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Nearest Neighbor and Contact Distance Distribution for Binomial
Point Process on Spherical Surfaces

Anna Talgat, Mustafa A. Kishk , Member, IEEE, and Mohamed-Slim Alouini

Abstract— This letter characterizes the statistics of the contact
distance and the nearest neighbor (NN) distance for binomial
point processes (BPP) spatially-distributed on spherical surfaces.
We consider a setup of n concentric spheres, with each sphere Sk

has a radius rk and Nk points that are uniformly distributed on
its surface. For that setup, we obtain the cumulative distribution
function (CDF) of the distance to the nearest point from two
types of observation points: (i) the observation point is not a part
of the point process and located on a concentric sphere with a
radius re < rk∀k, which corresponds to the contact distance
distribution, and (ii) the observation point belongs to the point
process, which corresponds to the nearest-neighbor (NN) distance
distribution.

Index Terms— Stochastic geometry, binomial point process,
distance distribution.

I. INTRODUCTION

CELLULAR coverage has become one of the top needs
of the modern society due to its importance in various

applications such as healthcare, remote education, industry,
and much more. For that reason, it is important to ensure cel-
lular coverage all over the globe including remote areas, rural
regions, and many other under-served locations. However, due
to the lack of infrastructure, majority of these areas receive
bad coverage due to lack of incentive for network operators to
invest in these locations. Undoubtedly, CubeSat and Low Earth
Orbit (LEO) satellite communications have become the main
areas of interest with their tremendous developments and high
potentials to achieve global connectivity. The high potential of
these communications has motivated many recent works, such
as [1]–[3], to identify technological advances and highlight
open problems in this field. Notably, the progresses in LEO
satellite communications are providing a promising solution
to the coverage problem in under-served locations [4], [5].
In particular, by deploying satellite gateways in such regions,
coverage can be significantly enhanced using satellite com-
munications. This system architecture requires less expenses
compared to typical cellular architectures. In particular, it does
not require the extension of optical fibers to such remote
locations, which is typically needed to provide core-connection
to the deployed base stations. This is replaced in the new setup
with the wireless link between the gateway and the satellite.
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Recent advances in LEO satellite research have encouraged
various companies to invest in launching large numbers of
LEO satellites to ensure low latency communication, for exam-
ple, SpaceX has received permission to create a constellation
of 4425 LEO satellites [6].

The spatial distribution of the LEO satellite strongly affects
the performance of the satellite communication systems. In this
letter, we propose to model the locations of the satellites using
tools from stochastic geometry. Stochastic geometry is one
of the mathematical tools that enable tractable modeling of
various types of wireless networks and analyzing their proper-
ties [7]. We develop a new tractable approach where we model
the locations of the LEO satellites as a BPP on a sphere. The
developed framework is essential for studying the performance
of the LEO satellite communication system. However, it is
first needed to understand the fundamental characteristics of
the distances emerging from this point process, which is the
main contribution of this letter.

A. Related Work

Characterizing the statistics of the distances between various
components of the wireless networks is essential for rigorous
performance analysis. Relevant literature has mainly focused
on spatial point processes on a 2D plane. For instance,
authors in [8]–[10] characterize the CDFs of contact and
nearest-neighbor distances for Poisson hole processes and
Poisson cluster process, respectively. Statistical research on
point processes on the sphere could date back to the 1970s,
such as a study of random sets on the sphere by Mile’s [11].
Statistical methods that are developed for analyzing a distrib-
ution of points on a spherical region, including modeling and
estimating techniques for a specified model, are studied in the
recent work [12]. However, statistical analysis for contact and
nearest neighbor distances for point processes on spherical
surfaces are still surprisingly underdeveloped. It is important
to point out to the difference between the analysis of point
processes in 3-dimensional (3D) plane, which is relatively
well-understood part of literature [13], and the analysis of
point processes solely distributed on a spherical surface. Only
very recently, during writing this letter, a new work has tackled
this problem while modeling the location of the satellites as a
BPP on a sphere [14]. The main differences between this letter
and [14] is: (i) we study a more general model where points
are randomly located on multiple concentric spheres, which
resembles the scenario of having the satellites at multiple
altitudes as is the case in majority of announced constellation
by key-companies in this area, and (ii) in addition to deriving
the contact distance distribution, we also derive the nearest
neighbor distribution for a satellite on the kth sphere, which
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Fig. 1. System model for n level of spheres concentric with the Earth.

is an important metric that has its own value for studying
routing between LEO satellites. A deterministic version of the
setup considered in this letter was studied in [15], [16] with
the objective of optimizing the LEO satellite constellations.

B. Contributions

The main contributions of this work are as follows. First,
we model n concentric spheres with Nk points uniformly
distributed on each sphere ∀k. Then we use tools from sto-
chastic geometry to provide a new tractable model for studying
distance distributions in satellite networks located on spherical
surfaces. In particular, we model the location of points as a
spherical BPP to study the distribution of nearest-neighbor
distance for two different locations of observation point which
are (i) observation point is not a part of the point process and
located on the Earth, and (ii) observation point is a part of the
point process and located on kth sphere. Closed-form expres-
sions for the distance distributions are derived and verified
using Monte-Carlo simulations. Finally, with the assistance of
numerical results, various system-level insights are drawn and
discussed.

II. SYSTEM MODEL

As stated above, the analysis in this letter is motivated by
the recent advances in the area of LEO satellite communication
systems. Hence, our objective is to provide a model that
captures two kinds of communication links: (i) links between
gateways on the earth and LEO satellites, and (ii) inter-satellite
links between LEO satellites. For the former, it is important to
derive the distribution of the distance between a point on the
earth and its nearest LEO satellite. For the latter, in order to
study backhaul communication between LEO satellites, it is
important to derive the distribution of the distance between a
given LEO satellite and its nearest neighbor. We model this
system setup as in Fig. 1 which represents a random LEO
constellation in which a set of satellites is distributed on set of
spheres according to a BPP. In particular, we consider a system
composed of n concentric spheres, denoted by Sk ⊂ R

3,
∀1 ≤ k ≤ n. On each sphere, a point process Φk composed
of Nk points are uniformly distributed. Each sphere is defined
by the altitude ak (altitude of kth sphere from the surface of

Fig. 2. Observation point located on the ith sphere.

Earth) and the radius rk = re + ak, where re is the radius
of the earth. Hence, the considered point process is defined
as Φ =

⋃n
k=1 Φk on

⋃n
k=1 Sk. We denote its corresponding

counting measure by N , such that N(A) denotes the number
of points in Φ falling in the region A ⊆ ⋃n

k=1 Sk. For each
BPP Φk, fixed number Nk of points are independently and
uniformly distributed on a sphere Sk defined as

Sk
Δ={(rk, ϕ, θ): rk = re + ak, 0 ≤ ϕ ≤ π, 0 ≤ θ < 2π},

where the (rk, ϕ, θ) represent the spherical coordinates in R
3.

The nearest neighbor or contact distance (depending on the
definition of the observation point) is the distance from the
observation point to the nearest point in Φ and is given by
D. The corresponding distribution FD(d) Δ= P(D < d) is the
nearest neighbor or contact distance distribution function.

A. Scenario-1 Description

The observation point is located on the Earth. The corre-
sponding distribution is

FD(d) Δ= P(D < d) = 1 −
n∏

k=1

P(Dk ≥ d),

where P(Dk ≥ d) = F̄Dk
(d) = 1−FDk

(d) is the complemen-
tary cumulative distribution function (CCDF) of the contact
distance Dk from the observation point to the nearest point
on kth sphere.

By definition, we know that if d < ak then FDk
(d) = 0. For

d > ak, FDk
(d) is the probability that the number of points

on a given spherical cap Ak at height h(d, k, 0) is greater than
zero:

FDk
(d) Δ= P(Dk < d) = P(N(Ak) > 0).

Hence, the CCDF of Dk can be computed as follows.

P(Dk ≥ d) = P(N(Ak) = 0) = [P(zk < z(d, k, 0))]Nk ,

where zk = rk cosϕ, and z(d, k, 0) = rk − h(d, k, 0). With
Pythagoras’ theorem, we can easily derive the expression of
h(d, k, 0). Assuming that the communication between any
point on the earth and an LEO satellite requires a Line-of-
Sight (LoS), the maximum distance, dmax(k, 0), that can be
taken from the observation point also forms a spherical cap
Amax,k with height hmax(k, 0). When the number of points
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TABLE I

SUMMARY OF NOTATION

in Amax,k is zero, it means that there are no points in Sk

that have an LoS with the observation point. Hence, for that
scenario, we assume that Dk = ∞. As a result, the CCDF of
Dk for d > dmax(k, 0) is

P(Dk ≥ d) = P(N(Amax,k) = 0) = [P(zk < zmax(k, 0))]Nk ,

where zmax(k, 0) = re. Combining all the conditions which
are d < ak, ak < d < dmax(k, 0) and d > dmax(k, 0), we can
derive FDk

(d) ∀k.

B. Scenario-2 Description

The observation point is located on the Si, and the point
is part of the point process. So, the corresponding distribution
is

FD(d)

= 1 − [ i−1∏
k=1

P(Dk,i ≥ d)
][

P(Di ≥ d)
][ n∏

k=i+1

P(Dk,i ≥ d)
]
,

where Dk,i is the distance between the observation point and
the nearest point on Sk, and Di is the distance between the
observation point and the nearest point on the same sphere Si.
Here, the CCDFs correspond to NN distance distribution for
(a) below the ith sphere, (b) on the ith sphere and (c) above
the ith sphere respectively. Fig. 2 shows the communication
link for the case (c) while the observation point is located
on the sphere Si. The shaded parts represent the spherical
caps Ak and Amax,k formed on Sk with height h(d, k, i)
and hmax(k, i), respectively. We follow the same procedure as
Scenario-1 to derive the complete CDF for each case where
conditions are |ak − ai| < d, |ak − ai| < d < dmax(k, i)
and d > dmax(k, i) for (a) and (c) and d < dmax(k, i) and
d > dmax(k, i) for case (b). Also, we get h(d, k, i), hmax(i, i)
and dmax(k, i) for each case separately by using Pythagoras’
theorem.

III. DISTANCE DISTRIBUTION

In this section, we determine the distribution of the nearest
distance from a specified observation point for a general BPP.

Theorem 1 (Scenario-1: Contact distance distribution):
The CDF of the distance D from the observation point
arbitrarily located on the surface of Earth to its nearest
satellite in the constellation is given by

FD(d) Δ= P(D < d) = 1 −
n∏

k=1

P(Dk ≥ d), (1)

where the CCDF of Dk is

P(Dk ≥ d)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, d < ak

[
1 − 1

π
arccos (1 − d2 − a2

k

2rerk
))

]Nk , ak≤d≤dmax(k, 0)

[
1 − 1

π
arccos(

re

rk
)
]Nk , d > dmax(k, 0),

where dmax(k, 0) =
√

2reak + a2
k.

Proof: See Appendix A.
Theorem 2 (Scenario-2: Nearest neighbor distance distrib-

ution): The CDF of the distance D from the observation point
chosen randomly from BPP on ith sphere to its nearest satellite
in the constellation is given by

FD(d) Δ= P(D < d) = 1 −
n∏

k=1

P(Dk ≥ d), (2)

where the CCDFs of Dk are described below.
For k = i,

P(Di ≥ d)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
1 − 1

π
arccos (1 − d2

2r2
i

)
]Ni−1

, d < dmax(i, i)

[
1 − 1

π
arccos (1 − 2r2

e

r2
i

)
]Ni−1

, d > dmax(i, i),

where dmax(i, i) = 2
√

r2
i − r2

e .
For k �= i, the equation can be derived, as shown at the

bottom of next page
where dmax(k, i) =

√
r2
k − r2

e +
√

r2
i − r2

e .
Proof: See Appendix B.

Remark 1: The results in Theorems 1 and 2 show the
influence of the value of Nk on the distribution of both
the contact distance and the nearest neighbor. In particular,
we notice that the value P(Dk ≥ d) in both theorems includes
a value raised to the power of Nk, where this value is
less than 1. This, in turns, implies that P(Dk ≥ d) is a
decreasing function of Nk. This intuitive insight, supported by
our analytical expressions, can be used to select the proper
values of Nk to achieve a specific level of system performance.

IV. NUMERICAL RESULTS

In this section, we provide numerical results for the derived
distance distributions. As shown in Fig. 4 and Fig. 5, Theo-
rems 1 and 2 are perfectly matching with simulation, which
affirms the accuracy of our analysis.

Fig. 3 represents the LEO satellite constellation for four
different companies. The solid lines indicate the CDF values
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Fig. 3. Practical case: CDF of contact distance for different compa-
nies: akLeoSat =[1400] and NkLeoSat =[100]; akOneWeb =[1200] and
NkOneWeb=[74]; akAmazon =[590 610 630] and NkAmazon=[784 1296
1156]; akSpaceX =[550 1110 1130 1275 1325] and NkSpaceX =[1584
1600 400 374 450].

Fig. 4. Scenario-1: CDF of contact distance for different number of
multi-level spheres with values: akcircle =[1110 1150 1275 1325] and
Nkcircle=[50 40 25 15]; aksquare =[1110 1150 1275 1325 1500 1700] and
Nksquare=[75 65 55 45 25 15]; akdiamond =[1110 1150 1275 1325] and
Nkdiamond=[105 85 60 35].

computed using theoretical expressions, while the markers
represent the simulation results.

In Fig. 4, we plot the CDF of the contact distance for
three different system setups, as described in the caption.
We observe that the number of satellites on each sphere,
when the altitudes are fixed, have a noticeable influence
on the distribution of the contact distance. By comparing
the scenarios represented by the diamond and circle-shaped
markers, we notice that for similar altitudes of the spheres,

Fig. 5. Scenario-2: CDF of the nearest-neighbor distance for a setup
composed of 4 spheres as follows: S1= [1000 500], S2= [1325 400], S3=
[1625 325] and S4= [2000 280], where Sk = [akNk].

the scenario that has larger number of satellites has larger value
of CDF of the distance. This kind of system level insights
can be useful for system architecture designers to select the
optimum altitudes and number of satellites to maximize the
system performance.

In Fig. 5, we plot the CDF of the distance to the nearest
neighbor distance as the observation point moves from S1 to
Sn where n = 4. We notice that the distance to the nearest
neighbor gets higher as the observation point moves from inner
spheres to outer spheres. This insight is of high importance in
the context of inter-satellite multi-hop communication since it
implies the more challenging routing options for the satellites
existing at the highest altitudes.

V. CONCLUSION

In this letter, we presented a stochastic geometry framework
to model the spatial distribution of LEO satellite communica-
tion systems. For that setup, we derived the exact analytical
expressions for the CDFs of the nearest neighbor and the con-
tact distance where fixed numbers of points are independently
and uniformly distributed on a number of concentric spheres.
The provided setup can be used in various applications such
as (i) studying the coverage probability of the LEO-aided
communication networks and (ii) studying the routing among
LEO satellites.

APPENDIX

A. Proof of Theorem 1

The proof of Theorem 1 and 2 follow the same steps.

• If d < ak, we have P(Dk ≥ d) = 1 ∀k.

P(Dk ≥ d) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, d < |ak − ai|
[
1 − 1

π
arccos (1 − d2 − (ai − ak)2

2rirk
)
]Nk , |ak − ai| ≤ d ≤ dmax(k, i)

[
1 − 1

π
arccos (1 − (ri + rk)2 − d2

max(k, i)
2rirk

)
]Nk , d > dmax(k, i),
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• If ak < d < dmax(k, 0), then we have the contact distance
distribution,

P(Dk ≥ d) = P(N(Ak) = 0)
= [P(zk < z(d, k, 0))]Nk

= [P(rk cosϕ < z(d, k, 0))]Nk

= [P(ϕ > arccos
z(d, k, 0)

rk
)

+P(ϕ < − arccos
z(d, k, 0)

rk
)]Nk

= [1 − 1
π

arccos(
z(d, k, 0)

rk
)]Nk ,

where h(d, k, 0) = d2−a2
k

2re
and dmax(k, 0) =√

2reak + a2
k are easily derived by Pythagoras’

theorem and z(d, k, 0) = rk − h(d, k, 0).

• If d > dmax(k, 0), skipping all the intermediate steps we
get

PDk≥d) = P(N(Amax,k)=0)=[P(zk < zmax(k, 0))]Nk

= [1 − 1
π

arccos(
zmax(k, 0)

rk
)]Nk ,

where zmax(k, 0) = re ∀k.

This concludes the proof.

B. Proof of Theorem 2

For Sk and k �= i:

• If d < |ak − ai|, we have P(Dk ≥ d) = 1.
• If |ak − ai| < d < dmax(k, i),

P(Dk≥d) = P(N(Ak)=0)=[P(zk < z(d, k, i))]Nk

= [1 − 1
π

arccos(
z(d, k, i)

rk
)]Nk ,

where h(d, k, i)= d2−(ai−ak)2

2ri
, z(d, k, i)= rk−h(d, k, i),

and dmax(k, i) =
√

r2
k − r2

e +
√

r2
i − r2

e .

• If d > dmax(k, i),

P(Dk≥d)= P(N(Amax,k)=0)=[P(zk < zmax(k, i))]Nk

= [1 − 1
π

arccos(
zmax(k, i)

rk
)]Nk ,

where hmax(k, i) = (ri+rk)2−d2
max(k,i)

2ri
and zmax(k, i) =

rk − hmax(k, i).
For Sk and k = i, the observation point is part of the point

process Φi, the remaining point process becomes a spherical
BPP with Ni − 1 points.

• If d < dmax(i, i), then

P(Di≥d) = P(N(Ai)=0)=[P(zi <z(d, i, i))]Ni−1

= [1 − 1
π

arccos(
z(d, i, i)

ri
)]Ni−1,

where h(d, i, i) = d2

2 ri
, dmax(i, i) = 2

√
r2
i − r2

e and with
z(d, i, i) = ri − h(d, i, i).

• If d > dmax(i, i), then

P(Di ≥ d) = P(N(Amax,i) = 0)
= [P(zi < zmax(i, i))]Ni−1

= [1 − 1
π

arccos(
zmax(i, i)

ri
)]Ni−1,

where hmax(i, i) = 2r2
e

ri
and zmax(i, i) = ri − hmax(i, i).

This concludes the proof.
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