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Abstract—In this work, we study the statistically robust

beamforming design for an intelligent reflecting surfaces

(IRS) assisted multiple-input single-output (MISO) wire-

less system under imperfect channel state information

(CSI), where the channel estimation errors are assumed

to be additive Gaussian. We aim at jointly optimizing

the transmit/receive beamformers and IRS phase shifts

to minimize the average mean squared error (MSE) at the

user. In particular, to tackle the non-convex optimization

problem, an efficient algorithm is developed by capitalizing

on alternating optimization and majorization-minimization

techniques. Simulation results show that the proposed

scheme achieves robust MSE performance in the presence

of CSI error, and substantially outperforms conventional

non-robust methods.

Index Terms—IRS, robust beamforming, MMSE,

majorization-minimization.

I. INTRODUCTION

Intelligent reflecting surface (IRS) has recently

emerged as a promising candidate to enhance the spectral

and energy efficiency of future wireless communication

systems [1]–[5]. Specifically, an IRS is composed of

a large amount of low-cost reflecting elements, each

being able to passively reflect the incident signal with a

reconfigurable phase shift. By smartly tuning the phase

shifts, also known as passive beamforming, the signal

reflected by the IRS can be adjusted towards the desired

spatial direction.

In an IRS-assisted communication system, active pre-

coding at the access point (AP) and passive beamforming

at the IRS can be jointly designed to improve the system

performance. In [6], a joint active and passive beamform-

ing design maximizing the total received signal power at

the user was developed via the semidefinite relaxation

(SDR) method. A novel discrete reflect beamforming

design was investigated in [7] to minimize the transmit

power at the AP. The authors of [8] considered a secure

wireless system with one legitimate user and one eaves-

dropper, where the secrecy rate was maximized based on

the block coordinate descent (BCD) method, while the

impact of artificial noise on the secrecy beamforming

design was studied in [9].

However, all these prior works make the same assump-

tion that perfect channel state information (CSI) is avail-

able, which is highly unlikely due to the lack of radio

resources at the IRS. In general, the IRS-related channels

can be separately estimated using the bilinear alternating

least squares algorithm [10], whereas the direct channel

can be estimated via traditional pilot-based approach.

Unfortunately, due to channel estimation error and the

feedback latency, only imperfect CSI can be obtained

in the practice wireless systems. Motivated by this, we

consider an IRS-assisted downlink multiple-input-single-

output (MISO) system with a single user. We address the

problem of robust beamforming design with imperfect

CSI. Specifically, assuming that the channel estimation

error follows the complex Gaussian distribution, we joint

optimize active precoder at the AP, passive beamforming

at the IRS, and one-tap equalizer at the user to minimize

the average mean squared error (MSE).

To tackle the non-convex optimization problem, we

propose an alternating optimization (AO) algorithm

based on the majorization-minimization (MM) technique

[11]. Closed-form solutions are obtained for the opti-

mization variables during each iteration, which greatly

reduce the computational complexity of the algorithm.

In addition, the convergence of the proposed AO algo-

rithm is established. Simulation results are presented to

illustrate the performance of the proposed algorithm, and

it is shown that the proposed scheme yields substantial

performance gain over conventional non-robust design

schemes.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. System Model

In this section, we consider an IRS-assisted downlink

MISO system consisting of one single-antenna user, one

AP equipped with M transmit antennas, and one IRS

with N passive reflecting elements, as shown in Fig.1.

As in [6], the signals reflected by the IRS two or more

times are ignored. Thus, the received signal at the user

can be given by

y = (hH
r ΘG + hH

d )ws+ n0, (1)

http://arxiv.org/abs/2006.06984v1
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Fig. 1: An IRS-aided MISO wireless system

where G ∈ CN×M ,hr ∈ CN×1, hd ∈ CM×1 denote the

AP-IRS link, IRS-User link, and AP-User link channels,

respectively. Also, Θ , diag(ejθ1 , · · · , ejθN ) is the diag-

onal reflection matrix of the IRS with θn ∈ [0, 2π) being

the corresponding phase shift. Futhermore, w ∈ CM×1

represents the transmit beamformer at the AP satisfying

||w||2 ≤ P0, where P0 is the maximum transmit power,

while s denotes the zero-mean complex Gaussian symbol

with unit power, and n0 is the additive white Gaussain

noise at the user with zero mean and variance σ2
n.

To detect the transmit symbol, the user applies a one-

tap equalizer c and the estimate is given by ŝ = cy.

B. CSI Uncertainty Model

As in [12], the CSI errors are assumed to follow the

complex Gaussian distribution, namely,










G = Ĝ +∆G,

hd = ĥd +∆hd,

hr = ĥr +∆hr,

(2)

where Ĝ, ĥr, and ĥd denote the estimated CSI, and

∆G, ∆hr, and ∆hd are the corresponding CSI errors

whose entries are i.i.d. zero-mean complex Gaussian

with variances of σ2
g , σ2

r , and σ2
d, respectively.

C. Problem Formulation

As in [13], [14], the criteria of minimizing the average

mean squared error (MSE) is adopted to ensure statistical

robustness. Hence, we first write the objective function

in the form of MSE averaged over all CSI errors:

e(w, c,Θ) = E
{

|ŝ− s|2
}

, (3)

where the expectation is taken over the data symbol,

additive Gaussian noise, and the CSI errors. Substituting

the CSI error model (2) into (3) and using the fact that

E{∆GHH∆G} = σ2
gTr{H}IM for any H ∈ CN×N , the

MSE expression (3) can be computed as

e(w, c,Θ) = |c|2(wHAw + σ2
n)− wH

αc∗ − cαHw + 1,
(4)

where A is given by (6) at the bottom of the next

page and α = (Ĝ
H
Θ

H ĥr + ĥd). Subject to the power

constraint at the AP and the unit-modulus constraint at

the IRS, the joint design of the transceiver and IRS phase

shifts can be formulated as

min
w,c,Θ

e(w, c,Θ) (P1)

s.t.

{

||w||2 ≤ P0,

0 ≤ θn < 2π, ∀n = 1, . . . , N.
.

Note that the objective function (4) is non-convex with

respect to (w.r.t.) w, c, and Θ, which makes the op-

timization problem (P1) very difficult to solve. In the

following, we propose an AO method to solve it.

III. ALTERNATING OPTIMIZATION

In this section, we focus on solving problem (P1) via

AO. Specifically, the transceiver w, c, and IRS phase

shift matrix Θ are optimized iteratively in an alternating

manner until convergence.

A. Updating {w, c} Given Θ

First we update the beamfoming vector w and one-tap

equalizer c for a given phase shift matrix Θ. Specifically,

given an arbitrary fixed Θ, the original problem (P1) can

be reformulated as follows:

min
w,c

|c|2(wHAw + σ2
n)− wH

αc∗ − cαHw (7)

s.t. ||w||2 ≤ P0.

It can be observed that the objective function is non-

convex w.r.t. w and c, hence, we optimize w and c

alternatingly. Given w, the optimal equalizer c for the

problem (7) is known to be the classical Wiener filter

[15]:

c =
wH

α

wHAw + σ2
n

. (8)

Then, for a fixed c, the optimal beamforming vector w

derived by using the Lagrangian method. The Lagrangian

function for (7) is given by

L(w, λ) = e(w) + λ(||w||2 − P0), (9)

A = Ĝ
H
Θ

H ĥrĥ
H

r ΘĜ + ĥdĥ
H

r ΘĜ + Ĝ
H
Θ

H ĥrĥ
H

d + ĥdĥ
H

d + σ2
g ||ĥr||

2IM + σ2
r Ĝ

H
Ĝ + (Nσ2

rσ
2
g + σ2

d)IM (6)
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where e(w) is given in (7) and λ is the Lagrange

multiplier associated with w. Taking the derivative of (9)

w.r.t. beamformer w∗, we can find the optimal solutions

for (7) with the KarushKuhnTucker conditions [16]:

w = (|c|2A + λIM)−1
αc∗ (10)

λ ≥ 0 (10a)

||w||2 − P0 ≤ 0 (10b)

λ(||w||2 − P0) = 0 (10c)

It is obvious that (10) is sufficient and necessary for the

optimal. As shown in (10), the optimal w depends on

the Lagrange multiplier λ, thus λ should be calculated

first before computing the beamformer w. According to

(10c), either λ = 0 or ||w||2 = P0 must hold. Hence, if

λ = 0 and ||w||2 − P0 ≤ 0 is satisfied, then λ = 0. In

contrast, if λ = 0, but ||w||2−P0 ≤ 0 is not satisfied, then

we have to solve the equation ||w||2 = P0, which can

be done numerically using the bisection search method.

After λ is obtained, we then calculate the beamformer

w according to (10).

B. Updating Θ Given {w, c}

Now we optimize the phase shift matrix Θ with fixed

w and c. For simplicity, we omit the constant terms in

(4) and rewrite the objective function of (P1) as

f(Θ) =
(

ĥ
H

r ΘĜwwHĜ
H
Θ

H ĥr + ĥ
H

d wwHĜ
H
Θ

H ĥr

+ ĥ
H

r ΘĜwwH ĥd

)

|c|2 − 2R(ĥ
H

r ΘĜwc). (11)

Let v , [v1, · · · , vN ]H where vi = ejθi for all i =

1, · · · , N , Φ = diag(ĥ
H

r )Ĝwc and d = ĥ
H

d wc, then

we have ĥ
H

r Θi+1Ĝwc = vHΦ. As such, (11) can be

rewritten as

f(v) = vHΦΦ
Hv − 2R(vHΦ(1− d∗)). (12)

Hence, the corresponding optimization problem can be

recast as nonconvex quadratically constrained quadratic

programs (QCQPs)

min
v

vHΦΦ
Hv − 2R(vHΦ(1− d∗)) (13)

s.t. |vn| = 1,∀n = 1, · · · , N.

Due to the unit modulus constraint, the above problem is

non-convex, and belongs to the class of NP-hard prob-

lems. The conventional approach is to reformulate the

above problem as semidefinite programming problem via

matrix-lifting [17]. However, as the number of reflecting

elements grows large, the implementation of the matrix-

lifting procedure is challenging.

Therefore, we propose a MM based method to solve

(13). The MM algorithm is an iterative technique to find

an absolute minimizer. Instead of minimizing f(v), this

method minimizes a majorization function of f(v) at

each iteration point. The kth majorizer for the objective

function should satisfy the following two conditions:

g(v, vk−1) ≥ f(v),∀v,

g(vk−1, vk−1) = f(vk−1), (14)

where vk−1 is the value of v at the (k − 1)th iteration.

Indeed, the function g(v, vk−1) is an upper bound of

the function f(v) and the equality is achieved at point

vk−1. To ensure a monotonically decreasing sequence of

the function values, each iterative value vk follows the

update rule vk = argmin g(v, vk−1). So we have:

f(vk) ≤ g(vk, vk−1) ≤ g(vk−1, vk−1) = f(vk−1). (15)

Hence, the key in MM algorithm is to determine the

majorizer g(v, vk−1) such that the majorized problem

is easy to solve. To apply the MM technique, we first

rewrite problem (13) as

min
v

vHQv − 2R(vHq) (16)

s.t. |vn| = 1,∀n = 1, · · · , N,

where Q = ΦΦ
H is a positive semidefinite matrix and

q = Φ(1−d∗). Invoking the Claim 1 of [19], the function

vHQv can be majorized by vHHv+2R(vH(Q−H)v0)+
vH0 (H − Q)v0 at every v0 ∈ CN , where H is a fixed

matrix such that H � Q. Thus, the majorized problem

of (16) can be expressed as

min
v

vHHv + 2R(vH(Q − H)v0)− 2R(vHq) (17)

s.t. |vn| = 1,∀n = 1, · · · , N.

Let H = λmax(Q)I where λmax(Q) is the largest

eigenvalue of matrix Q, so that the first term of (17)

is a constant. By discarding constant terms w.r.t. v, the

new majorization problem at the (k + 1)th iteration is

min
v

R(vHu) (18)

s.t. |vn| = 1,∀n = 1, · · · , N,

where u = (Q − λmax(Q)I)vk−q is a constant w.r.t. the

variable v since the vector vk is known beforehand by

generating at iteration k. Thus, the optimal solution to

problem (18) is given by

v∗k+1 = −ejarg(u) (19)

at the (k + 1)th iteration. Since the monotonicity of the

MM algorithm ensures that f(vi) ≤ f(vj) for all i > j,

we can repeat the above steps to find a stationary point

and the phase shifts Θ can be easily recovered from v∗.
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C. Overall Algorithm Description

In summary, the overall AO algorithm yields a simple

closed-form solution at every iteration, which is given in

Algorithm 1. As shown, the optimal solutions {wt, ct}
and locally optimal solution Θ

t are obtained alternat-

ingly, with superscript t denoting the tth iteration.

Algorithm 1 Proposed AO Algorithm

1: Initialize Θ
1 with random phases, w1 =

√
P0√
M

1, and

v1 = diag(Θ1). Set iteration number t = 1.

2: repeat

3: Update ct by (8) given Θ
t and wt.

4: Update wt+1 by (10) given Θ
t and ct.

5: Optimize vt+1 according to (19) given {wt+1, ct}
and update Θ

t+1 from vt+1.

6: until the decrease of the MSE is below ǫ > 0.

D. Convergence and Complexity Analysis

The proposed AO algorithm can be shown to converge

as follows. Recall the objective function of problem (P1)

and it follows that

e(wt+1, ct+1,Θt+1) ≤ e(wt+1, ct+1,Θt)

≤ e(wt, ct+1,Θt)

≤ e(wt, ct,Θt). (20)

The first inequality holds due to the non-increasing prop-

erty of the general MM scheme. The last two inequalities

come from (10) and (8), i.e., wt+1 and ct+1 corresponds

to the minimizer of e(w, ct+1,Θt) and e(wt, c,Θt),
respectively.

Furthermore, we briefly discuss the computational

complexity of the proposed AO algorithm. In each it-

eration, the algorithm yields simple closed-form solu-

tions and only requires basic matrix operations. Firstly,

as for updating the transcievr w, c, the complexity to

calculate A is on the order of O(M2N). Also, the

complexity to find the optimal λ is about O(log(m)M3),
where m denotes the interval length of the bisection

search. Secondly, as for updating the IRS phase shifts,

the algorithm requires the computational complexity of

O(n(NM +N2)) for the matrix multiplications, where

n represents the number of MM algorithm iterations.

The overall computational complexity of each iteration

is given by O(M2N + log(m)M3 + n(NM +N2)).

IV. SIMULATION RESULTS

In this section, numerical simulations are conducted

to evaluate the performance of the proposed system. We

consider a schematic system as shown in Fig.1 with

M = 4 transmit antennas. We assume that the locations

of the AP and IRS are (0 m, 0 m) and (100 m, 0 m),

while the user is located at (100 m, 20 m). The large-

scale path loss is modeled as L(d) = L0d
−α, where L0

is the path loss at the reference distance 1 m, d is the

link distance in meters and α is the corresponding path

loss exponent. In simulations, the path loss exponents

α for channels with and without line of sight (LoS)

components are respectively set to be 2 and 3. Con-

sidering the existence of LoS components, the channels

between the AP-IRS and the IRS-user are modeled as

Ricean fading with Ricean factor K = 10. Furthermore,

the direct channel hd is assumed to be Rayleigh flat-

fading. We also set σ2
g = σ2

r = σ2
d = σ2 for simplicity.

The other parameters are set as follows: L0 = −30 dB,

ǫ = 10−4, ǫmm = 10−8, and σ2
n = −110 dBm. For

performance comparison, the following four schemes are

considered: 1) The proposed robust design, which jointly

optimizes the transceiver and IRS phase shifts; 2) The

non-robust scheme, which optimizes the system as if

ĥr, ĥd and Ĝ are perfect; 3) The discrete phase shifts

scheme, which quantities the optimized continuous phase

shifts to its nearest values. 4) The scheme when IRS

is not deployed, which simply optimizes the transceiver

with Θ = 0.

In Fig.2, we compare the average MSE of the robust

and non-robust schemes with N = 40. Each point

in Fig.2 is an average over 1000 independent channel

realizations. As can be readily observed, the proposed

robust design method outperforms the conventional non-

robust design scheme in all CSI error configurations. In

addition, the performance gap depends on the accuracy

of CSI, and the advantage of the proposed robust design

method is most pronounced when the CSI error is large,

i.e., σ2 = 0.05. As the CSI error becomes smaller,

the performance gap gradually diminishes. Finally, it is

observed that the average MSE reduces as the transmit

power increases, as expected.

Fig.3 shows the impact of the number of reflection

elements on the average MSE of different schemes. First,

we can see that the performance of the robust design

improves consistently with the increase of IRS elements,

especially under large σ2. Besides, it is observed that

the finite phase resolution scheme suffers performance

loss compared to IRS with continuous phase shifts

as expected. However as the number of quantization

bits increases, for instance, with 3-bit phase shifter,

the performance degradation rapidly becomes negligi-

ble. Moreover, for the non-robust scheme, the MSE is

almost unchanged with the increase of IRS elements.

The reason is that, when N becomes large, the aggregate

CSI mismatch also increases alongside the corresponding
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Fig. 2: The MSE of Robust and Non-Robust versus

transmit power where N = 40.
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Fig. 3: The MSE of the four schemes versus N where

P0 = 10 dBm.

channel dimension. Finally, it also illustrates that the

MSE performance of the case without deploying IRS

is extremely poor, which explains the significance of the

IRS enhancement.

V. CONCLUSIONS

In this paper, we studied the joint design of transceiver

and phase shifts for an IRS-aided MISO system with

imperfect CSI. We proposed an alternating beamforming

optimization algorithm based on the Lagrangian method

and MM technique. The proposed algorithm is shown to

be robust against CSI errors, and achieves significantly

better MSE performance compared to the non-robust

design methods. For future research, it is promising to

extend the robust design frame to the more general cases,

such as MIMO or multi-user scenarios.

REFERENCES

[1] W. Tang, et al, “MIMO transmission through reconfigurable

intelligent surface: System design, analysis, and implementation,”

arXiv: abs/1912.09955, Dec. 2019.

[2] Y. Han, et al, “Large intelligent surface-assisted wireless com-

munication exploiting statistical CSI,” IEEE Trans. Veh. Tech.,

vol. 68, no. 8, pp. 8238-8242, Aug. 2019.

[3] X. Hu, C. Zhong, Y. Zhu, X. Chen, and Z. Zhang, “Pro-

grammable metasurface based multicast systems: Design and

analysis,” accepted to appear in IEEE J. Selected Areas in

Commun., 2020.

[4] J. Gao, C. Zhong, X. Chen, H. Lin, and Z. Zhang, “Unsupervised

learning for passive beamforming,” IEEE Commun. Lett., vol. 24,

no. 5, pp. 1052-1056, May 2020.

[5] Y. Zhang, C. Zhong, Z. Zhang, and W. Lu, “Sum rate opti-

mization for two way communications with intelligent reflecting

surface,” IEEE Commun. Lett., vol. 24, no. 5, pp. 1090-1094,

May 2020.

[6] Q. Wu and R. Zhang, “Intelligent reflecting surface enhanced

wireless network: Joint active and passive beamforming design,”

in Proc. IEEE GLOBECOM, Abu Dhabi, United Arab Emirates,

pp. 1-6, Dec. 2018.

[7] Q. Wu and R. Zhang, “Beamforming optimization for intelligent

reflecting surface with discrete phase shifts,” in Proc. IEEE

ICASSP, Brighton, United Kingdom, pp. 7830-7833, May 2019.

[8] X. Yu, D. Xu, and R. Schober, “Enabling secure wire-

less communications via intelligent reflecting surfaces,” arXiv:

abs/1904.09573, Apr. 2019.

[9] X. Guan, Q. Wu and R. Zhang, “Intelligent reflecting surface

assisted secrecy communication: Is artificial noise helpful or

not?,” accepted to appear in IEEE Wireless Commun. Lett., 2020.

[10] G. Araujo and A. Almeida, “Parafac-based channel estimation

for intelligent reflective surface assisted MIMO system,” arXiv:

abs/2001.06554, Jan. 2020.

[11] D. R. Hunter and K. Lange, “A tutorial on MM algorithms,”

The American Statistician, vol. 58, no. 1, pp. 30-37, Feb. 2004.

[12] G. Zheng, S. Ma, K.-K. Wong, and T.-S. Ng, “Robust beam-

forming in cognitive radio,” IEEE Trans. Wireless Commun., vol.

9, no. 2, pp. 570-576, Feb. 2010.

[13] C. Xing, S. Ma, and Y.-C. Wu, “Robust joint design of linear

relay precoder and destination equalizer for dual-hop amplify-

and-forward MIMO relay systems,” IEEE Trans. Sig. Process.,

vol. 58, no. 4, pp. 22732283, Apr. 2010.

[14] H. Shen, W. Xu, and C. Zhao, “Robust transceiver for AF

MIMO relaying with direct link: A globally optimal solution,”

IEEE Sig. Process. Lett., vol. 21, no. 8, pp. 947951, Aug. 2014.

[15] D. G. Manolakis, V. K. Ingle, and S. M. Kogon, Statistical

and Adaptive Signal Processing: Spectral Estimation, Signal

Modeling, Adaptive Filtering and Array Processing. New York:

The McGraw-Hill Companies, Inc., 2000

[16] S. Boyd and L. Vandenberghe, Convex Optimization. Cam-

bridge, U.K.: Cambridge University Press, 2004.

[17] S. Zhang and Y. Huang, “Complex quadratic optimization and

semidefinite programming,” SIAM Journal on Optimization, vol.

16, no. 3, pp. 871890, July 2006.

[18] S. Gong, C. Xing, and V. Lau, “Majorization-minimization

aided hybrid transceivers for MIMO interference channels,”

arXiv: abs/1911.05906, Nov. 2019.

[19] T. Qiu, P. Babu, and D. P. Palomar, “Prime: Phase retrieval via

majorization-minimization,” IEEE Trans. Sig. Process., vol. 64,

no. 19, pp. 5174-5186, Oct. 2016.


	I Introduction
	II System Model And Problem Statement
	II-A System Model
	II-B CSI Uncertainty Model
	II-C Problem Formulation

	III Alternating Optimization
	III-A Updating {w, c} Given 
	III-B Updating  Given {w, c}
	III-C Overall Algorithm Description
	III-D Convergence and Complexity Analysis

	IV Simulation Results
	V Conclusions
	References

