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Abstract—In this paper, we resort to the graph neural network
(GNN) and propose the new channel tracking method for the
massive multiple-input multiple-output networks under the high
mobility scenario. We first utilize a small number of pilots to
achieve the initial channel estimation. Then, we represent the
obtained channel data in the form of graphs and describe the
channel spatial correlation by the weights along the edges of
the graph. Furthermore, we introduce the computation steps of
the main unit for the GNN and design a GNN-based channel
tracking framework, which includes an encoder, a core network
and a decoder. Simulation results corroborate that our proposed
GNN-based scheme can achieve better performance than the
works with feedforward neural network.

Index Terms—Massive multiple-input multiple-output, graph,
channel tracking, spatial correlation, graph neural network.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) can sig-

nificantly improve the spectral and energy efficiencies, and

has become a key technology for 5G, where data traffic

has increased dramatically [1]. As is well known, obtaining

the accurate channel state information (CSI) is of great

importance in guaranteeing the performance of the massive

MIMO systems [2], especially under the high mobility sce-

nario. In [3], Ma et al. proposed a sparse Bayesian learning-

based channel estimation algorithm for time-varying massive

MIMO networks. In [4], the authors designed a channel track-

ing method based on spatial-temporal basis expansion model

under both time-varying and spatial-varying circumstances.

In [5], Han et al. fully exploited the delay and angular

reciprocity between the uplink and downlink to recover the

time-varying downlink massive MIMO channels.

However, all these works [3]- [5] are closely dependent on

hypothetical statistical models. In the actual communication

scenario, the radio scattering conditions change rapidly with

time, which may cause serious mismatch with the adopted
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mathematical model. Deep learning (DL), aiming to achieve a

performance gain from the data, has undergone a renaissance

with excellent performance and low complexity. Hence, DL

has been adopted to implement the signal processing tasks

along the wireless radio links and has achieved superior per-

formance. In [6], Al-Baidhani et al. used a deep autoencoder

to estimate the received signal. In [7], Ma et al. developed

a DL-based channel estimator for time-varying channels.

In [8], Wen et al. proposed a DL-based scheme to realize

the downlink CSI sensing to improve the quality of CSI

reconstruction in frequency division duplexing (FDD). Yang

et al. also applied DL to the doubly selective fading channel

tracking in [9]. In [10], Chun et al. utilized the DL technique

to implement a joint pilot design and channel estimation for

multiuser MIMO channels. All these works utilize either a

feedforward neural network (FNN) or convolutional neural

network, and basically implement the end-to-end learning

through a black box operation. Thus, they cannot clearly

interpret the space correlation hidden in the data set.

Since graph neural network (GNN) could effectively ex-

tract spatial relationships in data, it has attracted many re-

searchers’ attention [11]. GNN merges the traditional model-

based operation with the end-to-end learning, and therefore

is able to accurately capture the data features. In fact, GNN

has shown good performance in many fields, such as traffic

prediction [12] and medical diagnosis [13]. For massive

MIMO, the characterization of the spatial correlation is vital

to the low-complex channel tracking scheme design. Under

the DL framework, the precise extraction of the spatial

correlation would help the neural network to track the time-

varying massive MIMO channels.

In this paper, we propose an efficient online CSI prediction

scheme based on GNN for the massive MIMO time-varying

channels. Firstly, we achieve the initial CSI with the tradi-

tional least square (LS) estimation. Then, we characterize

the achieved CSI with the graph data structure and extract

the channel spatial information from the edges of the graph.

Finally, we present the main computation steps of GNN

and construct the GNN-based channel tracking framework.

In order to fully capture the channel time correlation, we

combine the time adjacent graphs for the initial CSI into one

graph, and feed it into the tracking framework.

II. SYSTEM MODEL

We consider a massive MIMO system, which contains one

base station (BS) and one user. BS is equipped with Nr

antennas in the form of uniform linear array, and the user

is equipped with single antenna.

http://arxiv.org/abs/2004.08738v1
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Fig. 1. Transmitted signal structure.

A. Time-varying Channel Model

Due to the Doppler shift caused by the user’s motion, the

channel between BS and user is assumed to be time-varying.

Correspondingly, the uplink channel at time n can be written

as

h(n) =

Np∑

i=1

αie
j2πnνiTsa(θi), (1)

where h(n) = [h1(n), h2(n), . . . , hNr
(n)]T , with (·)T as the

transpose operator, αi ∼ CN (0, σ2
α) denotes the propagation

gain along the i-th path with the average power σ2
α, νi is

the Dropper shift for the i-th path, and Ts, Np separately

represent the system sampling period and the number of

scattering paths. Moreover, the spatial steering vector a(θi)
is defined as

a(θi) =
[
1, e−j 2πd

λ
sinθi , ..., e−j 2πd

λ
(Nr−1)sinθi

]T
(2)

where d is the distance between the adjacent antennas, λ is

the signal carrier wavelength, and θi denotes the direction of

arrival of the i-th path.
B. The Transmitted and Received Signal

1) Transmitted Signal Structure: The transmitted signal

structure is shown in Fig. 1. Each frame contains P blocks

as [b(0),b(1), ...,b(P )]. Each block contains both M groups

of unknown data symbols s and M pilot symbols denoted as

p, where s ∈ C(K−1)×1. We assume that a pilot signal p is

inserted between two adjacent groups of unknown signals s.

2) Received Signal: The received signal at the BS at time

n is expressed as

y(n) = h(n)x(n) +w(n), (3)

where x(n) is the signal of user at time n including pilots

and data signals, and w(n) ∈ CNr×1 denotes the additive

white Gaussian noise (AWGN) with zero mean and variance

σ2
n.

C. Initial Channel Estimation

Initially, we estimate the channels at the pilots through

the traditional LS estimator. For simplicity, we consider that

the initial channel estimation based on each pilot equals that

of the next K − 1 signals of the corresponding pilot. If

the received signal at time np is a pilot, the LS estimation

corresponding to the pilot and the next unknown signal

positions can be separately expressed as:

hLS(np) = y(np)/x(np) (4)

[hLS(np+1),. . .,hLS(np+K−1)]=[hLS(np),. . .,h
LS(np)],

where x(np) denotes the pilot at time np, hLS(np) is the

estimated channels at time np obtained by LS estimation,

and [hLS(np +1), . . . ,hLS(np +K − 1)] represents the LS

Fig. 2. Updates in a GN block. Red indicates the element that is being
updated, and orange indicates other elements which are involved in the
update.

estimated channels for K−1 unknown signals. We uniformly

represent the initial estimation of the channels at time n as

hLS(n) = [hLS
1 (n), hLS

2 (n), . . . , hLS
Nr

(n)]T .

III. GNN-BASED MASSIVE MIMO CHANNEL TRACKING

A. Graph-based Massive MIMO Channel Representation

The input of GNN is a dataset based on a graph. Thus,

we should construct a graph G(n) = {V(n), E(n)} for

hLS(n), where V(n) and E(n) are the vertex and edge sets,

respectively. In order to simplify the neural network and

speed up the network convergence, we treat each element in

hLS(n) as one vertex. Moreover, the real and imaginary parts

of hLS
i (n) are seen as two features of one vertex. Therefore,

the element in V(n) can be expressed as

υi(n) = [ℜ(hLS
i (n)),ℑ(hLS

i (n))]T , (5)

where ℜ(hLS
i (n)) and ℑ(hLS

i (n)) are the real and imagi-

nary parts of hLS
i (n), respectively. Then, we have υ(n) =

{υ1(n),υ2(n), . . . ,υNr
(n)}.

To describe the spatial correlation between hLS
i (n) and

hLS
j (n), we define the edge εi,j(n) between υi(n) and υj(n)

as

εi,j(n) =

[

E{ℜ{hLS

i (n)}ℜ{hLS

j (n)}}
√

E{ℜ2{hLS

i (n)}}E{ℜ2{hLS

j (n)}}
,

E{ℑ{hLS

i (n)}ℑ{hLS

j (n)}}
√

E{ℑ2{hLS
i (n)}}E{ℑ2{hLS

j (n)}}

]T

, (6)

where E(·) denotes the expectation operator, i, j =
1, 2, . . . , Nr, and i 6= j. Here, we utilize L adjacent samples
hLS(n), hLS(n − 1), . . . , hLS(n − L + 1) to approximate
ei,j(n). Before proceeding, we define the matrix HLS

L (n) =
[hLS(n),hLS(n − 1), . . . ,hLS(n − L + 1)], and the matrix

H̄LS
L (n) = 1

L

L−1∑
k=0

hLS(n − k)1T
L . Then, the first element of

εi,j(n) is written as

[εi,j(n)]1 =

(ℜ{[HLS

L (n)]i,: − [H̄LS

L (n)]i,:})(ℜ{[H
LS

L (n)]j,: − [H̄LS

L (n)]j,:})
T

‖ℜ{[HLS

L (n)]i,: − [H̄LS

L (n)]i,:}‖‖ℜ{[HLS

L (n)]j,: − [H̄LS

L (n)]j,:}‖
,

(7)

where ‖a‖ is the L2-norm of vector a. Similarly, we can

evaluate the second entry of εi,j(n).

B. The Computation Steps of Graph Network (GN)

The main unit of the GNN framework is the GN block,

whose input and output are graphs constructed from sample
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Fig. 3. The architecture of GNN-based massive MIMO channel tracking scheme.

data. Once G(n) flows into the GN block, the computation is

sequentially performed from edge to node. Specifically, this

process includes three sub-functions, namely the edge updat-

ing unit f ε, the node updating unit fv, and the aggregating

unit f ε→υ , as shown in Fig. 2. The input of each f ε includes

εi,j(n) and its connection vertices υi(n) and υj(n), and can

be implemented by the NN as

ε
′

i,j(n)← f ε(εi,j(n),υi(n),υj(n)) (8)

= NNε(εi,j(n),υi(n),υj(n)),

where ε
′

i,j(n) is the updated edge of εi,j(n) and NNε is f ε’s

corresponding NN.

Correspondingly, f ε→υ collects all the updated edges,

which are connected with υi(n), into the aggregating edge

ε
′

i(n) as

ε
′

i(n)← f ε→υ({ε
′

i,j(n)}υj∈N (υi(n))) (9)

=
∑

υj∈N (υi(n))

ε
′

i,j(n),

where N (υi) denotes the neighbor vertices of υi and ε
′

(n)
is the aggregate edge.

With ε
′

i(n), f
υ would renew υi(n) as

υ
′

i(n)← fυ(ε
′

i(n),υi(n)) = NNv(ε
′

i(n),υi(n)), (10)

where NNυ is the NN for fυ and υ
′

i(n) denotes the updated

vertex of υi(n). For clarity, we present the detailed steps of

GN in Algorithm 1.

C. GNN-based Architecture for Channel Tracking

In order to track the massive MIMO channels, we design

the GNN-based framework in Fig. 3. This architecture in-

cludes an encoder, a core network and a decoder. The his-

torical channel samples are fed into the encoder to initialize

the core network, the core network uses the graph structure

to update nodes and edges, and the decoder independently

decodes the edge and vertex attributes. The output of the

decoder is Ĝ(n).
To better achieve the time-correlation of the massive

MIMO channels, we combine the channel graph G(n) at the

current time with the graph G(n − K) for the time n − K
to regenerate the graph G̃(n) as the input of the encoder.

Correspondingly, G̃(n) can be denoted as

G̃(n) = concat(G(n),G(n−K)), (11)

Algorithm 1 The computation steps of GN

Input: G(n) =
{
E(n),V(n)

}

1: for each edge εi,j , i, j = 1, ..., Nr do

2: Compute edge-wise features,

ε
′

i,j(n)← f ε(εi,j(n),υi(n),υj(n))
3: end for

4: for each vertex υi(n), i = 1, ..., Nr do

5: Calculate the aggregating edge

ε
′

i(n)← f ε→υ({εi,j(n)}j=N (i))
6: Obtain the vertex-wise features

υ
′

i(n)← fυ(ε
′

i(n),υi(n))
7: end for

8: Achieve the updated graph G
′

(n) = {V
′

(n), E
′

(n)},

where V
′

(n) =
{
υ

′

i(n)
}
i=1:Nr

, E
′

(n) =
{
ε

′

i,j(n)
}
i=1:Nr ,j=N (i)

9: return G
′

(n) =
{
E

′

(n),V
′

(n)
}

and its vertices υ̃i(n) and edges ε̃i,j(n) can be expressed as

υ̃i(n) =
[
(υi(n))

T
, (υi(n−K))

T
]T

, (12)

ε̃i,j(n) =
[
(εi,j(n))

T
, (εi,j(n−K))

T
]T

,

where υi(n−K), εi,j(n−K) separately represent the vertex

and the edge of G(n−K).
As well known, the DL performance is closely related

with the feature representation. Thus, in our structure, we

utilize the encoder part to extract and describe the latent

features of G̃(n). Specifically, different multilayer perceptrons

(MLPs) are resorted to independently extract the features of

the vertices and edges in G̃(n). For ε̃i,j(n) and υ̃i(n), the

operations can be explicitly written as

εi,j(n)=MLPen
ε (ε̃i,j(n)),υi(n)=MLPen

υ (υ̃i(n)), (13)

where υi(n) and εi,j(n) are the resultant features, while

MLPen
ε and MLPen

υ are the adopted MLPs during the en-

coder part.

Then, the graph G(n) formed by υi(n), εi,j(n) flows into

the core network, which implements Algorithm 1 to achieve

updated graph G
′

(n). Different from the previous subsection,

we utilize the MLP, i.e, MLPco
ε , to conduct f ε, while MLPco

υ
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is used to fulfil fυ . Then, within this part, the three sub-

functions of GN algorithm can be reexpressed as

ε
′

i,j(n) = MLPco
ε (εi,j(n),υi(n),υj(n)),

ε
′

i(n) =
∑

υj∈N (υi(n))

ε
′

i,j(n),

υ
′

i(n) = MLPco
υ (υi(n), ε

′

i(n)). (14)

In the decoder, we recover Ĝ(n) from Ḡ
′

(n), where MLPs

MLPde
v and MLPde

e are used for vertex υ
′

i(n) and edge

ε
′

i,j(n), respectively. Similarly, the process can be defined

as

ε̂i,j(n)=MLPde
ε (ε

′

i,j(n)), υ̂i(n)=MLPde
υ (υ

′

i(n)). (15)

Finally, we reorganize the prediction output graph Ĝ(n)
composed of υ̂i(n) and ε̂i,j(n) to obtain ĥ(n) as

ĥ(n) = [[υ̂1(n)]0 + j [υ̂1(n)]1 , (16)

. . . , [υ̂Nr
(n)]0 + j[υ̂Nr

(n)]1]
T
,

where [υ̂i(n)]0 and [υ̂i(n)]1 represent the first and second

elements of the υ̂i(n), respectively.

D. Model Training and Deployment

Our proposed channel scheme has two stages, i.e., the

training and the deployment. In the first stage, we utilize the

off-line learning scheme to train the GNN-based architecture

to minimize the error between ĥ(n) and h(n).
In the encoder and core network, for each MLP, we apply

the same learning structure as shown in Fig. 4(a). Except for

the output layer, the rectified linear unit (ReLU) activation

function is utilized for each neuron. In addition, batch-

normalization (BN) operation is utilized after the output layer

to avoid gradient disappearance. The only difference between

MLP in the encoder and that in the decoder is that the linear

fully-connect (FC) layer with two output neurons is placed

at the output of BN. The structure is shown in Fig. 4(b).

Without loss of generality, we use the mean square error

(MSE) of the channel estimation as the loss function, and

add the L2-norm as the regularization function to improve

the generalization ability. Therefore, the loss function can be

written as

L(ξ) =
1

NrMtr

Mtr∑

µ=1

‖ h(µ)(n)− ĥ(µ)(n) ‖2 +κξTξ, (17)

where Mtr is the batch size, ξ are the weight parameters

of MLPs to be learned, and κ represents the regularization

coefficient. The adaptive moment estimation (ADAM) [14]

optimizer algorithm is adopted to achieve the optimal model

parameters as ξ∗.

In the on-line deployment stage, we load the trained

parameters ξ∗, pass the input data with the same structure

as the training stage, and track the massive MIMO channels.

IV. SIMULATION RESULTS

In this section, we numerically evaluate the performance

of our proposed GNN-based massive MIMO channel tracking

scheme. The number of antennas at BS is set as Nr = 32,

and the channel attenuation is complex Gaussian distributed

M MM

BN

BN

BN

M

(b)  the decoder (a) the encoder and core network

ReLU

ReLU

ReLU

ReLU

M

ReLU

ReLU

ReLU

Fig. 4. MLPs structure in the encoder, the core network, and the decoder.

TABLE I
DEFAULT GNN PARAMETERS.

Parameters encoder core network decoder

Neurons in hidden layers (16, 16) (16, 16) (16, 16, 8)

Neurons in output layers 8 8 2

Exponential decay rates (0.9, 0.999)

Activation function ReLU

Batch size 20

as αi ∼ CN (0, 1). Moreover, the number of paths Np is set as

20, the direction of arrival θi follows the uniform distribution

over [−π,π], the sampling time Ts is 2× 10−5s, the carrier

frequency is 3 GHz, and the antenna spacing d equals to λ
2 .

The default parameters of the GNN-based estimator are

given in TABLE I. In the encoder, the numbers of neurons in

the input layers is 2 because each vertex and edge have two

attributes. The regularization coefficient κ is taken as 0.1 to

avoid overfitting. To illustrate the performance of the GNN,

we compare it with FNN and convolutional neural network

(CNN). The number of each layer neurons in FNN is (64, 256,

128, 64). Moreover, in CNN, we form the massive MIMO

channel vectors to the Nr×K data blocks over the space-time

domain and use 8-layer network structure. Correspondingly,

each layer uses 64 convolution filters of size 3 × 3. The

rest of the default parameters are the same as that for GNN.

Moreover, the number of training samples is 10000.

First, we provide TABLE II to show the MSE versus L at

the user speed of 50 m/s, when K is 5. As can be seen from

TABLE II, the MSE decreases with increasing L and quickly

attains its steady state. In our scheme, the final results of the

GNN output are determined by both the initial input and the

performance gain of the GNN. When L is small, the initial

correlation captured by (7) is too coarse. When L becomes

large enough, the available correlation from (7) suffices. Since

the GNN-based estimator can achieve a good performance at

L = 10, we use this value in the following simulations.

When the signal-to-noise ratio (SNR) is 20 dB and the

user’s moving speed is 50 m/s, the corresponding MSEs

with respect to different K values and learning rates are

summarized in TABLE II. Notice that the best results are

presented in bold font, and the learning rates represent the

step size of ADAM algorithm for gradient learning. The

performance of the GNN-based estimator degrades as the

number of symbols K increases. In addition, we compare

the performance of the GNN-based estimator with the FNN-
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TABLE II
MSE VERSUS L.

MSE

Method L=5 L=10 L=20 L=30 L=40

GNN 0.0038 0.0035 0.0034 0.0035 0.0035

TABLE III
MSE VERSUS K AND LEARNING RATE.

MSE

Learning rate Method K=2 K=5 K=10 K=15

1×10−2
FNN 0.0177 0.0185 0.0199 0.0231

GNN 0.0044 0.0048 0.0054 0.0057

1×10−3
FNN 0.0067 0.0075 0.0075 0.0078

GNN 0.0030 0.0035 0.0037 0.0041

1×10−4
FNN 0.0057 0.0061 0.0063 0.0065

GNN 0.0035 0.0036 0.0040 0.0043

0 5 10 15 20

SNR

10
-3

10
-2

10
-1

10
0

M
S
E

LS

FNN

CNN

GNN

Fig. 5. MSE versus SNR when user’s motion speed is 50 m/s.

based one for different learning rates. As can be seen from

the table, the performance of the GNN-based estimator is

best when the learning rate is 0.001, and the MSE of the

GNN-based estimator is significantly lower than the FNN-

based one. In Fig. 5, we compare the performance of

four estimators, namely the GNN-based estimator, FNN-

based estimator, CNN-based estimator and LS estimator, for

different SNR. K for GNN-based, CNN-based and FNN-

based estimators is set as 10. The learning rates for GNN,

CNN and FNN are 1×10−3, 1×10−4, and 1×10−4 according

to the TABLE III, respectively. From Fig. 5, we make the

following observations. As the SNR increases, the MSE of

the four estimators gradually decreases. Among the above

four estimators, the GNN-based estimator can achieve the

best performance, especially in the high SNR region. The

user’s moving speed greatly affects the CSI of the time-

varying channel and the performance of the estimator. In Fig.

6, we show the channel estimation MSE versus the user’s

moving speed. We set the learning rates and K to the same

values as in Fig. 5. As the speed increases, the performance

of both FNN- and GNN-based estimators decreases; however,

the MSE of the latter is always lower than that of the former.

In other words, the GNN-based estimator is more applicable

under high mobility scenario.

V. CONCLUSION

In this paper, we examined GNN-based massive MIMO

channel tracking. We fully exploited the data representation

0 20 40 60 80

m/s

10
-3

10
-2

M
S
E

FNN

GNN

Fig. 6. MSE versus user’s motion speed at SNR=20 dB.

capability of the graph to accurately characterize the channel

spatial information. A tracking framework with one encoder,

one core network, and one decoder was constructed, where

the graph combination operation was resorted to capture the

time correlation information of the massive MIMO channels.

The numerical experiments verified that our scheme could

achieve better performance than that with FNN under high

mobility scenario.
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