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Information transmission bounds between

moving terminals
Omar J. Faqir, Eric C. Kerrigan, Deniz Gündüz

Abstract—In networks of mobile autonomous agents, e.g. for
data acquisition, we may wish to maximize data transfer or
to reliably transfer a minimum amount of data, subject to
quality of service or energy constraints. These requirements can
be guaranteed through both offline node design/specifications
and online trajectory/communications design. Regardless of
the distance between them, for a stationary point-to-point
transmitter-receiver pair communicating across a single link
under average power constraints, the total data transfer is
unbounded as time tends to infinity. In contrast, we show
that if the transmitter/receiver is moving at any constant speed
away from each other, then the maximum transmittable data
is bounded. Although general closed-form expressions as a
function of communication and mobility profile parameters do
not yet exist, we provide closed-form expressions for particular
cases, such as ideal free space path loss. Under more general
scenarios we instead give lower bounds on the total transmit-
table information across a single link between mobile nodes.

I. INTRODUCTION

As autonomous agents become commonplace, the chal-

lenging task of developing control policies for communica-

tion between agents must be addressed. For a stationary

point-to-point transmitter-receiver pair under an average

power constraint, the total transmittable data is unbounded

as time tends to infinity, regardless of distance. In contrast,

we show that if the nodes move away from each other at

a constant speed, then the maximum transmittable data

is bounded even as time tends to infinity. Without loss of

generality we consider one stationary and one mobile node.

This bound is of relevance for aerial communications,

where channel gain is dominated by path loss exponents

and typically high speeds result in rapid growth in distances.

Examples include unmanned aerial vehicles (UAVs) or

spacecraft. We consider dynamic deployment scenarios (e.g.

[1]–[4]) where UAVs, spacecraft, or other agents are trans-

mitting while moving, and are interested in characterising
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the total data transfer as a function of mobility dynamics

and design parameters, such as transmit power. We do not

consider transmitter power control as a function of distance

as this is challenging to implement in practice, especially

at higher speeds. Linear constant speed trajectories, as

considered in [1], [2], have practical importance for fixed-

wing aircraft, since minimum propulsion energy operation

occurs at a constant velocity, and result in structured time-

varying communication channels. For dense UAV deploy-

ment scenarios with random mobility, works such as [5]

determine capacity bounds and outage probabilities. Even

for a simple linear trajectory in 3D space, the expression

for total transmittable data formulated in Section II is non-

trivial to evaluate due to the structure of the argument of

the logarithm. We instead derive closed-form expressions

for specific cases. In Section III we derive a bound for total

transmittable data in 1D and show the bound to be tight

for reasonable parameter values. In Section IV we consider

arbitrary linear agent trajectories deriving an expression for

total data transmission, assuming ideal free space path loss.

II. PROBLEM DEFINITION

The Shannon capacity is an information-theoretic limit

on the achievable communication rate for reliable trans-

mission across a noisy channel. The corresponding limit

on the total amount of transmittable data over time T is

DT := B

∫T

0
ln(1+SNR(t))dt , (1)

where B is the bandwidth and SNR(·) the time-varying

signal-to-noise ratio at the receiver. DT is measured in

nats (natural units of information). Neglecting fast-fading

dynamics, the channel gain is dominated by line-of-sight

fading, typical of aerial channels [1]. Then, the SNR is

SNR(P, t) =
PG

σ2

(
d0

d(t)

)
α

, (2)

where σ
2 is the receiver noise power, α≥ 2 (but typically not

much greater than 2) is the path loss exponent, and d(·) is

the time-varying distance between transmitter and receiver,

satisfying d(t) > d0,∀t ∈ R
+, for reference distance d0. P is

the average transmission power in Watts and G is a unitless

antenna parameter representing gain and path loss at the

distance d0. For simplicity we define S := PGσ
−2.

Consider wireless transmission between a stationary

node at the origin and a mobile transmitter at constant

longitudinal displacement z0 ≥ 0. The transmitter follows a
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linear trajectory at constant speed v . At time t ∈ [0,T ] the

lateral position of the transmitter relative to the receiver is

x(t) = x0 + v t , (3)

and x0 the initial lateral position. The distance is

d(t) =
√

z2
0 + (x0 + v t)2. (4)

Simplifying the distance operator through removing thep
(·), either by assuming z0 = 0 (Section III) or setting

α = 2 (Section IV), allows us to determine closed-form

expressions for the total amount of data that can be reliably

communicated in these special cases.

III. CHARACTERIZATION FOR GENERAL α IN 1D

We find the total data transfer in a one-dimensional

setting, where z0 = 0, and hence d(t) = x0+v t , as a function

of B , v , S and α. The restriction z0 = 0 simplifies the analysis

and arises in the context of a mobile UAV communicating

with a static aerial base station at the same altitude.

Theorem 1. The total transmittable data as the interval

length T →∞ for z0 = 0, x0 = d0 and v > 0, i.e.

D∞,1 := lim
T→∞

B

∫T

0
ln

(

1+S

(
d0

d0 + v t

)α)

dt , (5)

is finite and given by

D∞,1 =
Bd0

v

(

π
α
p

S csc
(
π

α

)

− ln(1+S)+

α

∞∑

n=1

{
(−1)n+1

Sn(αn+1)

}

−α

)

,

(6)

where the sum is positive and convergent for S > 1.

See Appendix A for the proof. Restricting S > 1 implies

that the transmit signal power, before undergoing any chan-

nel attenuation, is greater than the receiver noise power. In

practice we find it reasonable to assume S ≫ 1. Since the

sum is monotonically decreasing in both S and α, we may

determine a lower bound D̃∞,1 on D∞,1.

Corollary 1. A lower bound for D∞,1 is given by

D̃∞,1 :=
Bd0

v

(

π
α
p

S csc
(
π

α

)

− ln(1+S)−α

)

, (7)

where the error e∞,1 between D∞,1 and the bound D̃∞,1,

e∞,1 := D∞,1 − D̃∞,1 =
Bd0

v

∞∑

n=1

{
(−1)n+1

Sn(αn+1)

}

, (8)

is bounded as

e∞,1 ≤
Bd0α

v

(

1−
p

S tan-1

(
1
p

S

))

≤
Bd0α

v

(

1−
π

4

)

. (9)

Furthermore, e∞,1 → 0 as S →∞.

See Appendix B for a proof. Fig. 1 compares D̃∞,1 and

D∞,1 for the parameters shown in Table I and a range of S1.

Setting P = 1 mW results in S = 105. The corresponding error

is shown in Fig. 1b as e∞,1 = 3.33 × 10−6 MB= 0.278 nats.

Fig. 1b also shows that e∞,1 = Bd0α

v

(

1− π

4

)

= 1.5×10−3 MB

when S = 1, but decreases rapidly as S increases.

TABLE I: Table of default simulation parameters. Graph axes

and labels indicate where parameters differ from defaults.

B (Hz) σ
2(W) d0(m) G P (W) v(ms−1) α

105 10−8 1 1 1 5 2

100 105

10-2

10-1

100

1 2 3 4

2

4

6
8

10
12

10-3

(a) Comparison of D∞,1 and D̃∞,1

100 101 102 103 104 105
10-8

10-7

10-6

10-5

10-4

10-3

10-2

(b) Comparison of e∞,1 with bound

Fig. 1: Comparison of D∞,1, D̃∞,1.

Fig. 2 shows D∞,1 as a function of speed v ∈ [1,100] and

power P ∈ [10−3,100], calculated using (6). We approximate

the infinite sum by the first 100 terms. Since e∞,1 is

monotonically decreasing in P and v , the maximum ap-

proximation error corresponds to data point (P, v) = (10−3,1)

and is e∞,1 = 0.333 nats. Although controlling node mobility

is outside of the scope of this paper, Fig. 2 shows the

set {(P, v) | D∞,1 = M} of admissible powers and velocities

that successfully transmit M bits of data. (P, v) may then

be chosen from this set to achieve alternative operating

points, such as energy efficiency [1]. Since many transmit-

ters operate at a single, or finite set of power levels, v

may often be found as an explicit function of (P, M). For

comparison, the red and blue lines show D∞,1 calculated

from the Matlab quadrature function integral of (1) for

infinite T . Fig. 3 shows DT /D∞,1 as a function of both time

and position for a range of speeds. DT converges faster

to D∞,1 with increasing v . Even for a moderately slow

speed of v = 5 m/s, over 80% of the data is transmitted

Fig. 2: D∞,1 as a function of speed v and transmit power

P in the 1D case (z0 = 0) for parameters from Table I.

1For the sake of relatability all data is plotted in MB, not nats.
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Fig. 3: Finite-time data DT as a proportion of the bound

D∞,1 in the 1-D case for a range of speeds v in m/s.

within one hour. For the AWGN case here, with fixed

power and speed, any SNR type constraint can be directly

converted to a maximum allowable distance between the

transmitter and receiver. Similarly, if constraints on node

endurance (e.g. finite energy) are functions of velocity, one

may quantitatively investigate how limiting endurance is,

compared to the bound D∞,1. Fig. 3 shows a decreasing

marginal gain in transmitted data as endurance increases.

IV. CHARACTERIZATION FOR α= 2

We now consider the specific, but not unrealistic case

of α= 2, corresponding to ideal free space. The maximum

transmittable data over time T simplifies to

DT = B

∫T

0
ln

(

1+
Sd2

0

z2
0 + x(t)2

)

dt . (10)

Theorem 2. The total transmittable data as T → ∞ for a

UAV with starting position x0 ≥ d0, v > 0 and α= 2, i.e.

D∞,2 := lim
T→∞

B

∫T

0
ln

(

1+
Sd2

0

z2
0 + x(t)2

)

dt , (11)

for trajectory (3) is finite and given by

D∞,2 =
B

v

[

− x0 ln (1+S)+π
(p

ǫ− z0

)

−2

(p
ǫ tan-1

(
x0p
ǫ

)

− x0 tan-1

(
x0

z0

))]

.

(12)

where ǫ := z2
0 +Sd2

0 .

The proof is in Appendix C. Fig. 4 shows how D∞,2 varies

with displacement z0. In the straightforward case of α =
2, z0 = 0 a simpler expression follows.

Corollary 2. In the 1-D case (z0 = 0), with x0 = d0 and v > 0,

D∞,3 := lim
T→∞

B

∫T

0
ln

(

1+
Sd2

0

x(t)2

)

dt , (13)

the maximal transmittable data as T →∞ is

D∞,3 =
Bd0

v

[

2
p

S

(
π

2
− tan-1

(
1
p

S

))

− ln (1+S)

]

. (14)

1 2 3 4 5 6 7 8 9 10
40

60

80

100

120

Fig. 4: D∞,2 as a function of altitude z0.

Proof. The proof follows by setting z0 = 0, x0 = d0 in (12)

or by setting α= 2 in (6) and noting (e.g. using [6, p. 422])

∞∑

n=1

{
(−1)n+1

Sn(2n+1)

}

= 1−
p

S tan-1

(
1
p

S

)

. (15)

V. CONCLUSIONS

We have considered the amount of data that can be reli-

ably transmitted between a stationary and a mobile agent

on a straight trajectory. We have shown that, as opposed

to static channels, the maximum transmittable data is

bounded, even as time tends to infinity. For certain special

cases of path loss and mobility profiles, we have been able

to derive closed-form expressions for these bounds. These

bounds have been verified through simulations and may

be used for design/specification of mobile communication

channels subject to data transmission constraints.

APPENDIX A

PROOF OF THEOREM 1

Note, e.g. from [6, p. 212], the identity

ln(1+ z) =
{∑∞

n=1
(−1)n+1 zn

n
, if |z| < 1, z ∈R,

ln(z)+
∑∞

n=1
(−1)n+1

nzn , if |z| ≥ 1, z ∈R,
(16)

and

csc(z)=
1

z
+2z

∞∑

n=1

(−1)n

z2 − (πn)2
;

z

π
6∈Z, z ∈R. (17)

Starting with (5), we use the known affine trajectory x(t) =
x0 + v t to change the variable of integration, resulting in

D∞,1 = lim
T→∞

B

v

∫xT

d0

ln

(

1+S

(
d0

x

)α)

dx

︸ ︷︷ ︸

:=Da

,

where xT := x(T ). Define γ := Sdα

0 . Ignoring the limits for

now, and in accordance with identity (16),

Da =
∫ α

p
γ

d0

ln
(

1+
γ

xα

)

dx +
∫xT

α
p
γ

ln
(

1+
γ

xα

)

dx

Da =
∫ α

p
γ

d0

ln
(
γ

xα

)

+
∞∑

n=1

(-1)n+1

n

(
xα

γ

)n

dx

︸ ︷︷ ︸

:=Da1

+
∫xT

α
p
γ

∞∑

n=1

(-1)n+1

n

(
γ

xα

)n
dx

︸ ︷︷ ︸

:=Da2

,
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where the domain of integration has been split at γx−α = 1.

Considering just Da1, we are able to switch the order of

integration and summation, because the infinite sum is

absolutely and uniformly convergent on the domain of

integration, as may be shown through the Weierstrass M-

test [7, Theorem 7.10]. Therefore,

Da1 =
[

x
(

ln
(
γ

xα

)

+α

)

+
∞∑

n=1

(-1)n+1

n

(
xαn+1

γn(αn+1)

)] α
p

S

x0

= d0

[

α
α
p

S −α− ln(S)+
∞∑

n=1

(-1)n+1

n(αn+1)

(

α
p

S −
1

Sn

)]

.

The order of integration and summation may similarly be

swapped in Da2, resulting in

Da2 =
∞∑

n=1

(-1)n+1

n(1−αn)

[

x
(
γ

xα

)n]xT

α
p
γ

=
∞∑

n=1

(-1)n+1

n(1−αn)

(

xT

(
γ

xα

T

)n

− α
p

Sd0

)

.

The term Da1 does not change with xT , and the limit

lim
xT →∞

Da2 =−
∞∑

n=1

(-1)n+1

n(1−αn)

(
α
p

Sd0

)

.

Therefore, the total transmittable data

D∞,1 =
Bd0

v

[

α
α
p

S −α− ln(S)

+
∞∑

n=1

(-1)n+1

n(αn+1)

(

α
p

S −
1

Sn

)

− α
p

S
∞∑

n=1

(-1)n+1

n(1−αn)

]

.

Noting that,

(n(αn+1))−1 − (n(1−αn))−1 =−2α(1− (αn)2)−1, (18)

we may rewrite the infinite sums in D∞,1, resulting in

D∞,1 =
Bd0

v

[

α
α
p

S −α− ln(S)−
∞∑

n=1

(-1)n+1

nSn

︸ ︷︷ ︸

− ln(1+S)

+α

∞∑

n=1

(-1)n+1

(αn+1)Sn
−2α

α
p

S
∞∑

n=1

(-1)n+1

1− (αn)2

︸ ︷︷ ︸

−
(

π
α
p

S csc
(
π

α

)

−α α
p

S
)

]

,

where the transformation in the first line follows from (16).

Restricting S > 1, the transformation in the second line

follows from (17). Since α≥ 2, the restriction of the domain

of (17) to z
π
6∈Z is not prohibitive. Finally,

D∞,1 =
Bd0

v

[

π
α
p

S csc
(
π

α

)

−ln(1+S)+α
∞∑

n=1

{
(-1)n+1

Sn(αn+1)

}

−α
]

.

(19)

APPENDIX B

PROOF OF COROLLARY 1

Simply ignoring the infinite sum results in (7). The

infinite sum in (6) is bounded for S > 1 if α ≥ 2 and is

monotonically decreasing in both α and S. Therefore,

∞∑

n=1

{
(-1)n+1

Sn(αn+1)

}

≤
∞∑

n=1

{
(-1)n+1

Sn(2n+1)

}

=

1−
p

S tan-1

(
1
p

S

)

≤ 1−
π

4
,

where the infinite sum is evaluated noting that [6, p. 422]

tan-1(z) =−
∞∑

n=0

(−1)n+1 z2n+1

2n+1
, z ∈R.

Therefore,

D∞,1 − D̃∞,1 ≤
Bd0α

v

(

1−
p

S tan-1

(
1
p

S

))

≤
Bd0α

v

(

1−
π

4

)

.

Since limS→∞
p

S tan-1
(

1p
S

)

= 1, the error e∞,1 → 0 as S →∞.

APPENDIX C

PROOF OF THEOREM 2

Note that, using integration by parts,

∫b

c
ln(z2 +a)dz =

[

z
(

ln(z2 +a)−2
)

+2
p

a tan-1

(
z
p

b

)]b

c

.

(20)

We begin by rewriting (11) as

D∞,2 = lim
xT →∞

B

∫xT

x0

ln
(

(z2
0 +Sd2

0 )+ x2
)

− ln
(

z2
0 + x2

)

dx. (21)

Integrating the first logarithm, using ǫ= z2
0 +Sd2

0 and (20),
∫xT

x0

ln
(

(z2
0 +Sd2

0 )+ x2
)

dx = 2(x0 − xT )+ xt ln(x2
T +ǫ)

− x0 ln(x2
0 +ǫ)+2

p
ǫ

(

tan-1

(
xTp
ǫ

)

− tan-1

(
x0p
ǫ

))

.

Similarly, the second logarithm is integrated as
∫xT

x0

ln
(

z2
0 + x2

)

dx = 2(x0 − xT )+ xT ln(x2
T + z2

0)

− x0 ln(x2
0 + z2

0)+2z0

(

tan-1

(
xT

z0

)

− tan-1

(
x0

z0

))

.

Therefore,

D∞,2 = lim
xT →∞

B

v

[

xT ln

(

x2
T +ǫ

x2
T
+ z2

0

)

+ x0 ln

(

x2
0 + z2

0

x2
0 +ǫ

)

+2
p
ǫ

(

tan-1

(
xTp
ǫ

)

− tan-1

(
x0p
ǫ

))

+2z0

(

tan-1

(
xT

z0

)

− tan-1

(
x0

z0

))]

=
B

v

[

x0 ln(1+S)+π

(√

z2
0 +Sd2

0 − z0

)

−2






√

z2
0 +Sd2

0 tan-1






x0
√

z2
0 +Sd2

0




− z0 tan-1

(
x0

z0

)






]

.
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