
SECURITY OF HYPERLOGLOG (HLL) CARDINALITY
ESTIMATION: VULNERABILITIES AND PROTECTION

A PREPRINT

Pedro Reviriego
Universidad Carlos III de Madrid

Leganés 28911, Madrid, Spain
email: revirieg@it.uc3m.es

Daniel Ting
Tableau Software

Seattle, Washington, USA
email: dting@tableau.com

February 18, 2020

ABSTRACT

Count distinct or cardinality estimates are widely used in network monitoring for security. They
can be used, for example, to detect the malware spread, network scans, or a denial of service attack.
There are many algorithms to estimate cardinality. Among those, HyperLogLog (HLL) has been one
of the most widely adopted. HLL is simple, provides good cardinality estimates over a wide range of
values, requires a small amount of memory, and allows merging of estimates from different sources.
However, as HLL is increasingly used to detect attacks, it can itself become the target of attackers
that want to avoid being detected. To the best of our knowledge, the security of HLL has not been
studied before. In this letter, we take an initial step in its study by first exposing a vulnerability
of HLL that allows an attacker to manipulate its estimate. This shows the importance of designing
secure HLL implementations. In the second part of the letter, we propose an efficient protection
technique to detect and avoid the HLL manipulation. The results presented strongly suggest that the
security of HLL should be further studied given that it is widely adopted in many networking and
computing applications.

1 Introduction

Network monitoring is a key element for security [1]. Monitoring can be done at many levels. For example, each
packet’s payload can be inspected to detect malicious contents or the header can be analyzed to identify packets coming
from suspicious sources. Monitoring can also be done at a coarser granularity. For example, by looking only at the link
loads. The number of connections for each host or network can also be used to detect attacks or abnormal activity [2].
This can be done by storing the connections in a table and, for each new packet, checking if the connection is already
in the table. This, however, requires a significant amount of memory if the number of connections or networks to
monitor is large [3]. Counting the number of different connections is basically identifying the number of distinct
elements (connections) in a set (packets) which has been widely studied [4]. This problem is also known as cardinality
estimation and many algorithms have been proposed over the years. For example, Linear Probabilistic Counting
Arrays (LPCAs) are efficient when the expected range of values is small and known in advance [5]. Algorithms that
can cover a wide range of cardinalities have also been developed, like for example the HyperLogLog (HLL) [6] which
has been widely adopted [7].

HyperLogLog has a number of advantages that make it attractive. Compared to a bitmap based sketch like LPCA that
can become saturated, HLL provides good estimates over a large range of cardinality values. It does so with a small
memory footprint, requiring only ≈ 5k bits to achieve errors of 100/

√
k percent. Furthermore, HLL sketches can be

merged to compute the cardinality of unions. This is useful in network applications as measurements may be taken
on different nodes and combined to obtain better and wider estimates [8]. In fact, HLL is widely used in networking
for example to detect malicious worm activity [8], to detect nodes with a large number of connections [9] or networks
scans made by attackers [10].

ar
X

iv
:2

00
2.

06
46

3v
1

 [
cs

.C
R

]
 1

5
Fe

b
20

20

A PREPRINT - FEBRUARY 18, 2020

A potential issue when using any detection mechanism is that an attacker can try to evade detection. Therefore, since
HLL is widely used for network monitoring, it is interesting to consider what an attacker can do to evade detection
based on HLL cardinality estimation. To the authors’ best knowledge, there is no previous work on the security of
HLL. The closest works focus on the privacy implications of HLL [11] or on attacks on data structures like Bloom
filters or the Count-Min sketch [12].

In this paper, for the first time, the security of HLL is considered and two interesting contributions are made. The first
one is to show that an attacker can easily manipulate the HLL estimate with no knowledge of its implementation if he
can add elements and access the HLL estimates. Uncovering this vulnerability would help designers to protect their
HLL implementations and would also raise awareness on the importance of security in HLL. The second contribution
is an efficient protection scheme that detects and avoids HLL manipulation and preserves the crucial mergeability
property of HLL sketches. The results presented in this paper are also intended to foster further research to study the
security of HLL.

The rest of the paper is organized as follows. Section 2 gives a brief overview of HLL and introduces the notation
used in the paper. Section 3 discusses the security of HLL, first describing the adversarial models considered and then
presenting the proposed attack to manipulate the HLL estimate. Then in section 4, the techniques to detect and avoid
the attack on HLL are presented and their practical application is discussed in section 5. The paper ends in section 6
with the conclusion and some ideas for future work.

2 HyperLogLog

The HyperLogLog (HLL) algorithm [6] is a popular and highly efficient data sketch for estimating a data stream’s
cardinality, in other words, the number of unique elements in the data stream. It is composed of an array of M
counters c1, . . . , cm that each contain a very small integer value that can typically be stored in 5 bits. Elements x
are first mapped to one counter using a hash function h(x). By using a hash function, a duplicate element is always
mapped to the same counter. Figure 1 illustrates the structure used in HLL.

Figure 1: Diagram of the structure used in HLL

To update a counter, another hash function g(x) is used to generate a value. This value v(x) is one plus the number
of leading zeros in the bit representation of g(x). Each counter then keeps the maximum value for all elements
mapped to that counter. For example, consider a counter ci that two elements y and z are mapped to and suppose
g(y) = 01011001 and g(z) = 00010101. This gives v(y) = 2 and v(z) = 4, and this counter stores ci = v(z) = 4.
The update of a counter in HLL is illustrated in Figure 2. In this case, element x is inserted by first selecting the
counter with h(x). Then v(x) is computed based on g(x) and a value of 7 is obtained. Since this is larger than the
value of 3 stored in the counter, the counter value is updated to 7. If x is inserted again later, it will not increment the
counter value. The idea of these counters is that the probability of having a value with tz leading zeros is related to the
number of elements mapped to the counter in an exponential way. This enables the counters to cover a wide range of
cardinalities using only a few bits.

The cardinality in HLL is estimated by first computing the harmonic mean of the counter contents as follows:

Z =
1∑M

i=1 2−ci
, (1)

where ci is the value of the ith counter.

The cardinality estimate is obtained by multiplying by a constant factor given in [6] that can depend on the number of
counters M :

2

A PREPRINT - FEBRUARY 18, 2020

Figure 2: Example of a counter update in HLL

C = αM ·M2 · Z (2)

For large cardinalities, the error of the HLL estimate is approximately 1.04n√
M

where n is the true cardinality. Therefore,
a desired accuracy can be obtained by adequately selecting the number of counters M . An interesting feature of HLLs
is that they can be merged in order to compute the cardinality of the union of data streams. To merge a collection of
HLL sketches constructed using the hash functions g and h, for each counter position, select the maximum counter
value across all the sketches. The resulting HLL sketch is identical to one computed on all data streams concatenated
together. In network monitoring, merging is useful to combine measurements from different nodes.

3 Vulnerabilities of HyperLogLog

This section first presents two models for the attacker. These depend on the information the attacker has about the
HLL implementation. We then present schemes to manipulate the HLL estimates for both attacker models.

3.1 Adversarial Models

The best case for an attacker would be to know the hash functions used in the HLL implementation: h(x) and g(x).
This can be a realistic assumption if HLL is implemented using open source software libraries or commonly used hash
functions and default seeds. This first model will be denoted as M1 in the rest of the paper.

A much weaker assumption is that the attacker can insert elements into the sketch and check the cardinality estimate.
This can easily be done if the attacker knows which device is used to do the monitoring1. This second model will be
denoted as M2 in the rest of the paper.

3.2 Manipulating HLL Estimates

To evade HLL detection, an attacker needs to manipulate the HLL estimate so that it is much lower than the real
number of distinct elements in the set. That would allow, for example, a large number of connections to be established
without triggering an alert. Consider the case where HLL monitors the number of flows in a network and each flow
is identified by the 5-tuple of source and destination IP addresses and transport ports plus the protocol. The attacker
has a set of flows A with cardinality Ca and wants that they do not increment the cardinality estimate of HLL CHLL.
This would be achieved if for all the flows a in A, the hash function g(a) starts with a ’1’. Equivalently, the counter
value for the flow is v(a) = 1. If that is the case, the flows in A would not increment any non-zero HLL counters, and
it is unlikely to affect the HLL estimates at all for even moderate cardinalities. This is since an HLL sketch with M
counters is expected to have no non-zero counters after encountering M logM distinct items.

Let us start by assuming an M1 attacker that knows the function g(x). Fixing all other values, the attacker can modify
the source port value to find an element a such that g(a) starts with a ’1’. Generating many of such elements is easy
as half of the values start with ’1’ in expectation. Therefore, a set of flows A that would go undetected can easily be
created by the attacker with arbitrary source and destination IP addresses, protocol and destination port values. The
same reasoning applies even if detection is based only on one field, for example the source IP address. In that case, if
an attacker controls a number of nodes, roughly half or more of these nodes will not result in any change in the HLL
sketch. This is worrying as it shows that the attacker can easily generate a large set A that will not be detected.

1He just needs to get the same device and test it.

3

A PREPRINT - FEBRUARY 18, 2020

Even when considering an M2 attacker that does not have access to g(x), he can still build a set A that has estimated
cardinality much smaller than the true cardinality |A|. Assume that the attacker can insert into the HLL sketch and
check the estimate2. Then, he can insert elements on a HLL and check if they increase the cardinality value or not.
Elements that do not increase the estimate can be added to A as they are less likely to increase the HLL estimate.
In [11], it was shown that a similar procedure could be used to extract information about whether an element was part
of an HLL. In section 5, the construction of a set A for an existing HLL implementation using those techniques is
presented to demonstrate the feasibility of the attack.

In the previous discussion, the attacker tries to reduce the HLL estimate to avoid detection. Another attack artificially
increases the HLL estimate, for example, to create a flood of false positives that overwhelm the defender’s ability to
assess if warnings are genuine threats. In this case, creating the set A is more challenging as we need to find elements
whose g(x) starts with a large number of zeros but it still can be done. In the rest of the paper we focus only on an
attacker that is trying to evade detection by reducing the HLL estimate.

4 Protecting HyperLogLog

From the previous section, it is apparent that even an attacker with no access to the implementation details of HLL
(M2 attacker model) can evade detection if he can test insertion and estimation. This is worrying as HLL is widely
used in network monitoring. Therefore, it is of interest to consider techniques to protect against attackers evading
HLL. In this section, existing protection techniques are discussed, and a new protection technique is presented.

4.1 Existing techniques

To protect HLL against attacks, random, one-time use salts can be used in the hash functions for every instance of an
HLL sketch [11]. That is, instead of using hashes h(x), g(x), the hashes can be written as h(x, s), g(x, s) with s being
a random number, alternatively s can be used as a parameter to configure the hash. An attacker would not be able to
infer if an element x would modify the estimate of an HLL unless it has access to that particular HLL instance’s salt.
Therefore, the use of a salt would effectively protect the HLL unless the attacker has gained access to the monitoring
device. But when that is the case, he can probably evade detection in other ways and evading the HLL would not be
an issue. The use of a salt has, however, a major drawback, HLLs can no longer be merged unless they use the same
value of s which requires sharing s as a secret among all nodes [11]. This can be an important limitation as in network
monitoring, merging is useful for aggregating results from different nodes.

To preserve the ability of merging HLLs, another potential approach is to add ”noise” to the HLL estimate, for example
by rounding it [11]. This would make harder for the attacker to identify which elements modify the cardinality
estimation. However, it seems that the attacker could still get that information [11]. This can be done by testing
different combinations of elements repeatedly. Thus, although rounding or adding noise to the estimate makes evasion
harder, it does not prevent it.

4.2 Salted and not Salted Protection (SNS)

To avoid evasion while preserving the ability to merge HLLs, in the following we propose the SNS protection technique
based on the combination of two HLLs, one salted and one not salted. The idea is to use the redundancy to detect
evasion attacks while preserving mergeability when there is no attack. The overall approach is illustrated in Figure 3.
Both HLLs are updated simultaneously and their estimates are compared. If their difference is larger than expected,
then we infer that an attempt has been made to attack the HLL. If the estimates are similar, then the not salted HLL
can be used for merging. This scheme in addition to avoiding evasion, detects when an attacker is trying to evade the
HLL.

Figure 3: Diagram of the structure used in the proposed Salted not Salted scheme

In detail, the structure used by SNS is composed of two HLLs, the first one is randomly salted and the second one not.
Let us consider that they have Ms and Mns counters respectively and that their estimates are Cs and Cns. Then, each

2This can be done by using a device with the same HLL implementation.

4

A PREPRINT - FEBRUARY 18, 2020

time we check the cardinality we also check if the difference between Cs and Cns is larger than a given fraction dt of
Cs. If so, we consider that we are under attack and we can only use Cs as a valid estimate. Therefore, the selection of
dt is critical to ensure reliable detection of attacks while minimizing false positives.

The cardinality estimate of HLL is approximately normally distributed with mean equal to the true cardinality C and

standard deviation 1.04 ·C ·
√

1
M . This is since the denominator in the harmonic mean in equation 2 is asymptotically

normal by the central limit theorem. The cardinality estimate also asymptotically normally distributed by the delta
method [13] since it is a continuously differentiable function of this harmonic mean in a neighborhood away from 0.
The standard deviation for large cardinalities is given by [6]. For small to moderate cardinalities [14] provides accurate
estimators for the standard deviation of an improved cardinality estimator.

Therefore, a one sided difference in means test can be used to test if there is no attacker. Two HLL sketches fed the
same input would return estimates whose difference Cns − Cs is normally distributed with zero mean and standard
deviation σ = 1.04 C

√
1

Mns
+ 1

Ms
. The ratio (Cns − Cs)/Cs will also be approximately normally distributed

with mean 0 and standard deviation σ. This allows us to set the detection threshold dt to achieve a desired false
positive probability for the test (Cns − Cs)/Cs < −dt. The false positive probability is given by Φ(−dt/σ) where
Φ(x) = P (Z ≤ x) is the cumulative distribution function for the Normal(0, 1) random variable Z. For example,
setting dt = 3 · σ would yield an approximately 0.1% false positive probability while dt = 6 · σ yields a minuscule
false positive probability of approximately 10−9.

The overhead introduced by the proposed SNS scheme is basically the need to keep two HLLs which implies doubling
the number of operations in terms of hash computations and memory accesses. The memory for the counters would
also be doubled when the sketches are equally sized so Mns = Ms. It is also possible to use a smaller Ms at the cost
of a less accurate verification procedure and larger threshold dt.

When there is no attack and no sketches are merged, the estimates Cs and Cns are independent and can be averaged
to obtain a more accurate estimate. In this case, there is effectively no space overhead since the standard deviation of
the averaged estimate, weighted by sketch size, is the same as that of a sketch using Ms +Mns counters.

5 Practical Application

In this section, the proposed attack on HLL and the SNS protection are illustrated from a practical perspective. First,
the construction of a large set of elements that gives a low cardinality estimation when using a publicly available tool
is presented and then the practical configuration of SNS is described.

5.1 Manipulating HLL estimates

To show the feasibility of the proposed attack, we exploit the cardinality estimation in Redis [15]. Redis is a network
based publicly available key-value store that includes cardinality estimation based on HLL. To generate an attack, start
with 250,000 distinct elements. These are sequentially added to a new HLL sketch. After each insertion the cardinality
is checked and the elements which do not increment the HLL estimate are retained. This procedure is repeated three
times starting with the last set of retained elements. This filters out elements that increment the HLL estimate. The
end result is a set with 74,390 distinct elements that gives an HLL estimate of only 15,780 or roughly a five-fold
reduction from the true cardinality. This clearly shows that an M2 attacker can easily craft a set A that will bypass
HLL detection. The procedure can be refined to further reduce the HLL estimate.

5.2 SNS protection

To describe the use of SNS, consider an implementation withMns = Ms = 1024. The value of σ for this configuration
would be approximately 0.046 and thus setting dt = 5 · σ gives a value of 0.23. Therefore, any deviation between Cs

and Cns of more than 23% would be a sign that there is an evasion attempt. To validate the analysis, the two HLL
have been simulated and the difference Cs and Cns has been measured when C = 100000. The results are shown in
Figure 4 and compared with the theoretical distribution. It can be observed that they match very well. This example
shows how the proposed method can be used to detect attacks with a very low number of false positives in a practical
configuration.

5

A PREPRINT - FEBRUARY 18, 2020

Figure 4: Probability distribution function of the difference of Cs and Cns normalized by C with Mns = Ms = 1024.

6 Conclusion

This paper has considered the security of HyperLogLog (HLL) cardinality estimation. The analysis shows that an
attacker can easily manipulate the HLL estimates even if he has no knowledge of the HLL implementation details.
Traditional protection schemes like adding a salt to the hash computations of the HLL have a major disadvantage as
the HLLs can no longer be merged. This is an issue for network monitoring as merging HLLs from different nodes
provides valuable information. To avoid that issue, a new protection scheme has been proposed. The idea is to use
both a salted and a not salted HLL on each node. When their estimates are significantly different, then an attacker
is trying to manipulate the HLL estimates. The proposed salted and not salted (SNS) scheme can not only avoid
manipulation, it also detects manipulation attempts. The applicability of the SNS scheme has been illustrated for
a practical configuration showing how it can detect manipulation attempts with very low false positive probability.
Therefore, it can be an interesting approach to protect HLLs from evasion when mergeability needs to be preserved.

References

[1] C. Sanders and J. Smith “Applied Network Security Monitoring”, Syngress, 2014.
[2] W. Chen, Y. Liu and Y. Guan,“Cardinality change-based early detection of large-scale cyber-attacks’,’ in Proceed-

ings IEEE INFOCOM, 2013.
[3] L. Zheng, D. Liu, W. Liu, Z. Liu, Z. Li and T. Wu,“A Data Streaming Algorithm for Detection of Superpoints with

Small Memory Consumption,” in IEEE Communications Letters, vol. 21, no. 5, pp. 1067-1070, May 2017.
[4] Z. Bar-yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan,“Counting distinct elements in a data

stream,” in RANDOM, 2002.
[5] C. Estan, G. Varghese, and M. Fisk,“Bitmap algorithms for counting active flows on high-speed links,” IEEE/ACM

Transactions on Networking, vol. 14, no. 5, pp. 925937, 2006.
[6] P. Flajolet, E. Fusy, O. Gandouet, and et al.,“Hyperloglog: The analysis of a near-optimal cardinality estimation

algorithm,” in Proceedings of the International Conference on Analysis of Algorithms (AOFA), 2007.
[7] S. Heule, M. Nunkesser, and A. Hall,“Hyperloglog in practice: Algorithmic engineering of a state of the art cardi-

nality estimation algorithm,” in Proceedings of the International Conference on Extending Database Technology
(EDBT), 2013.

[8] M. Cai, K. Hwang, J. Pan and C. Papadopoulos,“WormShield: Fast Worm Signature Generation with Distributed
Fingerprint Aggregation,” in IEEE Transactions on Dependable and Secure Computing, vol. 4, no. 2, pp. 88-104,
April-June 2007.

[9] R. Harrison, Q. Cai, A. Gupta, and J. Rexford, “Network-wide heavy hitter detection with commodity switches,”
in Proceedings of ACM SOSR, 2018.

[10] Y. Chabchoub, R. Chiky, and B. Dogan, “How can sliding Hyperloglog and EWMA detect port scan attacks in
IP traffic?” in the EURASIP Journal on Information Security, pp. 1-11, 2014.

[11] D. Desfontaines, A. Lochbihler, D.A. Basin, “Cardinality Estimators do not Preserve Privacy,” in Proceedings on
Privacy Enhancing Technologies, no. 2, May 2019.

6

A PREPRINT - FEBRUARY 18, 2020

[12] D. Clayton, C. Patton and T. Shrimpton, “Probabilistic Data Structures in Adversarial Environments,” in Pro-
ceedings of the ACM SIGSAC Conference on Computer and Communications Security (CCS), 2019.

[13] G. Casella and R. L. Berger, “Statistical inference“, Duxbery Press, 2001
[14] D. Ting, “Approximate Distinct Counting for Billions of Datasets,” in Proceeding of ACM SIGMOD, 2019.
[15] J. A. Kreibich and P. Noordhuis, “Redis: The Definitive Guide: Data modeling, caching, and messaging,”

O’Reilly, 2015.

7

	1 Introduction
	2 HyperLogLog
	3 Vulnerabilities of HyperLogLog
	3.1 Adversarial Models
	3.2 Manipulating HLL Estimates

	4 Protecting HyperLogLog
	4.1 Existing techniques
	4.2 Salted and not Salted Protection (SNS)

	5 Practical Application
	5.1 Manipulating HLL estimates
	5.2 SNS protection

	6 Conclusion

