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Sequential TOA-Based Moving Target Localization
in Multi-Agent Networks
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Abstract—Localizing moving targets in unknown harsh envi-
ronments has always been a severe challenge. This letter investi-
gates a novel localization system based on multi-agent networks,
where multiple agents serve as mobile anchors broadcasting their
time-space information to the targets. We study how the moving
target can localize itself using the sequential time of arrival (TOA)
of the one-way broadcast signals. An extended two-step weighted
least squares (TSWLS) method is proposed to jointly estimate
the position and velocity of the target in the presence of agent
information uncertainties. We also address the large target clock
offset (LTCO) problem for numerical stability. Analytical results
reveal that our method reaches the Cramér-Rao lower bound
(CRLB) under small noises. Numerical results show that the
proposed method performs better than the existing algorithms.

Index Terms—Localization, time of arrival (TOA), agent un-
certainties, multi-agent network.

I. INTRODUCTION

ULTI-AGENT networks have recently gained many

attentions with their potential intelligent applications
[1]], [2]. In the absence of a global navigation satellite system,
networked agents can provide positioning services by acting
as moving anchors, such as temporary aerial and vehicular
anchors in terrestrial emergency rescue. To be specific, the
agents can periodically broadcast wireless signals and their
time-space information [2]-[4]]. The broadcast information has
notable uncertainties since the networked agents can only
self-determine their parameters in unknown environments.
The moving targets in communication range passively receive
the signals and utilize the one-way time of arrival (TOA)
measurements to localize themselves against the agents, and
hence can theoretically scale to an arbitrary number [2].

The TOA-based localization problem in the presence of
anchor uncertainties is mainly studied for static scenarios in
the area of wireless sensor network (WSN). An intuitive max-
imum likelihood estimator (MLE) involving the parameters
of both the static anchors and targets is proposed in [J3].
However, it cannot guarantee convergence without good initial
guesses. Closed-form solutions, which do not require an initial
guess, are reported in the literature [6]], [[7]]. In [6], a two-step
generalized total least squares (TSGTLS) method is proposed
to estimate the position of a static target using all two-way
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TOA measurements between the target and anchors. In [7]], the
two-step weighted least squares (TSWLS) localization method
is derived to estimate the position of the target. The method
first linearizes the observation equations and then solves the
problem in the sense of WLS by incorporating the agent
uncertainties into the weighting matrix. However, the above
methods are still all discussed from the static WSN point
of view, which do not apply to moving targets. For moving
targets, the state parameters of practical interest consist not
only the position, but also the velocity of the target.

In practical implementation, channel access technology is
used to permit collision-free signal broadcasting from dif-
ferent anchors. For easy deployment using the off-the-shelf
products, such as the recent ultra-wideband (UWB) chips, a
time division multiple access (TDMA) scheme is commonly
used [2], [8]]. Different from the two-way or concurrent TOA
measurements in [6]], [7], TDMA produces sequential one-
way TOA measurements, which is energy efficient for moving
targets and capable of multiple targets localization. However,
the minor time difference between sequential measurements
will degrade localization performance if not considered. For-
tunately, the minor time difference renders the target speed
observable. Therefore, further consideration of sequential TOA
measurements is needed for moving target localization.

In this letter, we extend the TSWLS algorithm [7] to the
more general case with moving targets as well as sequential
TOA measurements. In our localization system, the mov-
ing targets only passively receive signals from the multi-
agent network that broadcasts information based on TDMA
scheduling. The proposed method only utilizes one-way TOA
measurements to jointly estimate the position and velocity
of the target, and thus is energy efficient and distributed. To
improve performance, we additionally utilize an optimization
process to refine the estimates. Furthermore, we introduce the
new concept of large target clock offset (LTCO) scenarios
concerning the unsynchronized targets that first enter or re-
enter the multi-agent networks. The scenarios are similar to the
large equal radius (LER) conditions in TOA-based localization
[9], [10], since they both lead to large approximately equal
pseudoranges and hence induce ill-conditioned matrix. We
specially consider the LTCO scenarios by introducing a QR
factorization to retain numerical stability.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The agents generally have onboard navigation systems,
such as visual navigation systems and inertial navigation
systems, and can exchange their measurements using wireless



communication to collaboratively estimate their time-space
information. By periodically broadcasting their determined
time-space information and corresponding uncertainties, the
agents can serve as mobile anchors to assist low-cost moving
target localization. The passive targets can then obtain the
TOA measurements of the broadcast signals and the agents’
information to localize themselves. Consider a multi-agent
network M = {1,2,--- M} and a target to be localized
in a two-dimensional plane. To be specific, an agent m € M
will broadcast its real-time determined time-space information
B,, = [pL, ] at its allocated broadcast time ¢, where
Do 18 its position and T,,, is the clock offset with respect to the
time reference agent . The TOA measurements can then be
obtained by subtracting the arrival time recorded at the target
from the broadcast time recorded at the agents. We aim to
localize the target using the agent broadcast information and
the sequential TOA measurements in one TDMA frame. The
target parameter vector at the start time of a TDMA frame is
to be estimated and given as

x = [p’,v!,T,w]" € RS, (1)

where p = [z,y]T is the target position, v = [v,,v,]T is the
velocity, 7' and w are the clock offset and clock skew with
respect to agent r, respectively. The clock offset is the phase
difference and the clock skew is the frequency difference of
the internal clocks.

Under the first-order model assumption of the target motion
and clock dynamic, and the fact that the worst clock skew
magnitude is up to 20 parts per million (ppm) [11], the TOA
measurement from agent m € M can be modeled as [2]

7~_m =Tm + ATm, (2)
Tm = [P+ Vi — Pmll + T + wity, — T, 3)

where AT, denotes the independent measurement noise [[12]],
| - || denotes the I» norm, and t,, = t/27 — t}7 denotes
the known slot time difference and is determined by TDMA
designers, where ¢}’ is the start time of a TDMA frame.
Time-related variables are represented in its range-equivalent
form by multiplying the known signal propagation speed.

For general discussion, the TOA measurements are collected
into ¥ = [7, 72, -+, 7ar]T, which forms

T =7+ AT, ()]

where A7 is modeled as zero-mean Gaussian random vector
with diagonal covariance matrix C.,. The agent nominal
parameters are grouped into 3 = [ﬁlT, ,Bg, e ,,Bﬂ]T, where

B,, = [pL,T,,]T. They are unknown and corrupted with
errors. We denote the error vector as

AB=B-B=[AB],A8],--- . A8, )
where AB,, = [Apl, AT,,]T with

Apm = f)m — Pm,; AT’m = Tm — T (6)

We assume that AB3 is modeled as zero-mean Gaussian
random vector with covariance matrix Cg. We note that Cg
is also broadcast to the target. We also assume that AQ3
is independent of the measurement noises At. Let n =

[xT, 8717 € RO*3M | the joint probability density function
(PDF) of the observed TOAs, agent positions and clock offsets
parameterized on unknown 7} is then given as

[

- 2 1 - 1/a
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We note that MLE involves the maximization with respect
to parameters of both the unknown target and agents. The
maximization can be a very high-dimensional problem if the
number of agents is large. Furthermore, MLE is computation-
ally expensive and needs proper initial guesses. Instead, we
extend the TSWLS method and propose a low complexity
method that requires no initial guesses.

III. PROPOSED METHOD

The first step of the proposed method reparametrizes the
localization problem in a higher-dimensional space to linearize
the equations and solves the linear equations by a WLS
estimator. The second step introduces a nonlinear optimization
process to refine the target parameters by exploiting their
relationship to the higher-dimensional solution. The details are
described as follows:

1) Step I: The nominal parameters in (2)) are replaced using

. Defining &,, £ 7, + T, re-arranging and squaring
both sides as in [7]], the linear equation can be derived as:

2L D+ 2t DLV — 260, T — 2w + (T2 — || p||?) + 12, -
(W? = [[V[?) + 2t (Tw — pTV) = |Pm® — &2 + €m, (8)

where
em = bnAB,, + dnAt, + O, 9

where b, = [2(p + vty — Pm)L,dm], dm = —2(T +
wty — Guy) and O represents the second-order error terms
that will be ignored. Note that e,, is associated with the
agent nominal parameters and their uncertainties. We address
the uncertainties issue by treating agent uncertainties as fine-
tunings in e,,.

Define the reparametrized vector 8 = [x7,0;,60,,03]7 €
R, where 6; = T? — ||p||%, 62 = w? — ||v||? and 63 =
Tw — pTv. The matrix form of is given as

A=y te, (10)
where A = [af,ag,n-, a{I]T,y = [y1,y2, - ,yM]T and
e = BAB + DAT with

ay, = [2133;” thf)fn, _264m7 _2tmdm7 17 tfnv 2tm]a
Ym = ||13m||2 - d?n’
B = diag([bl,bg, s 7b]w]),
D = diag([dl,dg, e ,dM])
The covariance matrix of the error vector e is derived as
C.=BCgB” + DC,D”. (11)



Applying the whitening transformation to e by multiplying
W = Ce_l/2 to both sides of 1) we have

WA6O = Wy + We. (12)
The WLS solution to (10) is then given as
Owis = (ATC1A)TATC Yy, (13)

The covariance matrix of the estimate is derived as [13]]

CwLs = (ATCe_lA)_l. (14)

However, we notice that the moving targets typically have
low-cost clocks due to their size and cost constraints. There-
fore, the clock offset of the target can be relatively large, such
as exceeding one millisecond, if not well synchronized. This
makes pairwise &, approximately equal and the coefficient
matrix A have a very large condition number and, conse-
quently, yields a poor estimate. We define these situations as
LTCO scenarios. To the best of the authors’ knowledge, the
LTCO scenarios have not been reported in previous closed-
form solutions for TOA-based localization problems. LTCO
scenarios may appear for a long-running target if its clock is
not promptly adjusted and synchronized. Moreover, the LTCO
scenario occurs if an unsynchronized target first enters the
multi-agent network. In this case, the target will have a large
clock offset with respect to the agents.

We address LTCO scenarios by applying a reduced QR
factorization to WA in (I2)), with column pivoting, to get

QRPT0 = Wy + We, (15)

where Q is an M x 9 orthogonal matrix, R is an 9 X 9 upper
triangular matrix and P is an 9 x 9 permutation matrix [14].
To derive the WLS solution 9WLS, we solve the following
equation by back substitution:

RP76 = Q"Wy. (16)
The covariance matrix of the estimate is derived as:
Cwis = (P(RTR)PT) "L, (17)

This dramatically enhances numerical stability properties. Our
analysis is presented in terms of (I2)), but our practical
algorithm implementation is based on (I3).

2) Step II: This step retracts the target parameters x from the
WLS solution Owrg by exploiting their nonlinear relationship.
The relationship is directly given as follows:

X
R T2 _ 22 _ 2
Owrs = | 2,2 _ gg + ewLws (18)
LY
Tw — 2V, — Yvy
= f(x) + ewLs, (19)

where ew,s is the error vector with covariance matrix Cwrs.
The target parameters x can be estimated by solving the
following optimization problem:
5o . b 2
x = argmin {lbwis —£)IZ 0 b, 20)
X WLS

where ||v|lw = ||[Wv]| is the weighted ls norm. This can be
solved using the iterative weighted least squares (IWLS) based

on the Gauss-Newton numerical algorithm. To be specific, the
initial guess of x is obtained from the truncated Ovwrs. The
increment AX = X — X in each iteration is estimated as

Ax = (JTCRhgd) I T CRbgr, 1)
where
A R Is
r = Owis — (%), J= :
Ji
—2& -2) O 0 21" 0 (22)
J=1]0 0 =20, —20, 0 2|,
by —b, —& g & T

where I,, denotes an n x n identity matrix in this letter. The
results can then be updated as
X+ Ax + %. (23)

Remark 1: C. depends on target nominal parameters, which
are not available. In practical implementation, we first set
C. to be I,; to obtain an initial estimate O15. We then use
Xrs from truncated O1g to evaluate C,. and derive the WLS
solution.

Remark 2: The stopping criteria in IWLS is set as || Ax(1 :
2)[12 < M tr(Cyp,,)/M, where tr(Cp,,) is the trace of
the agent position covariance matrix that can be extracted from
Cg. The maximum number of iterations is set to be 5.

Remark 3: If we ignore the speed and clock skew param-
eters, do not consider the LTCO scenarios, and set IWLS
iterations to be one, our method degrades into the original
TSWLS algorithm in [[7]].

IV. PERFORMANCE ANALYSIS

In this section, we analyze the CRLB of the localization
problem and the mean square error (MSE) of our proposed es-
timator to theoretically prove the effectiveness of our method.

The natural logarithm of the joint PDF p(7,3;7n) is given
as

Inp(7,B;m) =c— %(? -n)'ci(F-7)

~5(B-B)C5B-p), @b

where c is a constant independent of 7. The CRLB of 7 is
derived as [[13]]

a2lnpD1 B [Rl R,

1
CRLB(n) = - (& e IEY

omon™
where
R, = -E _gigi?] = (Vur) " CZ1 (Vier),
Ry = E (fxalﬁﬂ (V)G (Ver),  26)
Ro— B[ 0] — (V77 €71 (Vm) + C'

where the operator V, yields the row vector partial derivative
of function f(a) as:

Vaf = 27

dal’



The partial derivatives above are derived using (3)
T
VT = [Vurl ,Vxrs o, VaTiy]

VBT = dlag( [VﬁlTla VBQT27 T VQMTM} )’

; (28)
(29)

where
VT = [P tmPi: Ltm] . Vg T = [—ph, —1], (30)

with p,, = (p + Vtm — Pm)/||P + Vim — Pm||. The CRLB
for x is then derived as in [6]]
CRLB(x) = (Ry — RyR;'RY) ™. 31)

We then derive the analytical MSE of our proposed method.
From the second step, the estimate bias is

b(x) = Ex) — x = (JTCy1gd) I CilLgABwis, (32)

where ABvwrg is the estimate bias in the first step, AGwrs =
(ATC-tA)"tATC 'e. Substituting and Af@wrs into
(32), we can obtain

b(x) = (AT)"C;'AT) " (AD)C e, (33)
Under the assumption that e is small enough,
b(x) ~ 0. (34)
The covariance of the estimate of x is then derived as
cov(x) = (AJ)TC;'AT) . (35)

From @ and using matrix inversion lemma [13]], we have
cov(x) = (GQTC;lGQ — (GIciiay)
-1
J(ciomtc R erp RN (cElemlcH M IRNIE'S

where G, = D™'AJ and G; = D~'B. Comparing with
(26) and (31)), using some manipulations, it can be found that

cov(x) = CRLB(x), 37

when the measurement noises and agent errors are small and
hence the elements in A, B and D are with small perturba-
tions. To conclude, our method is approximately unbiased and
reaches CRLB under small noises.

V. NUMERICAL RESULTS

This section numerically evaluates the performance of our
proposed method. The simulation scenario is given in Fig.
where a target and a multi-agent network composed of M =
10 agents are moving in a two-dimensional space. Without
loss of generality, agent 1 is chosen as the time reference
agent. We set 10 time slots for TDMA scheduling with
equal slot interval 0.05 s, and the first slot starts at time O s.
The agent clock offsets are generated by continuous uniform
distribution, T,, ~ U(—10,10) ns. The clock skews of the
target and agents are from —20 to 20 ppm. The target and
agents move with a common velocity of (—5,0) m/s. For
simplicity, the measurement noise A7, and the errors in agent
position and clock offset are assumed as independent zero-
mean Gaussian random variables. Considering for example
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Fig. 1. The simulation scenario. The solid dots indicate the networked agents,
the solid square denotes the target, and the arrows indicate the speed vector.
The dotted circles denote the agent uncertainties. The texts give the agent
nominal positions in the form of agent index: (x,y) m.
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Fig. 2. Performance comparison versus different agent uncertainties, under
fixed topology of agents and target for non-LTCO scenarios. (a) Estimation
results of moving target position. (b) Estimation results of moving target
velocity.

the UWB technology with fine temporal resolution, the co-
variance of AT, is set as 03 = —30 dB [15]]. The covariance
matrix of agent uncertainties is C, = diag(Cy,Ca,- -, Cay)
where C,, = 02,13, and o2, follows a uniform distribution
02, ~U(0? — 5,02 +5) dB. The MSEs of the results are
evaluated by averaging over N = 3000 independent runs. For
comparison, the TSGTLS in [[6] and the TSWLS in [7] are
also simulated. Also included is the MLE using Gauss-Newton
implementation that ignores the agent uncertainties [2]. The
initial guess for MLE is obtained by adding a small zero-
mean Gaussian noise to the nominal parameters. However, we
note that the above three methods are all originally designed
for a stationary target and are not applicable to our simulation
scenarios. For a fair comparison, we extensively implement
these methods by considering the target speed and clock
skew parameters using the sequential TOA measurements.
The implementations are based on our system model. Three
simulation schemes are devised as follows:

1) Non-LTCO scenarios: The target clock offset is ran-
domly generated from —10 to 10 ns, to simulate the non-
LTCO scenarios. Fig. 2] shows the estimation performance
comparison versus agent uncertainties 0'3. We can see that our
proposed method significantly outperforms the existing meth-
ods. Moreover, the performance of our method can attain the
CRLB and consistent with theoretical MSE under small noises,
which validates the performance analysis results. TSGTLS and
TSWLS perform worse mainly because they do not deeply
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Fig. 3. Performance comparison versus different target clock offset, under
fixed topology of agents and target.
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Fig. 4. Performance comparison under random topologies of agents and target.

exploit the nonlinear relationship between target parameters
and nuisance parameters. Our method is also robust to large
agent uncertainties, while MLE will diverge due to large errors
in its coefficient matrix A.

2) LTCO scenarios: We increase the target clock off-
set to simulate a weak to strong LTCO scenario and fix
o0s = —20.5 dB. We note that when a target cannot access
the multi-agent network, it may synchronize its clock via
the Internet, in a typical precision of a few milliseconds
[16]. When it enters the network, the strong LTCO scenario
arises. Fig. 3] demonstrates that our method is robust to strong
LTCO scenarios due to the advantage of utilizing the QR
factorization, while the existing closed-form solutions fail.

3) Random topology: For further evaluation, we randomly
generate the agents and target topology in each independent
run, and fix o4 = —20.5 dB, in non-LTCO scenarios. The
agent  and y coordinates are randomly drawn from 0 to
50 m, the target coordinates are from —50 to 100 m, and
their velocities in all directions are from —5 to 5 m/s. The
number of independent runs is N = 10000. Fig. 4] shows the
cumulative distribution function (CDF) of the position MSE.
We observe that the CDF curve of our method is steeper for

most of the time and can achieve 1 under small position MSE,
which confirms that our method performs better than existing
methods and is more robust to random localization topology.

The estimation results of clock offset, clock skew and/or
target speed lead to the same conclusion, and are not shown
here due to space limitations.

VI. CONCLUSION

In this letter, an extended TSWLS method is proposed to
localize moving targets with the assistance of a multi-agent
network. The position and velocity of the target are jointly
estimated using the sequential TOA measurements. Moreover,
numerical stability is enhanced to produce valid estimates in
LTCO scenarios. Performance analysis and numerical results
validate that our proposed method is approximately unbiased
and reaches CRLB under small noises. Numerical simulations
also show that our method outperforms the existing closed-
form solutions in terms of accuracy and robustness, both in
non-LTCO and LTCO scenarios.
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