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Abstract—In this letter, an age of information (AoI)-aware
transmission power and resource block (RB) allocation technique
for vehicular communication networks is proposed. Due to
the highly dynamic nature of vehicular networks, gaining a
prior knowledge about the network dynamics, i.e., wireless
channels and interference, in order to allocate resources, is
challenging. Therefore, to effectively allocate power and RBs,
the proposed approach allows the network to actively learn
its dynamics by balancing a tradeoff between minimizing the
probability that the vehicles’ AoI exceeds a predefined threshold
and maximizing the knowledge about the network dynamics.
In this regard, using a Gaussian process regression (GPR)
approach, an online decentralized strategy is proposed to actively
learn the network dynamics, estimate the vehicles’ future AoI,
and proactively allocate resources. Simulation results show a
significant improvement in terms of AoI violation probability,
compared to several baselines, with a reduction of at least 50%.

Index Terms—Gaussian process regression (GPR), ultra-
reliable low-latency communication (URLLC), age of informa-
tion (AoI), V2X.

I. INTRODUCTION

Vehicle-to-vehicle (V2V) communication is an important
application in 5G and beyond networks. Time-critical V2V
safety applications require ultra-reliable low-latency commu-
nication (URLLC), in which the freshness of vehicles’ status
update is crucial. A relevant metric to quantify information
freshness is the age of information (AoI). AoI is defined as the
time elapsed since the generation of the last received status
update [1], [2]. Providing reliability guarantees in terms of
AoI is essential for such applications. In fact, if future AoI
can be reliably estimated, proactive transmission power and
resource block (RB) allocation can be carried out to ensure
that the reliability, defined as the probability of the future
AoI exceeding a threshold, is minimized. However, for an
accurate estimation of future AoI, knowledge of the network
dynamics, i.e., wireless channels and interference, is required.
Recently, several works have studied the optimization of AoI
in vehicular networks [3]–[5]. In [3] and [4], the network
dynamics are assumed to be known and in [5], they are
estimated in a centralized manner without any consideration
of future AoI. Yet, in a URLLC setting [6], [7], reliably
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Figure 1. Illustration of the proposed solution.

learning and estimating the network dynamics with minimum
communication overhead is desirable. Due to the highly
dynamic nature of vehicular networks, gaining knowledge
a priori about the network dynamics is challenging. In this
regard, a viable solution is to develop an online decentralized
strategy to actively learn1 the network dynamics and allocate
resources accordingly to ensure reliability [8]. One possible
approach is based on model predictive control (MPC) [9],
which allows to control dynamic systems while ensuring the
optimality of the system performance. However, MPC requires
an accurate mathematical model of the dynamic system a
priori, which is unrealistic in vehicular networks. One al-
ternative is based on a Gaussian process regression (GPR)
approach, leveraging its modeling flexibility and robustness
to overfitting [8]. Unlike Gaussian mixture model (GMM),
which is a parametric model and suffers from overfitting, GPR
is a non-parametric Bayesian learning approach which means
that it is not limited by a functional form [10].

The main contribution of this paper is to develop a novel
approach, based on GPR, for enabling URLLC among ve-
hicles by actively learning the system dynamics, estimating
the vehicles’ future AoI, and proactively allocating trans-
mission power and RBs, in an online decentralized manner,
as illustrated in Fig. 1. The main objective is to trade off
between maximizing reliability by minimizing the probability
that the AoI exceeds a predefined threshold and maximizing
the knowledge gain about the local network dynamics. Simu-
lation results show a significant gain in terms of maximizing
reliability, compared to other baselines, with more than a 2-
fold improvement. Moreover, our numerical results show that
accurately estimating the future AoI improves the overall per-
formance in terms of minimizing the AoI violation probability.

II. SYSTEM MODEL

Consider a V2V communication network consisting of a set
K of K VUE transmitter-receiver pairs under the coverage of
a single roadside unit (RSU), assuming a Manhattan mobility

1Active learning is a paradigm in which the learning process is directed
to provide the next-best data input, e.g., resource allocation in our case, that
optimizes an objective according to the historical data.
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model2. The VUE pairs share a set N of N orthogonal
RBs with equal bandwidth W . The communication timeline
is slotted with a slot duration of τ , with t being the slot
index. For each VUE pair k, P k(t) = [Pnk (t)]

N
n=1 ∈ P

is an N -dimensional power allocation vector over different
RBs, with P being the set of all feasible power allocations
and Pnk (t) ∈ {0,

p
L ,

2p
L , . . . , p}, where p is the maximum

allowed transmission power per RB and L+1 is the number of
available power levels3. Moreover, the allocated transmission
power is subject to

∑
n∈N P

n
k (t) ≤ Pmax, where Pmax is the

total power budget, which is assumed equal for all VUE pairs.
Furthermore, each VUE transmitter k has a queue buffer to
store the data destined to its receiver whose queue dynamics
are given by: Qk(t+1) = max (Qk(t)−Rk(t), 0)+A, where
Qk(t) is the queue length of VUE pair k at time slot t, A
is the periodic packet arrival rate per slot, and Rk(t) is the
transmission rate of each VUE pair k at time slot t (in packets
per slot), which is given by,

Rk(t) =
τ

Z

∑
n∈N

W log2

(
1 +

Pnk (t)h
n
kk(t)

N0W + Ink (t)

)
, (1)

where Z is the packet length in bits, and N0 is the power
spectral density of the additive white Gaussian noise. Here,
Ink (t) =

∑
k′∈K\{k} P

n
k′(t)h

n
k′k(t) is the aggregate interfer-

ence from other VUEs at the receiver of VUE pair k over RB
n, and hnkk(t) is the channel gain from the transmitter of VUE
pair k to its receiver over RB n. We use the realistic V2V
channel model of [11] in which, depending on the location
of the VUE transmitter and receiver, the channel model is
categorized into three types: Line-of-sight, weak-line-of-sight,
and non-line-of-sight.

Real-time status updates are critical for V2V safety ap-
plications, whose freshness can be characterized using the
AoI metric [1], defined as: 4k(t) , τt − γk(t), where
4k(t) denotes the AoI of VUE pair k at the beginning of
time slot t and γk(t) is the generation instant of the last
status update received by VUE receiver k at/or just before
the beginning of time slot t. Note that, the index of the last
received status update depends on Rk(t−1), which, according
to (1), depends on the channel gain, interference, and allocated
power. Therefore, 4k(t+ 1) can be expressed as:

4k(t+ 1) = fk (4k(t),P k(t)) , ∀k ∈ K, (2)

where fk(·) is a nonlinear dynamic system for VUE pair k
which represents the local network dynamics, i.e. wireless
channels and interference. In this dynamic system, 4k(t) ∈
R+ and P k(t) ∈ P represent the state of the system and the
control action at time slot t, respectively. fk : R+ × P →
R+ maps the control actions to the state of the system [8].
Without any prior knowledge about the channel hnkk(t) and
interference Ink (t), and due to the highly non-stationary nature
of a vehicular network, the relationship fk(·) is unknown a
priori for every VUE pair k. Thus, fk(·) needs to be reliably
learned online from historical data. Jointly controlling and
actively learning fk(·) is crucial to reliably estimate the future
AoI and allocate resources.

2A transmitter periodically shares its status with a receiver in a vehicular
rear-end collision aviodance scenario.

3Note that Pn
k (t) = 0 implies that RB n is not allocated to VUE pair k.

Estimating fk(·) using a set of historical data points
is a regression problem. For our model, GPR is used as
the regression method, which is a class of Bayesian non-
parametric machine learning models. GPR does not involve
any black-box operations, and has a promising potential in
improving prediction accuracy. Moreover, Gaussian processes
(GPs) provide an elegant mathematical method for regression
accompanied with the full predictive distribution, which is
important for establishing confidence intervals [8], [12]. In
this view, we can rewrite (2), for notational simplicity, as
yi = fk (xi) , where xi = [4k(i),P k(i)] represents the ith

input and yi = 4k(i+1) represents the corresponding scalar
output. GPR is a nonlinear regressor that expresses the input-
output relation by assuming that fk (·) a priori follows a GP4

[12]. For any finite dataset Dk = {xi, yi}Mi=1, where M is
the dataset size, a GP becomes a multidimensional Gaussian
defined by its mean (zero in our case, for simplicity) and
covariance matrix, C , [c (xi,xj)]ij ,∀xi,xj ∈ Dk. For a
general input x∗ and for a given Dk, GPR provides a full sta-
tistical description of y∗, namely Pr {y∗ | x∗,Dk}, which can
be computed using the standard tools of Bayesian statistics
leading to y∗ |x∗,Dk

∼ N
(
µy∗ , σ

2
y∗

)
, where N

(
µy∗ , σ

2
y∗

)
is the normal distribution with mean µy∗ and variance σ2

y∗ .
Moreover,

µy∗ = cT
∗C
−1y, (3)

σ2
y∗ = c (x∗,x∗)− cT

∗C
−1c∗, (4)

with c∗ , [c (x∗,x1) · · · c (x∗,xM )]
T and y = [y1 · · · yM ]T

[12]. Here, the mean given in (3) is the estimate of y∗.
Note that the GPR computation complexity grows cubically
with the dataset size M [10]. However, due to the dynamic
nature of vehicular networks, fixing the maximum size of
the dataset by discarding old samples (i.e. history), can help
tackle the computational complexity without affecting the
GPR estimation performance.

A GP is completely defined by its covariance function
c (xi,xj). To accurately estimate future measures and their
distributions, a covariance function that fits with the nature of
the system has to be selected. In this regard, a Matérn class
covariance function [13] has been selected for learning fk(·):

c (xi,xj) = h2
21−ν

Γ (ν)

(
2
√
ν
|xi − xj |

λ

)ν
B
(
2
√
ν
|xi − xj |

λ

)
,

where Γ (·) is the standard Gamma function and B(·) is the
modified Bessel function of second order. The Matérn class
covariance function includes both the exponential autocorrela-
tion function when ν = 0.5 and the Gaussian autocorrelation
function as a limiting case when ν → ∞. Therefore, the
Matérn class offers us a flexibility to strike a balance between
these two extremes, thus it is well suited for our application.
The variables h, λ and ν are the hyperparameters of the
covariance function. The hyperparameters determine the shape
of the covariance function which need to be tuned to fit the
observed dataset Dk. This is done by maximizing the marginal
likelihood of the GP [10].

4Note that this assumption does not mean that the underlying process is
precisely Gaussian, but GP can still be used as a maximum entropy process,
for a given covariance function.
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Table I
SIMULATION PARAMETERS

Para. Value Para. Value Para. Value
K 20 N 20 τ 3 ms
W 180 kHz N0 -174 dBm/Hz p 10 dBm
Pmax 17 dBm L 1 arrival rate 2.5Mbps
Z 500 Byte αc 1 αi 100
d 10 ms M 200

Actively learning fk(·), by choosing the next-best input x∗
that optimizes an objective, would be beneficial in vehicular
networks due to its high non-stationary nature. The choice of
this objective and the problem formulation is discussed next.

III. AOI-AWARE POWER AND RB ALLOCATION

Each VUE pair has two main objectives. First, it seeks
to improve the reliability of the status updates and sec-
ond, it needs to enhance its knowledge about the system
dynamics. Improving the status updates reliability is cap-
tured by choosing the resources allocation that minimizes
Pr
{
4̂k(t+ 1) > d

}
. Here, the next-slot AoI is estimated

using GPR and thus, 4̂k(t + 1) is a Gaussian distributed
random variable with mean and variance given by (3) and
(4), respectively. Moreover, enhancing the knowledge about
fk(·) is tantamount to choosing the allocation that maximizes
the estimated AoI variance, σ2

4̂k(t+1)
[8, Corollary 5.4].

Formally, actively learning fk(·) by optimizing the tradeoff
between improving status update reliability (exploitation) and
enhancing the system dynamics knowledge (exploration) of
VUE pair k at time t can be posed as follows:

min
P k(t)∈P

αcPr
{
4̂k(t+ 1) > d

}
− αiσ2

4̂k(t+1)
(5)

subject to (2),

where αc and αi are non-negative weighting factors that
capture the exploitation-exploration tradeoff. A control action
P k(t) ∈ P that enhances the knowledge about the unknown
system fk(.) may not necessarily be the one that improves the
reliability Pr

{
4̂k(t+ 1) > d

}
. Thus, the choice of αc and

αi affect the system performance, as will be shown in Section
IV. Note that, since 4̂k(t+1) follows a Gaussian distribution,

then Pr
{
4̂k(t+ 1) > d

}
= 1

2erfc

(
d−µ4̂k(t+1)√

2σ2
4̂k(t+1)

)
.

Actively learning fk(·),∀k ∈ K at a central entity, i.e.,
RSU, incurs huge communication overhead due to exchanging
the AoI of each VUE pair and the resources allocation
decisions between the RSU and all VUE pairs at every time
slot t. Thus, a decentralized AoI estimation and resources
allocation approach is proposed5. For a given VUE pair k,
Algorithm 1, which is given from [8], provides the steps to
obtain the solution of (5).

IV. SIMULATION RESULTS

We assume a 250 × 250m2 area of a Manhattan mobility
model as in [14]. We set the average vehicle speed to
60 km/h, and we choose a time-varying distance between
each transmitter-receiver pair while maintaining an average
distance of 15m [15], with a simulation duration of T =

5A VUE transmitter only requires the state (AoI) of its receiver.

Algorithm 1 Per VUE power and RB allocation using GPR
1: Input: set of available transmission power actions P , αc, αi, M .
2: Initialization: 4k(0) = 0, Dk = ∅, select P k(0) ∈ P randomly.
3: for t = 1, 2, . . . do.
4: Observe 4k(t).
5: Augment the dataset Dk = Dk∪

([
4k(t−1),P k(t−1)

]
,4k(t)

)
.

6: if |Dk| > M
7: Remove the oldest data point from Dk .
8: end if
9: Calculate the mean and variance of 4̂k(t + 1)∀P k(t) ∈ P using

(3) and (4).
10: Evaluate Pr

{
4̂k(t+ 1) > d

}
for all P k(t) ∈ P .

11: Choose P ∗
k(t) that minimizes (5).

12: end for

AoI-threshold

Figure 2. CCDF of the AoI for various RB allocation schemes and different
arrival rates with K = 20 and M = 200.

5000 time slots. Table I lists all main simulation parameters.
The GPML toolbox has been used to implement GPR [16].
A performance comparison is carried out between different
schemes: i) Baseline 1: each VUE pair allocates its transmis-
sion power randomly without learning the system dynamics,
i.e. wireless channel and interference, ii) Baseline 2 (GPR-
based Allocation with no exploration): a greedy approach
of our proposed scheme where each VUE pair actively learns
its system dynamics fk using GPR and subsequently solves
(5) with αi = 0, and iii) Proposed: GPR-based power and
RB allocation with αi = 100.

Fig. 2 compares the AoI of the different schemes in terms
of complementary cumulative distribution function (CCDF)
for different status updates’ arrival rates. Note that, due to the
learning of system dynamics fk, the GPR-based allocation
schemes (Baseline 2 and Proposed) outperform Baseline 1
for all of the considered arrival rates, in terms of the AoI
violation probability, i.e. Pr {4(t) > d}. In this regard, the
AoI violation probability is reduced by at least 52%, 85%,
and 99.6%, when the arrival rate is 2.5Mbps, 500 kbps,
and 1Mbps, respectively. Moreover, Fig. 2 shows that the
AoI violation probability when the arrival rate is 1Mbps is
significantly lower than the AoI violation probability when
the arrival rate is 500 kbps or 2.5Mbps. This means that
the arrival rate of status updates plays a significant role in
determining the performance of the system. Furthermore, it
should be noted that exploration can further reduce the AoI
violation probability. This reduction is more pronounced when
the arrival rates are 1Mbps and 2.5Mbps.

In Fig. 3, the next-slot AoI estimation performance and the
AoI violation probability are shown for the different dataset
sizes M used for active learning. Here, the shaded area
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Figure 3. RMSE and AoI violation probability for different dataset sizes M
with K = 20, αc = 1 and αi = 0.

Figure 4. Exploration vs AoI violation probability and average AoI.

highlights the upper 95% confidence interval. The estimation
performance is measured using the root mean square error
(RMSE) metric, which is calculated per VUE pair k as√∑

t

(
µ4̂k(t+1)−4k(t+1)

)2

/T . Note that as M increases, the
next-slot AoI estimation becomes more accurate, reducing the
RMSE, up until M ≈ 100. However, beyond M = 100,
RMSE increases and becomes worse at M = 1000. This
corroborates the fact that leveraging more history about the
system is not always beneficial and may hurt the overall
performance. This is due to the fast varying vehicular envi-
ronment, outdated observations become uncorrelated, yielding
poor prediction accuracy. Therefore, the main drawback of
GPR, being computationally heavy, diminishes because accu-
rately estimating the next-slot AoI would not require large-
sized datasets. Furthermore, Fig. 3 shows that accurate AoI
estimation improves decision making in terms of minimizing
the AoI violation probabilities. Following the RMSE trend,
the probability of AoI violation decreases when using up to
M = 200 data samples. The uncorrelated and outdated data
samples in scenarios with M > 200 lead to poor prediction
accuracy thereby increasing the AoI violations probability.

In Fig. 4, we study the impact of the exploration parameter
αi > 0 on the average AoI and AoI violation probabilities.
Fig. 4 shows that, as the exploration weight αi increases
up to 102, the AoI violation probability and the average
AoI decrease. This means that exploration allows each VUE
pair to sample better control decisions thus enhancing the
performance. However, further increasing αi > 102 results
in a performance degradation, in terms of an increased AoI
violation probability and increased average AoI. The reason is
that when the exploration weight is high, each VUE pair will
be biased towards choosing the control action that provides

more knowledge about the system instead of minimizing
the AoI violation probability. Henceforth, a balance between
exploration and exploitation needs to be taken into account.

V. CONCLUSION

In this paper, we have studied the problem of allocating
transmission power and RBs in vehicular networks under un-
certainty. The main objective is to balance a tradeoff between
minimizing the probability of the predicted AoI exceeding a
certain threshold and maximizing the amount of knowledge
learned about the system dynamics in an online manner. In this
regard, GPR is used to actively learn the network dynamics
and estimate the future AoI, and a decentralized allocation
approach is proposed. Simulation results have shown a sig-
nificant improvement in terms of AoI violation probability,
compared to other baselines. Finally, our results have also
shown that a balance between exploration and exploitation
is important to yield the best performance in terms of AoI
violation probability. Thus, finding the optimal dataset size
and exploration-exploitation weights to ensure a reliability
target could be an interesting topic for future work.
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