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Abstract—The analysis of signal-to-interference ratios (SIRs)
in wireless networks is instrumental to derive important perfor-
mance metrics, including reliability, throughput, and delay. While
a host of results on SIR distributions are now available, they
are often not straightforwards to interpret, bound, visualize, and
compare. In this letter, we offer an alternative path towards the
analysis and visualization of the SIR distribution. The quantity
at the core of this approach is the signal fraction (SF), which
is the ratio of the signal power to the total received power.
A key advantage is that the SF is constrained to [0, 1]. We
exemplify the benefits of the SF-based approach by reviewing
known results for Poisson cellular networks. In the process, we
derive new approximation and bounding techniques that are
generally applicable.

Index Terms—Wireless networks, stochastic geometry, point
process, signal fraction, interference.

I. INTRODUCTION

The signal-to-interference ratio (SIR) at a receiver is defined

as SIR , S/I , where S is the signal power (emitted by

the desired transmitter), and I is the total interference power

(emitted by all other concurrent transmitters). Its distribution

is an important performance metric in wireless networks, char-

acterizing the reliability of a transmission in an interference-

limited network. This letter shows that it is often advantageous

to focus on signal fractions instead of SIRs, for both analysis

and visualization.

A. Definition

Definition 1 (Signal fraction) The signal fraction (SF) is de-

fined as the ratio of the signal power to the total received

power, i.e.,

SF ,
S

S + I
.

Hence, defining T (x) , x/(1 + x), we have SF = T (SIR)
and SIR = T−1(SF), i.e.,

SF =
SIR

1 + SIR
; SIR =

SF

1− SF
.

T is a homeomorphism between R
+ = {x ∈ R : x ≥ 0}

and [0, 1), with fixed point 0.

Letting FX denote the cumulative distribution function (cdf)

of the random variable X , F̄X its complement (ccdf), and fX
the corresponding probability density function (pdf), we have

the relationships

F̄SIR(θ) = F̄SF(T (θ)); F̄SF(t) = F̄SIR(T
−1(t)).

For the pdfs, fSIR(θ) = fSF(T (θ))
dT (θ)
dθ , hence

fSIR(θ) =
fSF(θ/(1 + θ))

(1 + θ)2
; fSF(t) =

fSIR(t/(1− t))

(1− t)2
.
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Fig. 1. SIR distribution F̄SIR(θ) for Poisson networks (per (2) and (3)) with
different path loss exponents in units of dB (left) and MH (right). The top
axis gives the corresponding values of θ in standard (linear) units.

B. Visualization and MH Units

Since the support of the SIR is R
+, its distribution cannot

be fully shown on a linear scale. Switching to a logarithmic

scale helps somewhat as it compresses high SIR values, but

now the support is the entire R. In contrast, the SF is supported

on [0, 1], which makes it easy to plot in full. Based on the map

T , we define a new unit, called the Möbius1 homeomorphic

unit, abbreviated to MH. For x ∈ [0, 1), x MH = x
1−x . For

comparison, the dB unit is defined as x dB = 10x/10.

Thus equipped, we can write θ = T (θ) MH. Fig. 1 shows

SIR ccdfs for Poisson cellular networks (see Sec. II) in units

of dB and MH.

An advantage of the MH scale vs. the dB scale is that

θ ∼ T (θ), θ → 0, i.e., θ ∼ θ MH. Hence, in the important

high-reliability regime, T is linear, which means that the ccdf

directly reveals the tradeoff between rate and reliability. The

(normalized) rate (in nats/s/Hz) is given by log(1 + θ) ∼ θ or

− log(1− t) ∼ t ∼ θ. Put differently, the MH unit has higher

discriminative power for high reliabilities than the dB unit.

C. Poisson Cellular Network Model

In the following two sections, we focus on the downlink in

Poisson cellular networks. We let Φ ⊂ R
2 be a stationary

Poisson point process (PPP) of arbitrary positive intensity

and focus on the typical user located at the origin. All our

results also hold for the homogeneous independent Poisson

(HIP) model, consisting of the union of an arbitrary number

of PPPs of arbitrary densities where the base stations of each

tier transmit at the same arbitrary power levels.

If y ∈ Φ is the desired transmitter, the signal fraction is

SFy =
hyℓ(y)∑

x∈Φ hxℓ(x)
. (1)

1T is also a (parabolic) Möbius transformation.

http://arxiv.org/abs/2003.03442v1
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We let ℓ(x) = ‖x‖−α, where α = 2/δ is the path loss

exponent. (hx)x∈Φ are independent and identically distributed

(iid) random variables with E(hx) = 1 representing fading.

We will study two cases: In Section II, we focus on networks

with fading and nearest-base station association, i.e., SF =
SFy where y = arg min{x ∈ Φ: ‖x‖}. We denote this case

by NBA-m, where m is the Nakagami-m fading parameter.

Section III addresses the no-fading case, or, equivalently,

the case of instantaneously-strongest base station association

(ISBA) with arbitrary fading2. In this case, SF = SFy where

y = arg max{x ∈ Φ: hxℓ(x)} or, equivalently, setting all

hx = 1 and selecting y = arg min{x ∈ Φ: ‖x‖}.

II. SIGNAL FRACTION WITH FADING AND NEAREST-BASE

STATION ASSOCIATION

We first focus on Rayleigh fading where the hx are expo-

nential, i.e., NBA-1.

A. Exact Distribution

The SIR distribution is [2]

F̄SIR(θ) =
1

2F1(1,−δ; 1− δ,−θ)
, (2)

where 2F1 is the Gauss hypergeometric function. It follows

that the cdf of the SF is given by F̄SF(t) = F̄SIR(t/(1 − t)),
which can be expressed more compactly as

F̄SF(t) =
1

(1− t) 2F1(1, 1; 1− δ, t)
. (3)

This expression, compared with (2), has the advantage that the

last argument of the hypergeometric function does not exceed

1, which speeds up the evaluation.

B. Asymptotics and Approximations

1) Rational Approximation: The ccdf of the SF in (3) can

be expressed as

F̄SF(t) =

∑
∞

n=0 t
n

∑
∞

n=0 ant
n
,

where an = Γ(n + 1)Γ(1 − δ)/Γ(n+ 1 − δ). Truncations of

the infinite series to numerator and denominator polynomials

of order s yield simple rational (Padé-type) approximations

whose first s derivatives at t = 0 match those of the exact

expression, i.e., they are all asymptotically exact as t → 0.

For example, for s = 2,

F̄SF(t) ∼
1 + t+ t2

1 + t/(1− δ) + 2t2/((1− δ)(2 − δ))
, t → 0.

2For ISBA, it is known that the SIR distribution does not depend on the
fading statistics [1], and without fading, ISBA and NBA are identical.
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(a) SF, α = 3.
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(b) SIR, α = 3.
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(c) SF, α = 4.
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(d) SIR, α = 4.

Fig. 2. SF and SIR ccdfs and approximations for α = 3, 4. The first-order
approximation at t = 0 is 1 −MISR t and the second-order one is given in
(4). The second-order approximation at t = 1 is given in (5).

2) Polynomial Approximation: The slope of the cdf at 0 is

fSF(0) = MISR, consistent with the known result P(SIR ≤
θ) ∼ MISR θ, θ → 0 [3]. As a result, F̄SF(t) ∼ 1−MISR t is

a good approximation for reliabilities of 0.8 and above (i.e.,

t ≤ 0.2/MISR).

Adding the second-order term, we obtain

F̄SF(t) ∼ 1−MISR t+

(
MISR

2 − δ

2− δ

)
t2, t → 0. (4)

If MISR
2 − δ > 0, the ccdf is locally convex at t = 0.

This holds if δ > (3 −
√
5)/2 ≈ 0.382 (equivalently, if

α < 4/(3 −
√
5) ≈ 5.24), and it implies that 1 − MISR t

is a lower bound while (4) is an upper bound. Conversely,

for δ < 0.382 (α > 5.24), both first- and second-order

asymptotics are upper bounds. We can conclude that in most

practical cases, 1−MISR t is a lower bound.

Applied to the SIR, we immediately have FSIR(θ) ∼
MISR θ/(1+ θ), which is a significantly better approximation

than just MISR θ. Generally, T turns polynomials for the SF

into rational functions for the SIR of the same order, with

improved accuracy. In comparison, the Padé approximation in

[4] requires the calculation of twice as many derivatives as the

approach via the SF.

Fig. 2 illustrates the exact results and different approxima-

tions for the ccdfs of the SF and their application to the ccdfs

of the SIR.

3) Series Expansion at t = 1: From (3) we can derive the

second-order series expansion

F̄SF(t) ∼ sinc(δ)(1 − t)δ(1 + δ(1− t)), t → 1, (5)

where sinc(x) , sin(πx)/(πx). It turns out to be a very good

approximation for at least t > 2/3, see Fig. 2. Removing the

factor 1+ δ(1− t), the first-order expansion is obtained. This
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asymptotic result shows that the slope at t = 1 is always

infinite, i.e., fSF(1) = ∞.

4) Beta Approximation: For the SIR, there is no simple

distribution that closely resembles the entire actual distri-

bution. For the SF, the beta distribution with pdf fβ(t) =
tp−1(1 − t)q−1/B(p, q), where B is the beta function, is a

natural candidate. However, merely requiring fSF(0) = MISR

fixes both parameters, namely p = 1 and q = MISR, and

the resulting fβ(t) = MISR(1− t)MISR−1 does not match the

asymptotics at t = 1. For instance, if MISR > 1, fβ(1) = 0
instead of ∞, and for MISR = 1, it is just the uniform

distribution.

To have more degrees of freedom, we turn to the five-

parameter generalized beta distribution put forth in [5]. With

a support of [0, 1] and 0 < fSF(0) < ∞, one of the parameters

can be eliminated, resulting in the four-parameter pdf

fGB(t; a, b, p, q) ,
a(1− ta)q−1

bB(p, q)(1 + (b−a − 1)ta)p+q
,

with a = 1/p. Since fSF(0) = MISR, we have b =
(MISR pB(p, q))−1, which leaves the two parameters p and

q to match other statistics.

A simple option is to match the Θ((1− t)δ−1) asymptotics

at t = 1. It yields a = p = 1 and q = δ, and thus b = 1 − δ,

resulting in

f̃GB(t) =
µ

(1− t)1−δ(1 + µt)1+δ
, (6)

where µ = MISR. It satisfies f̃GB(t) ∼ δ(1 − δ)δ(1 − t)δ−1,

t → 1, which is slightly larger3 than the actual δ sinc δ(1 −
t)δ−1 from (5). We call the resulting approximation of the

SF and SIR distributions the beta-based simple tight (BEST)

approximation. It is formally stated in terms of the ccdfs in

the following proposition.

Proposition 1 (BEST approximation) For Rayleigh fading,

the SF and SIR distributions are tightly approximated by

F̄BEST
SF (t) =

(
1− t

1 + µt

)δ

; F̄BEST
SIR (θ) =

(
1+(1+µ)θ

)−δ
, (7)

respectively, where µ = MISR = δ/(1− δ).

Fig. 3 shows the exact SIR ccdfs and the BEST approxima-

tions for a range of δ values. The accuracy of the very simple

approximation is remarkable. Its inverse is equally simple,

which makes it easy to find the SF or SIR thresholds for a

given target reliability.

With a bit more effort we can determine p and q by matching

the first and second moments M1 and M2, given by [5,

Eqn. (2.10)]

Mk =
bkB((k + 1)p, q)

B(p, q)
2F1((k+1)p, kp; (k+1)p+q; 1−ba).

This way, we obtain

f̂GB(t) = fGB

(
t; 1/p, (µpB(p, q))−1, p, q

)
(8)

3The maximum gap between the pre-constants is 0.045 at δ = 0.65.
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Fig. 3. SIR ccdfs and BEST approximations (7) for δ = 0.4, . . . , 0.8,
corresponding to a range of α from 5 to 2.5.

δ b p q
2/5 0.7160 0.7385 0.4164
1/2 0.5554 0.8648 0.5276
2/3 0.3598 0.9296 0.7089

TABLE I
VALUES OF b, p AND q FOR DIFFERENT δ FOR THE GENERALIZED BETA

APPROXIMATION IN (8).

with p and q chosen such that M1 = E(SF) and M2 = E(SF2).
Table I shows the numerically obtained values of b, p, and q
for α = 3, 4, 5. The resulting approximations are virtually

indistinguishable from the exact distributions.

Fig. 4 shows the mean signal fractions for Rayleigh fading,

obtained from (3), the BEST approximation (7), a simulation

result for the no-fading case (ISBA—see Sec. III), an upper

bound for it, and the random base station association scheme

discussed in Subsec. III-C.

C. Other Fading Models

For NBA-m, Fh(x) ∼ cmxm, x → 0, where cm =
mm−1/Γ(m). As shown in [6],

F̄SIR(θ) ∼ 1− cmθmE(ISRm), θ → 0,

where ISR = I/Eh(S) is the interference-to-(average) signal

ratio (ISR), i.e., E ISR = MISR. The m-th moment for m ∈ N

of the ISR for arbitrary fading is given in [6, Thm. 2]. For

m = 2, for example, E(ISR2) = 2MISR
2+ δE(h2)

2−δ . This means

that for NBA-2, where c2 = 2 and E(h2) = 3/2,

F̄SF(t) ∼ 1− δ(3 + 2δ − δ2)

(1− δ)2(2− δ)
t2, t → 0.
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Fig. 4. Mean signal fraction for random base station association (RBA) (14),
Rayleigh fading (3), the BEST approximation (7), no fading (simulated), and
the upper bound (13). The range of δ corresponds to α ∈ [2.25, 10].

Conversely, the asymptotics as t → 1 do not depend on the

fading model, i.e., the tail for NBA-m is sinc(δ)(1− t)δ (see

(5)) for any m > 0 [6, Lemma 6]. Consequently, a beta

approximation similar to (6) but with p = m is expected to

perform well.

III. SIGNAL FRACTIONS WITHOUT FADING

A. The Path Loss Point Process

For a PPP Φ ⊂ R
2 of intensity λ, let the path loss point

process (PLP) be defined as Ξ , {x ∈ Φ: ‖x‖α/Vx} ⊂ R
+,

where the Vx are iid with E(V δ) < ∞, representing shadowing

and/or fading. The PLP is itself Poisson and has the intensity

measure Λ([0, r]) = λπE(V δ)rδ [1]. Scaling the density does

not affect the SF or SIR distributions, so we can equivalently

work with a PLP of intensity measure Λ([0, r]) = rδ , ignoring

any shadowing or fading4.

If the elements of Ξ = {ξ1, ξ2, . . .} are ordered (increas-

ingly), their pdfs are [1, Lemma 3]

fξk(x) =
δxkδ−1

Γ(k)
e−xδ

.

In [7], the signal-to-total-received-power ratio process is

introduced and shown to be a Poisson-Dirichlet process with

parameters (δ, 0). It is defined as Ψ , {ξ ∈ Ξ: ξ−1/P} ⊂
[0, 1], where P =

∑
ξ∈Ξ ξ−1 is the total received power.

The elements of Ψ = {SFk}k∈N, when ordered decreasingly,

are the signal fractions when the user is served by the k-th

strongest base station.

B. Distribution of Signal Fractions

We first present a lemma summarizing some results on the

statistics of the signal fractions.

Lemma 1 For i ∈ N,

E

(
SFi

SF1

)
=

Γ(i)Γ(1 + 1/δ)

Γ(i+ 1/δ)
, (9)

4As pointed out earlier, ISBA performs exactly like NBA-∞.

and

E log(SFi+1) = E log(SF1)−Hi/δ, (10)

where Hi = 1+2−1+ . . .+ i−1 is the i-th harmonic number.

Moreover, letting

gn(t) ,
(t−1 − 1)nδ

Γ(1 + nδ)(Γ(1− δ))n
(11)

and SF
(n)
Σ ,

∑n
i=1 SFi, we have

P(SFn + tSF
(n−1)
Σ > t) = gn(t),

1
2 ≤ t ≤ 1. (12)

Proof: As shown in [7] the ratio Ri , SFi+1/SFi has

the cdf

P(Ri ≤ r) = riδ , 0 ≤ r ≤ 1,

and the Ri are independent with E(Ri) = iδ/(1+iδ). (9) then

follows from SFi/SF1 =
∏i−1

k=1 Ri. Similarly, (10) follows

from E(logRi) = −1/(δi) and summation.

Lastly, (12) is obtained by rewriting P(ξ−1
n /

∑
∞

k=n+1 ξ
−1
k ≥

θ), θ ≥ 1, given in [1, Thm. 1], in terms of signal fractions.

Remarks.

• (9) also obtained by integrating the ccdf of SFi/SF1 given

in [2, Lemma 3].

• The expectations in (9) add up to MISF = (1 − δ)−1.

This follows from
∑

∞

i=1 SFi/SF1 = 1/SF1.

• gn(t) in (11) is the ccdf of SFn/(1 − SF
(n−1)
Σ ) for t ≥

1/2. This is the distribution of SFn if base stations 1 to

n − 1 did not exist or, equivalently, if the signals from

these base stations were decoded and cancelled through

successive interference cancellation [1].

Some special cases lead to very simple results. For

example, setting t = δ = 1/2, we have 2/π, 1/π,

4/(3π2), and 1/(2π2) for n = 1, 2, 3, 4, respectively. For

n = 1, in general, F̄SF1
(t) = sinc(δ)(t−1 − 1)δ, t ≥ 1/2.

• We can obtain an upper bound on E(SF1) from the fact

that for t < 1/2, (12) is an upper bound [1]:

E(SF1) <

∫ 1

0

min(1, g1(t))dt (13)

This bound, together with a simulation result, is shown

in Fig. 4. It is apparent that the bound is rather tight.

• The asymptotic behavior of the cdf of SF1 as t → 0 is

FSF1
(t) ∼ es

⋆(t−1
−1) [8, Thm. 1]. Here s⋆ is given by

1F1(−δ, 1− δ,−s⋆) = s⋆δΓ(−δ, s⋆) = 0, where Γ is the

lower incomplete gamma function. This indicates that the

cdf is maximally flat at t = 0, i.e., all derivatives are 0.

Fig. 5 shows the ccdfs of SF1 and SF2 for different α,

partially simulated and partially (for t ≥ 1/2) given in

(11). The support of SFn is [0, 1/n] since the n-th largest

element cannot exceed 1/n. Remarkably, the ccdfs of SF2

are insensitive to α. At t = 1/8, they are all about 1/2.

This is explained by the fact that the more dominant SF1,

the smaller SF2. Thus the gap between the two ccdfs widens

as α increases.

From [6, Thm. 2], the moments of SF
−1
1 = 1 + ISR are

known; the mean is the MISF, and var(SF−2) = δ(2 −
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δ)−1(1 − δ)−2. Equipped with the moments, we can derive

Markov bounds, such as the lower bound

F̄SF(t) ≥ 1− δ

2− δ

t2

(1− δ − t)2
, t < 1− δ.

However, these are not particularly tight when applied to the

SF.

C. Random Base Station Association

Here we consider the random base station association

scheme (RBA) where, given Ψ, the probability of being served

by base station k is SFk. The ccdf of the resulting SF, denoted

by ŜF, is

F̄
ŜF
(t) = E

∞∑

k=1

SFk 1(SFk > t).

It is shown in [7] that ŜF has the (standard) beta pdf

f
ŜF
(t) =

sin(πδ)

πtδ(1− t)1−δ
(14)

with mean 1 − δ, which corresponds to the lower bound in

Fig. 4. For δ = 1/2, this is the arcsine distribution with cdf

F
ŜF
(t) = 2 arcsin

√
t/π, which has the same Θ(

√
t) scaling

as the cdf for nearest-neighbor association with Nakagami-

1/2 fading (see Subsec. II-C). It turns out, surprisingly, that

the entire distributions appear to match, which leads to the

following conjecture.

Conjecture 1 The SF distribution for nearest-base station

association with Nakagami-1/2 fading (NBA- 12 ) and α = 4
is FSF(t) = 2 arcsin

√
t/π, 0 ≤ t ≤ 1.

The evidence supporting the conjecture is that the first 10
moments of (14) and the empirical moments taken over 2 ·107
realizations differ by less than 0.03%, and the maximum

vertical difference between the arcsine cdf and the empirical

one is less than 1/3000.

If the conjecture holds, the mean SF for NBA-m increases

from 1− δ for m = 1/2 to the “no fading” curve in Fig. 4 as

m → ∞.

Comparing the cases of RBA, NBA-1, and ISBA, we find:

• For RBA: fSF(0) = ∞
• For NBA-1: fSF(0) = MISR

• For ISBA: fSF(0) = 0 (and all derivatives are 0 as well)

The ISBA behavior is consistent with the fact that for NBA-

m, m ∈ N, the first m − 2 derivatives of the pdf are zero at

t = 0. For the tail, fSF(t) = δ sinc(δ)(1− t)δ−1, t → 1, in all

cases.

IV. CONCLUSIONS

The SIR analysis and/or visualization via signal fractions

offers several important advantages:

• Plotting SF distributions (or, equivalently, plotting SIR

distributions in MH units) gives the complete information,

no truncation is needed. The asymptotics at low and high

SIR are directly visible, and F̄SF(t) near t = 0 reveals

the reliability-rate tradeoff.

• Due to the bounded support of the SF, all integrals (such

as the moments) are guaranteed to be finite.

• (Generalized) beta approximations are applicable and

may lead to new insights.

• The denominator corresponds to the received (total) sig-

nal strength, often abbreviated as RSS. This is the quan-

tity easily measured at a receiver and also the quantity

relevant in energy harvesting. Further, it does not change

when the desired transmitter (such as the serving base

station) changes.

Focusing on Poisson cellular networks, we have found the

BEST approximation for Rayleigh fading and offered a conjec-

ture on the SF (and thus SIR) distribution with Nagakami-1/2
fading. Both would have been unlikely to be found without

the “detour” of using signal fractions.

Lastly, noise can be included by defining the signal fraction

with noise (SFN) as SFN , S/(S +N + I), where N is the

noise power. The mapping from the SINR to the SFN is still

given by T .
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