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Cooperative Caching and Video Characteristics in
D2D Edge Networks

S. Sinem Kafıloğlu, Gürkan Gür and Fatih Alagöz

Abstract—Device-to-device (D2D) transmissions in wireless
edge networks are promising for optimizing system-wide energy
consumption and improving system service capacity. Cooperative
content caching similarly serves efficiency goals for data-intensive
applications in edge networks. In this work, we propose two
cooperative cache replacement algorithms in D2D networks
to support these techniques: i) distance-based ii) priority-class
based. Video content dissemination in an edge network is our
main use-case. In such content traffic, video characteristics have
a significant impact on the system behavior. Therefore, we also
investigate the effect of content scene change dynamics in our
system. Distance based cooperation outperforms LRU , MIN -
ACC and SXO in terms of goodput while priority-class based
approach consumes less energy than MIN -ACC with almost the
same consumption as LRU , especially under fast-changing scene
regime. Besides, it is energy-wise slightly more rewarding than
SXO in the fastest-changing scene regime.

I. INTRODUCTION

Advanced multimedia services over mobile networks are
leading to a tremendous surge in user traffic demand. Based
on the Cisco predictions, mobile video will account for 79% of
total mobile data traffic by the end of 2022 [1]. Besides, edge
computing serves as one of the enablers for the realization of
5G requirements of low-latency and high spectrum efficiency.
To realize this service setting, Multi-access Edge Computing
(MEC) is standardized in 5G networks [2]. Such networks
form a foundational element for wireless networks entailing
heavy multimedia consumption. In that regard, various 5G
vertical segments related to multimedia traffic such as Internet-
of-Things (IoT), augmented reality and pervasive data sharing
will be realized. D2D communications with edge computing
infrastructure is a promising actuator towards that goal [3].

Caching is a broadly utilized performance amplifier for
wireless network multimedia services [4]. It is also a facilitator
tool for boosting performance improvement in D2D edge
networks. In [4], the authors study edge caching with D2D
offloading in terms of gain in transmission cost while Liu et.
al. focus on the factors that determine the potential caching
gain in D2D edge networks in [5]. For the caching techniques,
cooperation adds another dimension for performance gains.
In [6], Zhang et al. propose a mobility-aware cooperative edge
caching scheme to reduce service latency. In [7], a cache
replacement procedure is proposed where they consider cache
contents that are also available in their cooperative group
devices. These contents are evicted based on their request
frequency over size values. Yin et. al. propose cooperative
caching with i) CacheData, ii) CachePath [8]. In CacheData,
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Fig. 1: An example layered content X (Nl = 2).

nodes cache highly requested data along the transmission path,
while CachePath caches the path data, particularly destination
node, and only stores for devices closer to caching node. In
our cache replacement procedure, we utilize contents with
replicas in the reception range and their distance/availability.
And also by applying CPPC [9] for tie breaking, we uti-
lize content popularity, layering and partitioning dimensions
whereas they only use access frequency/order and content size
In [10], Wu et al. propose a collaborative cache management
in D2D networks where the cache controller receives neighbor
cache information and decides according to the gap between
popularity and caching proportion. They do not necessarily
store a received content and focus on placement whereas we
cache when a content is received and focus on the replacement
problem from a variety of aspects.

As cooperative caching is a promising technique to alleviate
the multimedia traffic burden on wireless networks, we study
multimedia caching in D2D networks from the cooperation
aspect in this work. Our key contributions are: i) we propose
two cooperative cache replacement algorithms based on the
cache profile of neighbour devices in a D2D network. The first
algorithm utilizes the prioritization of content unit availability
in neighbours while the other one makes use of the neighbour
proximity factor in determining the replacement units. ii)
We integrate cooperative “lock-down” concept to counteract
aggressive eviction in both techniques. iii) The impact of
content scene change dynamics on layer-based content model
is investigated. iv) We analyze the performance of cooperative
caching techniques by investigating energy consumption and
goodput through extensive simulations.

II. SYSTEM MODEL

In our wireless edge network, the user devices are dispersed
according to Poisson point process with density λD. Our main
use case is multimedia content delivery in D2D networks.
We utilize a content model where each content consists of
Nl layers and Np sized partitions. The utilization of content
layering enables varying service qualities to different content
consumers. The base layer is the essential core part of a con-
tent with its standard quality presentation. The other layers are
added onto the base for high quality content rendering [9].The
contents are not only divided in the layer domain but also in
the time domain, into so-called partitions. According to [11],
the initial partitions are more frequently requested by content
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consumers. Besides, video content consumption requires large
data retrieval and hence the partitioning is useful for flexible
service and caching capabilities. We identify each content
partition of some layer with a unique content unit id uθ as
in Fig. 1 with the example content X . The average base
layer size sb is 322.0 Mbits and enhancement layer size se is
152.1 Mbits [12]. The content request times are exponentially
distributed of rate λu. For each user, the content request is gen-
erated based on the popularity following the Zipf distribution.
For a content request, the partition requests are generated by
the Weibull distribution. Proportional to the request probability
pHQ for high-quality video, the enhancement portions of
requested content partition tuples are generated.

Users are capable of caching content units locally with
cache capacity C. For content unit requests, the request
manager first checks the local cache. In case of a local hit,
no transmission occurs. Otherwise, the closest device in the
reception range serves via D2D technique. The reception range
RD2D is the circle with radius RD2D centered at the requester
device. We assume the inter-user distances in a reception range
are known by users via a signaling mechanism to discover
neighbour devices [10] and cooperative calculation in this
D2D network [13]. Thus, devices in the reception range of
each other can exchange location data for determining distance
between nodes. If there is not enough free space in the cache
for the requested and received video content, the eviction takes
place. The device cache replacement management is our main
use case and thereof we specifically focus on device services
and energy levels. For this purpose, we do not establish
base station mode in our simulations. For D2D interference
handling, no two D2D transmissions are allowed to operate
simultaneously at a frequency in close proximity by meeting
the following criteria: i) the new requester is at least RD2D

away from all active transmitters ii) the new transmitter is out
of reception range of all active receivers. In the simulations, we
consider D2D interference. At a frequency with simultaneous
D2D transmissions, for each receiver device the received
power strength of other transmitters directed for other receivers
are summed as the corresponding interference. For each new
D2D arrival, the interference of currently active transmitters
to new receiver at that frequency is calculated and added
dynamically till the D2D service completion by the interferer.

III. COOPERATIVE CACHING IN THE EDGE NETWORK

Both of our proposed techniques rely on the cooperation
of devices within a vicinity of the requester. That cooperation
is done for making eviction decisions based on the caching
status of their neighboring devices in the reception range. In

both techniques, the requester cache capacity C, the set of
content units U in the requester cache and the newly retrieved
unit u′ are taken as system parameters.

Algorithm 1: COOPA Algorithm
INPUTS: U: The list of content units available in the cache of device me,
u’: Newly requested content unit by device me, C: The cache capacity of device me

%select the set of units to be evicted
if (TotalSize(U) + size(u′) > C) then

sortedUme ← sort(“CPPC”, U); %first sort on the CPPC for tie break %initially
mark all units as out of reception range RD2D

sortedUme ← [U, 0]; %priority-(ND+1) class
for (r=0:1:ND) do

for (i = 1:1:|U |) do
if (ui ∈ Rr) then

%if ui available in Rr pin as priority-r class member
sortedU(i)← [ui, ND + 1− r];

end
end

end
end
%sort units based on the priority class from priority-ND (lowest) to priority-0 (highest) class
sortedUme ← sortOnPriority(sortedUme);

***
%pin the highest eviction priority unit(last one) in sortedUme

w← highestPriority(sortedUme);
%for all neighbours in RD2D , select the devices that also have same highest prospective eviction
priority unit w (for these devices in the very first new request w will be evicted next)
wHolders← selectNgh(RD2D,w);
%If this device is locked down for w eviction, decrease w’s priority to the lowest and release
lock down of w in me
[lockDown, sortedU]← LDUpdates(lockDown,w,me, sortedU);
%start the eviction from the last unit (from higher priority) in sortedUme and iterate until there
is enough free space for u′
sortedUme ← cacheUpdate(sortedUme,u′);
%if neighbours exist with w as the highest prospective eviction priority unit lock down these
devices unless already locked down
lockDown← nghLDDecide(wHolders, lockDown,w);
%multicast lockdown decisions to related neighbour devices in the reception range RD2D for
prospective requests
multicast(wHolders, lockDown);
%broadcast cache state updates to all devices in the reception range RD2D for prospective requests
broadcast(me, sortedUme);

Algorithm 2: COOPD Algorithm
if (TotalSize(U) + size(u′) > C) then

sortedUme ← sort(“CPPC”, U);%first sort on CPPC for tie break
sortedUme ← [U, Inf ];%indicate all units as in-neighbour unavailable
for (i = 1:1:|U |) do

%get the set of devices that have ui available in the reception range RD2D of this u′
requester device me
curtxDevs← getCandidateTxs(ui);
if (size(curtxDevs) > 0) then

%among these devices having ui choose the distance of the closest one to me
dist← closestDevDistance(curtxDevs);
sortedUme(i)← [ui, dist];

end
end
%sort units based on the distance of the closest available neighbour starting from the distant
(lowest priority) to closest (highest priority) one
sortedUme ← sortOnDistance(sortedUme);

***
end

In COOPA in Algorithm 1, we construct priority-classes
based on closeness to requesters and content unit availabilities
in neighbours of the reception range. We assign each unit in
the local cache to a priority-class. The requester device at
the origin with radius RD2D has reception range RD2D that
is partitioned into mutual exclusive areas {R0,R1, ...,RND

}
(Fig. 2). We define the radius of each D2D reception partition
by Rn:=Rn−1+R0, R0:= RND

ND+1 . For each area, we define a
priority-class regarding eviction. Content units in the requester
cache that are also available in areas closer to the requester
have greater eviction priority. Content units already available
in at least one neighbour in area R0 are priority-0 class
members with the highest eviction priority. The units already
available in at least one neighbour in Rn are members of
priority-n class having lower priority than priority-(n-1) class.
The priority-(ND+1) class is for the units out of D2D reception
range RD2D with the lowest priority. After the priority label-
ing, units are priority-sorted (lowest to highest) in sortedUme.

For requests to devices in the reception range of each other
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with the same unit w of the highest eviction priority, they will
all evict that unit and erase it from the neighbourhood, which
may lead to a caching performance degradation due to this
bandwagon effect. To counteract this erasure problem, the first
content requester device signals others to “lock down” w and
then evict it. In that regard, aggressive eviction is postponed
by cooperation and via this “lock-down” concept, we allow
w to survive in the network longer. This action is realized in
selectNgh and LDUpdates functions in Algorithm 1.

In function cacheUpdate, we start the eviction with high
priority labeled units. In our range partitioning scheme, we la-
bel close vicinity area with a great eviction priority. Hence, we
first evict already in-close neighbour available units. Thereof,
prospective requests for such units at the same requester can
be handled in D2D mode in a short range. Our scheme has
another dimension for the service capacity improvement. It
assigns lowest priority for local units unavailable in reception
range and this leads to a greater probability to preserve such
units in the cache and in the future serve them locally. When
a prospective request for these units from some other device
occurs, they are transmitted within the reception range via
D2D with a great probability as well. Besides, by removing
in-neighbour available units from the local, we open up more
space for larger number of different units and this impacts the
total system performance. For units in the same priority class,
we utilize our previous proposal CPPC [9] to break ties.

After cacheUpdate, by function nghLDDecide we lock
down in-range neighbors that have w as the next highest
priority eviction candidate to block w eviction and allow w to
survive longer. Next, these lockDown decisions are multicast
to those related neighbors for cooperation. We also broadcast
cache state updates to neighbor devices in the reception range.

In the other proposed algorithm COOPD shown in Algo-
rithm 2, the content units that are available in some neighbour
of the reception range are sorted based on the distance from
the closest available neighbour. These units are sorted from the
closest to the distant one in sortOnDistance. When we con-
sider cacheUpdate, the closest available content unit has the
highest priority for the eviction and the priority descends with
increasing distance. By prioritizing the closest in-neighbour
available unit for eviction, we act to improve the D2D per-
formance of our system. Higher priority is assigned to the
unit which is available in a nearby device. When it is evicted
from the local cache, the prospective D2D transmission of the
request for the same unit will last for short and hence both
the D2D energy consumption and service capacity will have
gains compared to distance-unaware cooperative techniques.
The units with the same distance have the same priority. To
break ties, we utilize CPPC again. In this algorithm, the
lock-down cooperation mechanism and utilized functions are
the same with the COOPA (marked as *** ).

IV. PERFORMANCE METRICS

The investigation of our caching proposals are basically
focusing on (i) energy consumption and (ii) goodput with the
given system parameters list in Table I [9].

Energy: The content unit local hits constitute energy con-
sumption component Eloc. To calculate it, we sum the local

energy consumption (Ploc · |su|Cloc
) of all locally served requests

(ru ∈ S(n,n)) as Eloc :=
∑
u∈U

∑
n∈N

∑
ru∈S(n,n)

Ploc · |su|Cloc
.

The total D2D mode energy consumption ED2D is another
system energy consumption component consisting of transmis-
sion and reception energies. For D2D transmission of content
unit u between devices n and m, we sum the reception energy
P rec

D2D·|su|
C

(n,m)
D

and transmission energy P tx
D2D·|su|
C

(n,m)
D

. We sum for con-
tent units transferred in D2D mode from all device pairs to get
ED2D as

∑
u∈U

∑
n,m∈N
n6=m

∑
ru∈S(n,m)

P tx
D2D·|su|
C

(n,m)
D

+
P rec

D2D·|su|
C

(n,m)
D

.

Some unit requests are blocked due to cache or network
capacity limitations. A requester wakes up to idling state
with Eb(su) activation energy without successful transmission.
Eb:=

∑
u∈U

∑
n∈NEb(su) is the total blocking energy for all

such devices with unsuccessful unit services and the total
system energy consumption Eall is equal to Eloc+ED2D+Eb.

Goodput: The total number of locally served content bits is
defined as Gloc:={

∑
u∈U

∑
n∈N

∑
ru∈(Comp∩S(n,n))

|su|}. If a
content unit request ru /∈Comp, it has incomplete base chunk
services leading to incomplete service and not contributing to
local goodput. Therefore, we count for ru’s in the set Comp.
GD2D:={∑u∈U

∑
n,m∈N
n6=m

∑
ru∈(Comp∩S(n,m))

ru∈Fail

|su|} is the total

goodput of D2D operations. By the same explanation above,
a request ru should be in Comp for D2D goodput contribution.
Such an ru has all base chunks completely received but some
enhancement chunk reception might fail meaning ru∈Fail
and hence no D2D goodput contribution. In that regard,
we count for no failure requests as well (ru∈Fail). The
summation of local hit and D2D mode contributions gives the
network goodput Gall:=(Gloc+GD2D)/Tsim.

In our D2D network, our motivation is to analyze our
cooperative caching mechanisms and the impact of scene
change dynamics for Eall and Gall. We compare our
COOPD, COOPA algorithms to LRU , CPPC[9], MIN -
ACC[14], SXO[8]. We implemented our event-based sim-
ulator in MATLAB R2020 on a computer with Intel i7-
8550U CPU@1.8GHz, 16GB RAM. In each case, we run
simulations 10 times and average their results. The simulator
processes incoming content unit requests (arrivals) and service
completions. The content request rate is λu=8usersec . Section II
describes the request management. Each D2D service has B
bandwidth for transmission with Nfter frequencies in total. In
service completions, frequencies are preempted. The system
and simulation parameters are listed in Table I.

V. PERFORMANCE EVALUATION
A. Scene Change Dynamics

The dynamicity of multimedia has an impact on character-
istics of video chunks. One such factor is the scene change
(SC) dynamics. Some contents are more stable with small
inter-frame changes. Others have rapid and evident changes
like action movies. To investigate this factor, we utilize 30 fps
temporal scalable video traces where I and P frames form the
base layer and B frames form the enhancement in the temporal
scalable encoding[12]. We use terse traces around 30 minutes
of Tokyo Olympics, The Silence of the Lambs, Star WarsIV
and NBC News videos of GoP size 16 with 3 consecutive
B frames and quantizer 16. For content classification, spatial
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TABLE I: System and simulation parameters.
Par. Value Explanation
Cloc - The service capacity of content
C

(n,m)
D - The channel capacity between the nth and mth devices

Eb - The activation energy of devices from the sleeping to the idling state
N - The total number of devices
U - The set of content units uniquely identifiable by content, chunk, and layer id
ru - The request for the content unit u
su - The size of the content unit u
S(n,m) - The set of services from the nth device to mth device
Comp - The set of requests for a content where all the base chunks are transmitted

successfully (service completed successfully)
Fail - The set of requests for content units that have failed
Tsim 1800 s The total simulation duration
Nl 2 The number of content layers
Np 23.56 Mbits The average partition size
ND 1 The number of mutual exclusive area portions of the D2D reception range
λD 1.46e−3 dev

m2 The mean density of device distribution in PPP
s 1 The skewness parameter of Zipf distribution
α 1 The Weibull distribution scale parameter
k 0.6 The Weibull distribution shape parameter
pHQ 1 The high quality request probability
C 47.1 Mbits The cache capacity of devices
RD2D 120 m The reception range radius of a requester
sb 322.0 Mbits The average base layer size
se 152.1 Mbits The average enhancement layer size
Ploc 40 mW The power consumption of local content unit retrieval
P tx
D2D 80 mW The transmission power consumption of a device
P rec
D2D 16 mW The reception power consumption of a device
Nc 250 The number of contents
Nfter 4 The total number of system frequencies
B 2 MHz The operation bandwidth of each frequency
re 1 The interplay multiplier for changing average enhancement layer size

and/or temporal features are utilized and the frame differ-
ence variance is considered to project temporal multimedia
dynamicity[15]. For a content c of the total number of frames
Fc, the size of a given frame f s(f), the mean frame size
difference is M(c):= 1

Fc−1
∑Fc−1
f=1 s(f+1)-s(f). We calculate

the variance of the frame size differences of aforementioned
videos V ar(c):= 1

Fc−1
∑Fc−1
f=1 ([s(f+1)-s(f)]-M(c))2.

We look at the ratio of the base layer size over the
enhancement size for a content c, R

B
E
c :=

∑
b∈Bc (sb)∑

i∈Ic (si)+
∑

p∈Pc (sp)

with Bc,Ic,Pc as the B-, I-, P-frame sets, respectively. We
get the statistical information about that ratio by calculating
R

B
E
c ’s for the aforementioned videos with the provided video

statistics in[16]. The correlation between the variance of frame
size differences and ratio of layer sizes is observed by the
Pearson correlation coefficient ρ=0.992 showing a high linear
dependency. Thus, we can utilize the layer size ratios to
analyze temporal SC dynamics. The base layer size is kept
fixed to have the same SQ content compositions. For the SC
adaptation, we change the enhancement size by s′e:=se·re. In
temporal content characteristics, the high variance of frame
size differences are classified as high temporal activity [15]. As
the layer size ratio and mentioned variance are highly linearly
correlated, the enhancement layer with larger size for a fixed
base size implies the content has higher temporal changing
dynamic. In contrast, having smaller enhancement size reveals
the content is more stable with little temporal variation.
B. Experimental Results

With increasing re the total system energy consumption
increases for all techniques (Fig. 3). Intuitively, with increasing
re the enhancement size and subsequently the total content size
rises. Hence, the system requires greater energy consumption
even for a local hit. Besides, the probability of local availabil-
ity decreases and hence the content has to be transmitted in
D2D mode and this requires larger energy than a local hit.
CPPC outperforms other algorithms in terms of Eall

(Fig. 3). As it utilizes content characteristics, the improvement
over LRU (MIN -ACC) becomes more evident with larger
enhancement content sizes. CPPC also outperforms SXO and
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Fig. 3: Cooperative caching energy results for varying re.

the improvement rate rises up to 19.3% at re=2.5. SXO pri-
oritizes large popular units for eviction, which are base units.
Their prioritized eviction leads to more D2D transmissions
instead of local hits and thereby more energy consumption
compared to CPPC. When we compare COOPD to LRU
(MIN -ACC), its consumption falls back for all re’s in
the inspection domain due to its prioritization nature of the
replacement unit selection. It evicts in-neighbour available
units based on closeness prioritization. The more popular a
content unit is, more likely to have it in a nearby device and
then selected for eviction. The prospective requests for them
can be served in D2D mode instead of local hits. Thus, it has
higher energy consumption than LRU (MIN -ACC) ranging
from 24.7% to 28.3% (17.4% to 25.5%). COOPD also falls
back from SXO for all re’s in the inspection domain. As
explained above in COOPD popular units are given a greater
priority for eviction and requests for them can be served by
D2D transmission rather than locally. SXO considers the local
device cache and selects highly popular large units that are
of type base for eviction. SXO will also cover up for the
requests of these units via D2D mechanism but COOPD
will also require D2D transmission for popular enhancement
units available in a close vicinity and thereof consuming more
energy than SXO ranging from 24.9% to 34.0%. COOPA has
also higher results compared to LRU (SXO) except for the
largest re=2.5. When we compare to MIN -ACC, COOPA
achieves better energy performance for re ≥ 1.5. The highest
improvement is observed from 363.1 to 336.7 J at re=2.5.

Next, we compare COOPA and COOPD to CPPC. In
both cooperative techniques, in-neighbour available units are
to be evicted first and such units have higher popularity
compared to ones not available in neighbors. When prospective
requests for such more popular units occur again, this time
they are not found locally but served in D2D mode. However,
in CPPC such units are not necessarily evicted and those re-
quests are handled locally. Thus, cooperative techniques result
in an energy consumption increase in contrast to CPPC.

In Fig. 3, we also observe that COOPA has better energy
performance than distance based COOPD for all re’s. This
improvement reaches up to 21.0% from 426.1 to 336.7 J
at re=2.5. In distance based cooperative cache replacement
technique, local content units are sorted based on the distance
from the closest unit-storing neighbour. The more popular a
unit is, the higher probability it is found in a close device
and more popular units are assigned higher eviction priority.
Prospective requests for such units can be handled via D2D
links instead of low-cost local hits. However, in COOPA
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Fig. 4: Cooperative caching goodput results for varying re.

with ND=1 unit availability in a neighbour is sufficient to
be selected for eviction. Among these available units, CPPC
selects the least popular as the prioritized eviction candidate.
Thereof, COOPA preserves popular units among in-neighbour
units and prospective requests for them can be low energy cost
local hits. This explains the effective improved performance
of COOPA over distance based COOPD.

The goodput investigation results are presented in Fig. 4.
With increasing re, the requested content size rises and the
system serves with larger capacity in all mechanisms. For all
re’s in the investigation range, COOPD has better goodput
values than LRU (MIN -ACC) with improvement reaching
to 11.3% at re=1.5 (16.7% at re=0.5). The erasure of high
popular content units that are available in the neighbourhood
opens up caching opportunity to new units and increasing
the unit diversity. Thus, more requests can be served and the
rise in overall goodput Gall is observed. COOPD also has
improved goodput over SXO for all re’s in the investigated
range. This improvement reaches to 14.8% at re=1.5. COOPD
gives high eviction priority to popular units in all types. On
the contrary, SXO gives high eviction priority to popular base
units compared to enhancements with smaller size. The low
rate of highly popular enhancement unit eviction in SXO
results in less vacancy for new units and lower unit diversity
compared to COOPD. COOPA has lower goodput values
than LRU for re >1.0. At re=0.5, this cooperative technique
becomes better than LRU and 4.8% improvement from 32.5 to
34.1 Mbps is observed in Fig. 4. COOPA has lower goodput
values than MIN -ACC (SXO) for re >1.0 (re >1.5). With
decreasing re, this cooperative technique performs better than
MIN -ACC (SXO). At re=0.5, its improvement reaches to
10.9% (8.2%) from 30.7 to 34.1 (31.5 to 34.1) Mbps (Fig. 4).

The cooperative approaches have improved goodput than
CPPC for all re’s (in Fig. 4). The improvement rate of
COOPD (COOPA) over CPPC reaches to 20.9% from
36.4 to 44.0 Mbps at re=2.5 (10.3% from 30.9 to 34.1
Mbps at re=0.5). Cooperative techniques open up caching
opportunity to new units during replacement leading to higher
service capacity than CPPC. When we compare COOPD to
COOPA, COOPD has better goodput for all re’s. Distance
based technique opens up more space to new units as it starts
eviction from units commonly found in neighbors while non-
distance based starts eviction from units available in vicinity
but not so popular due to CPPC based sorting. Thus, an in-
neighbour unpopular unit is a direct replacement candidate and
if the neighbour also similarly evicts it before a prospective
request, then content unit diversity is not preserved as in

COOPD and such requests are not served. This results in
lower system capacity than COOPD. At re=0.5, the improve-
ment of COOPD over COOPA is 5.3%. The improvement
rises up to 13.9% at re=2.5 from 38.6 to 44.0 Mbps.

VI. CONCLUSION

In this work, we investigated D2D networks from caching
aspect. We proposed two cooperative cache replacement tech-
niques and performed simulations for varying scene change
dynamics in terms of energy consumption and goodput. Ac-
cording to the simulation results, our distance based cooper-
ative cache replacement technique outperforms LRU , MIN -
ACC, SXO and CPPC in terms of system goodput for all
scene change dynamics in the investigated regime. However,
it has an increase in the energy consumption. To alleviate this
energy problem, our other proposal COOPA can be utilized
that has much the same energy consumption as LRU (less
energy consumption than MIN -ACC) for large re case (the
regime where the content has rapidly changing characteristic).
COOPA consumes only at most 6.8% higher energy than
SXO for 1.0< re ≤2.0 and it also performs slightly more
energy rewarding than SXO for the largest re=2.5.
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