
all trellises are initialized to be equally probable, since
TB CCs are used.

2) VA Iterations: in each trellis, proceed using standard VA
iterations within the first block of L samples, using the
branch metrics in (12), with the corresponding quantized
phase value θ̄k.

3) Trellises Connections: when the phase changes ran-
domly, i.e., after L samples according to the blockwise
non-coherent channel, all trellises have to be connected
together, allowing the paths to jump from one phase
value to another. Connection rules provided by code
constraints always have to be respected. If σ∆ > 0,
i.e., in the case of blockwise Wiener channel, transitions
between adjacent trellises are also allowed after every
sample, whose probability depends on (13).

4) WAVA Iterations: steps 2) and 3) have to be performed
for all trellis sections. Then, after selecting the most
likely path for every state, set the initial states for the
next iteration with the weights of the corresponding most
likely final states. This is the typical behavior of the
WAVA, described in detail in [8].

5) Termination of Iterations: repeat steps 2)-4) until
the maximum number of iterations or any other stop
criterion is met (see [8]), then output the most likely
TB path.

We remark how the approximation of the PN process with
the Markov chain in (13) helps in reducing complexity: since
the support of the PMF in (13) is three, there are only two
valid transitions between adjacent trellises rather than Q

Example 1: A simple example is depicted in Fig. 1. Here, we
consider a 2-state encoder trellis and Q = 3 phase quantization
levels, i.e., θ0 = 0, θ1 = 2π/3, and θ2 = 4π/3, and L = 3.
For the sake of a clear visualization, in Fig. 1 we focus on the
blockwise non-coherent channel, discarding edges connecting
adjacent trellises within a block. At the end of a block the
phase randomly changes. The three trellises, each representing
a different value of the quantized phase, are fully connected
with each other, such that paths can move from one trellis to
the other one. It follows that the number of possible transitions
for a given next state are multiplied by Q, e.g., in this scenario,
six candidates instead of two, highlighted in red (and dashed).
Note again that the most likely path at the end of the trellis,
that is the one minimizing the Euclidean distance according
to (12), could travel across trellises characterized by different
phase values, depending on the corresponding phase evolution
of the channel. An example is highlighted in blue (and dash-
dotted) in Fig. 1. Since the CC is TB, the trellis path is such
that the final state is the same as the initial one, as in the
original WAVA. However, the trellis path of the noisy phase is
not TB, hence the final state may belong to a different trellis
compared to the initial one.
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Fig. 2: Decoder performance: curves are obtained by using
ML decoding and the modified WAVA, where “-O” stands for
an optimized m-WAVA. σ∆ is the standard deviation of the
phase Wiener process and Q = 8. The RCUs benchmark is
plotted. We considered (in Figs. (a),(b),(c)) L = 8, 16, 32.
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B. Complexity

As discussed at the end of Section III, the complexity of
the ML decoding strategy is exponential in L and m, thus
becomes rapidly prohibitive whenever either the block length
or the code memory increase. In fact, by taking into account
the possibility to have more bits as input of the encoder, i.e.,
kb > 1, the number of transitions within a block for ML
decoding are

TML = 2kb·m·L . (14)

The modified WAVA performs the decoding of TB CCs
over the blockwise non-coherent channel, with complexity
proportional to the number of transitions inside each block
of length L. Suppose to have Q trellises with S states, a CC
encoder with kb bits as input, i.e., 2kb branches leave each
state, by allowing transitions between adjacent trellises, i.e.,
letting P∆ > 0, the number of transitions within a block is

TRC = 2kbSQ( 1︸︷︷︸
same
trellis

+ 2︸︷︷︸
adjacent
trellises

) (L− 1) + 2kbSQ2︸ ︷︷ ︸
phase changes

randomly

. (15)

The complexity of the proposed approach grows linearly with
L and not exponentially as in optimal ML decoding. Regarding
Q, the dependence of (15) is quadratic, but we illustrate in
Section V that often small values of Q are sufficient to perform
close to theoretic benchmarks. In fact, the tradeoff for the
choice of Q primarily depends on σ∆: a too large Q implies
too many adjacent phase transitions to track the possibly rapid
variations of PN, while a too small Q obviously implies a
rough quantization of θk, that does not accurately represent
the true PN values.

V. NUMERICAL RESULTS

Transmitted symbols are sent over the blockwise non-
coherent channel (1) and performance is measured in terms
of frame error rate (FER) versus Eb/N0 (with and without
Wiener PN). Eb is the received signal energy per information
bit and N0 the one-sided noise power spectral density. Fig.
2 shows simulation results when using the proposed modified
WAVA (with two iterations) as well as under ML decoding,
referring to the analysis of Sec. III (for a scenario where
the complexity is still affordable, i.e., Fig. 2(a) and Fig.
2(b)). Simulations are compared against the random coding
union bound with parameter s (RCUs) [12], computed for the
blockwise non-coherent channel (σ∆ = 0◦).

The code used in simulations is a rate-1/2 TB CC with two
different memory lengths, i.e., m = 8 and m = 11. The code
polynomials were taken from [7] and chosen to optimize the
CC code free distance.5 They are specified in octal notation
as [515, 677] (for m = 8) and [5537, 6131] (for m = 11). The
information word length is 64 bits, while the codeword length
is 128 bits. We consider different values of σ∆, describing the
standard deviation of the Wiener PN process, up to σ∆ = 6◦,
that is regarded as a very strong PN. The number of phase

5Note that the PN evolution may influence the optimality of the code, and
a search for codes which are optimal in this context might be necessary.
Nevertheless, simulation results show that the code performance associated to
the chosen code polynomials is satisfactory.

quantization levels is set to Q = 8, which is shown to be a
reasonable tradeoff between performance and complexity. A
binary phase-shift keying (BPSK) modulation is used.

Comparing the performance of a ML receiver to that of
m-WAVA with reduced complexity we see that there is little
loss entailed in the phase quantization process, even with a
small value of Q. For short blocks with L = 8 (Fig. 2(a))
performance is almost identical. For longer blocks L = 16
(and m = 8) a loss of 0.4 dB is visible (Fig. 2(b)). The loss
increases with both L and the PN variance, since a larger
σ∆ emphasizes the discrepancies between the true blockwise
Wiener PN and the approximation entailed in m-WAVA.

The close match between ML and m-WAVA performance
is a key point to demonstrate the practical applicability of the
proposed algorithm, since the complexity of the receiver is
driven by the number of quantization levels, as per (15). For
larger code memory length (i.e., m = 11), as expected, the
performance of the of m-WAVA algorithm shifts closer to the
benchmark, which suggests that the performance loss w.r.t. the
ML receiver with full complexity is further reduced.

As previously stated, according to (13), an optimization
of the parameter P∆ could improve the performance when
σ∆ > 0. If the noncoherent block is short and if the standard
deviation of the phase noise is low, the improvement from the
optimization of P∆ is negligible. In these cases, we decided
not to consider optimization, i.e., we adopted P∆ = 0. On the
other hand, when L is long and σ∆ is high, the optimization
is necessary to improve performance. This is the case of Fig.
2(c), in which the optimization gain is clearly visible.

VI. CONCLUSIONS

This work presents a novel decoding algorithm for tail-
biting convolutional codes for blockwise non-coherent AWGN
channels. The decoding algorithm is an approximation of ML
decoding, which, due its complexity, may not be a viable
solution. We show that for the proposed reduced complexity
algorithm, for the current setup, the loss is limited to at most
0.4 dB. Due to its suitability for short codeword lengths, the
proposed decoding algorithm might be of high interest for
M2M type communications.

REFERENCES

[1] A. Osseiran, F. Boccardi, V. Braun, K. Kusume, P. Marsch, M. Maternia,
O. Queseth, M. Schellmann, H. Schotten, H. Taoka, H. Tullberg, M. A.
Uusitalo, B. Timus, and M. Fallgren, “Scenarios for 5G mobile and
wireless communications: the vision of the METIS project,” IEEE
Commun. Mag., vol. 52, no. 5, pp. 26–35, May 2014.

[2] G. Durisi, T. Koch, and P. Popovski, “Toward massive, ultrareliable, and
low-latency wireless communication with short packets,” Proc. IEEE,
vol. 104, no. 9, pp. 1711–1726, Sep. 2016.

[3] G. Colavolpe, A. Barbieri, and G. Caire, “Algorithms for iterative
decoding in the presence of strong phase noise,” IEEE J. Sel. Areas
Commun., vol. 23, no. 9, pp. 1748–1757, Sep. 2005.

[4] A. Barbieri and G. Colavolpe, “Soft-Output Decoding of Rotationally
Invariant Codes Over Channels With Phase Noise,” IEEE Trans. Com-
mun., vol. 55, no. 11, pp. 2125–2133, Nov 2007.

[5] T. Ninacs, B. Matuz, G. Liva, and G. Colavolpe, “Short non-binary
low-density parity-check codes for phase noise channels,” IEEE Trans.
Commun., vol. 67, no. 7, pp. 4575–4584, July 2019.
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