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Twisted Reed-Solomon Codes With

One-dimensional Hull
Yansheng Wu

Abstract—The hull of a linear code is defined to be the
intersection of the code and its dual. When the size of the hull
is small, it has been proved that some algorithms for checking
permutation equivalence of two linear codes and computing the
automorphism group of a linear code are very effective in general.
Maximum distance separable (MDS) codes are codes meeting the
Singleton bound. Twisted Reed-Solomon codes is a generalization
of Reed-Solomon codes, which is also a nice construction for MDS
codes. In this short letter, we obtain some twisted Reed-Solomon
MDS codes with one-dimensional hull. Moreover, these codes are
not monomially equivalent to Reed-Solomon codes.

Index Terms—twisted Reed-Solomon codes, one-dimensional
hull, monomially equivalent.

I. INTRODUCTION

G
IVEN a linear code C of length n over the finite field

Fq, the dual code of C is defined by

C⊥ = {x ∈ Fn
q | xy

T = 0 for all y ∈ C}

where xy
T denotes the standard inner product of two vectors

x and y. The hull of the linear code C is defined to be

Hull(C) := C ∩ C⊥.

It is clear that Hull(C) is also a linear code over Fq. The hull

was originally introduced in 1990 by Assmus, Jr. and Key [1]

to classify finite projective planes. It had been shown that the

hull plays an important role in determining the complexity of

algorithms for checking permutation equivalence of two linear

codes and computing the automorphism group of a linear code

(see [10], [11], [22]-[24]), which are very effective in general

when the dimension of the hull is small.

It is worth mentioning that the special case of the hulls of

linear codes is of much interest. Namely the codes with trivial

intersection with its dual, which is also named linear com-

plementary dual (LCD) codes. Massey [18] first introduced

this class of codes and proved that there exist asymptotically

good LCD codes. A practical application of binary LCD codes

against side-channel attacks (SCAs) and fault injection attacks

(FIAs) was investigated by Carlet et al. [3] and Carlet and

Guilley [4]. Since then, the study of LCD codes is thus

becoming a hot research topic in coding theory ([6]-[9], [12],
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[13], [15], [16],[26]-[29]). Some nice progress on linear codes

with small hulls has been made, for examples ([5], [14]).

A maximum distance separable (MDS) code has the greatest

error correcting capability when its length and dimension is

fixed. MDS codes are extensively used in communications

(for example, Reed-Solomon codes are all MDS codes), and

they have good applications in minimum storage codes and

quantum codes. There are many known constructions for

MDS codes; for instance, Generalized Reed-Solomon (GRS)

codes [19], based on the equivalent problem of finding n-arcs

in projective geometry [17], circulant matrices [20], Hankel

matrices [21], or extending GRS codes.

Recently the authors in [8], [16] investigated the hull

of MDS codes via generalized Reed-Solomon codes over

finite fields. Beelen et al. [2] first gave the definition of

twisted Reed-Solomon codes, which is a generalization of

the Reed-Solomon codes, and they proved under some condi-

tions twisted Reed-Solomon codes could be not monomially

equivalent to the Reed-Solomon codes. However, the hull of

twisted Reed-Solomon codes have not been studied in that

paper. Recently, Wu, Hyun and Lee [25] constructed some

LCD twisted Reed-Solomon codes.

In this letter, as a follow-up work we will focus on the hull

of twisted Reed-Solomon codes. In particular, we will consider

to construct some twisted Reed-Solomon MDS codes with

one-dimensional hull, which are not monomially equivalent

to Reed-Solomon codes. The rest of this letter is organized as

follows. In Section II, we introduce basic concepts on the hull

of linear codes and twisted Reed-Solomon codes. In Sections

III, we present our main results and give some examples. We

conclude the letter in Section IV.

II. PRELIMINARIES

Let Fq be the finite field of order q, where q is a prime

power. An [n, k]q linear code C over Fq is a k-dimensional

subspace of Fn
q . The minimum distance d of a linear code C

is bounded by the so-called Singleton bound : d ≤ n− k+1.

If d = n−k+1, then the code C is called a maximum distance

separable (MDS) code.

The following lemma on the hull of linear codes, which is

very important for obtaining our main results.

Lemma 2.1: [14, Proposition 1] Let C be an [n, k] linear

code over Fq with generator matrix G. Then the code C has

one-dimensional hull if and only if the rank of the matrix GGT

is k − 1, where GT denotes the transpose of G.

Recall that a monomial matrix is a square matrix which has

exactly one nonzero entry in each row and each column.

http://arxiv.org/abs/2009.07743v1
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Definition 2.2: Let C1 and C2 be two linear codes of the

same length over Fq , and let G1 be a generator matrix of

C1. Then C1 and C2 are monomially equivalent if there is a

monomial matrix M such that G1M is a generator matrix of

C2.

Next we will recall some constructions of MDS codes. We

begin with the well-known generalized Reed-Solomon codes.

Definition 2.3: Let α1, . . . , αn be distinct elements in Fq ∪
{∞} and v1, . . . , vn be nonzero elements in Fq. For 1 ≤ k ≤
n, the corresponding generalized Reed-Solomon (GRS) code

over Fq is defined by

GRSk(α,v) := {(v1f(α1), . . . , vnf(αn)) | f(x) ∈ Fq[x], deg(f(x)) < k} ,

where α = (α1, α2, . . . , αn) ∈ (Fq ∪ {∞})
n and v =

(v1, v2, . . . , vn), and the quantity f(∞) is defined as the

coefficient of xk−1 in the polynomial f .

If vi = 1 for every i = 1, . . . , n, then GRSk(α,v) is called

a Reed-Solomon code. In fact, GRSk(α,v) has a generator

matrix as follows:










v1 v2 . . . vn
v1α1 v2α2 . . . vnαn

...
...

. . .
...

v1α
k−1

1 v2α
k−1

2 . . . vnα
k−1
n











=











1 1 . . . 1
α1 α2 . . . αn

...
...

. . .
...

αk−1

1 αk−1

2 . . . αk−1
n





















v1 0 . . . 0
0 v2 . . . 0
...

...
. . .

...

0 0 . . . vn











.

It is well-known that a generalized Reed-Solomon code

GRSk(α,v) is an [n, k, n− k + 1] MDS code and it is

monomially equivalent to a Reed-Solomon code.

In 2007, Beelen et al. [2] presented a generalization of

Reed-Solomon codes, so-called twisted Reed-Solomon codes.

Definition 2.4: Let η be a nonzero element in the finite field

Fq. Let k, t and h be nonnegative integers such that 0 ≤ h <
k ≤ q, k < n, and 0 < t ≤ n− k. Let α1, . . . , αn be distinct

elements in Fq ∪ {∞}, and we write α = (α1, α2, . . . , αn).
Then the corresponding twisted Reed-Solomon code over Fq

of length n and dimension k is given by

Ck(α, t, h, η) = {(f(α1), · · · , f(αn)) : f(x) =
∑k−1

i=0
aix

i + ηahx
k−1+t ∈ Fq[x]}.

In fact,

G =





























1 1 . . . 1
α1 α2 . . . αn

...
...

. . .
...

αh−1

1 αh−1

2 . . . αh−1
n

αh
1 + ηαk−1+t

1 αh
2 + ηαk−1+t

2 . . . αh
n + ηαk−1+t

n

αh+1

1 αh+1

2 . . . αh+1
n

...
...

. . .
...

αk−1

1 αk−1

2 . . . αk−1
n





























(1)

is the generator matrix of the twisted Reed-Solomon code

Ck(α, t, h, η).
Note that in general, the twisted Reed-Solomon codes are

not MDS. Beelen et al. got some results on the twisted Reed-

Solomon codes as follows:

Lemma 2.5: [2, Theorem 17] Let Fs ⊂ Fq be a proper

subfield and α1, . . . , αn ∈ Fs. If η ∈ Fq\Fs, then the twisted

Reed-Solomon code Ck(α, t, h, η) is MDS.

Lemma 2.6: [2, Theorem 18] Let α1, . . . , αn ∈ Fq and

2 < k < n − 2. Furthermore, let H ⊆ Fq satisfy that the

twisted Reed-Solomon code Ck(α, t, h, η) is MDS for every

η ∈ H . Then there are at most 6 choices of η ∈ H such that

Ck(α, t, h, η) is monomially equivalent to a Reed-Solomon

code.

Lemma 2.7: [2, Corollary 20] Let Fs ⊂ Fq with |Fq\Fs| >
6. Let 2 < k < n− 2 and n ≤ s. Then there exists η ∈ Fq\Fs

such that Ck(α, t, h, η) is MDS but not monomially equivalent

to a Reed-Solomon code.

Throughout the paper, if a code is not monomially equiva-

lent to a Reed-Solomon code, then we call it a code of non-

Reed-Solomon type or a non-Reed-Solomon code.

III. TWISTED REED-SOLOMON CODES WITH

ONE-DIMENSIONAL HULL

Let γ be a primitive element of Fq and k | (q − 1). Then

γ
q−1

k generates a subgroup of F∗

q of order k. Let αi = γ
q−1

k
i

for 1 ≤ i ≤ k. One can easily check that

θf = αf
1 + · · ·+ αf

k =

{

k if f ≡ 0 (mod k),
0 otherwise.

(2)

Lemma 3.1: Let q be a power of two. If k is a pos-

itive integer with k | (q − 1), k < (q − 1), and h >
0, then there exists a [2k, k]q twisted Reed-Solomon code

Ck(α, t, h, η) over Fq with one-dimensional hull for α =
(α1, . . . , αk, γα1, . . . , γαk), where γ is a primitive element

of Fq and αi = γ
q−1

k
i for 1 ≤ i ≤ k.

Proof By Definition 2.4, to make sure that Ck(α, t, h, η) is

a twisted Reed-Solomon code, we need k 6= q − 1. From (1),

we recall that G is a generator matrix of the twisted Reed-

Solomon code Ck(α, t, h, η) over Fq.

Let

Aβ =











1 1 . . . 1 1
βα1 βα2 . . . βαk−1 βαk

...
... . . .

...
...

(βα1)
k−1 (βα2)

k−1 · · · (βαk−1)
k−1 (βαk)

k−1











.

By (2), we have

AβA
T
β =















k 0 0 . . . 0 0
0 0 0 . . . 0 βkk
...

...
... . . .

...
...

0 0 βkk · · · 0 0
0 βkk 0 · · · 0 0















.

Let Cβ = Aβ +Bβ , where

Bβ =

















0 0 . . . 0 0
...

... . . .
...

...

η(βα1)
k−1+t η(βα2)

k−1+t . . . η(βαk−1)
k−1+t η(βαk)

k−1+t

...
... . . .

...
...

0 0 . . . 0 0

















← (h+ 1)th . (3)

Let θj =
∑n

i=1
αj
i and l = k − 1 + t, then we have

CβC
T
β =











k 0 . . . 0 0
0 0 . . . 0 βkk
...

... . . .
...

...

0 βkk · · · 0 0











+





























0 0 . . . 0 ηβlθl 0 . . . 0
0 0 . . . 0 ηβl+1θl+1 0 . . . 0
...

... . . .
...

...
... . . .

...

0 0 . . . 0 ηβl+h−1θl+h−1 0 . . . 0
ηβlθl ηβl+1θl+1 . . . ηβl+h−1θl+h−1 2ηβl+hθl+h + η2β2lθ2l ηβl+h+1θl+h+1 . . . ηβl+k−1θl+k−1

0 0 . . . 0 ηβl+h+1θl+h+1 0 . . . 0
...

... . . .
...

...
... . . .

...

0 0 . . . 0 ηβl+k−1θl+k−1 0 . . . 0





























.
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Since every θt for l ≤ t ≤ l + k − 1 is zero except exactly

one θt′ , we can rewrite

CβC
T
β =











k 0 . . . 0 0
0 0 . . . 0 βkk
...

... . . .
...

...

0 βkk · · · 0 0











+



























0 . . . 0 . . . 0 . . . 0
...

... . . .
...

...

0 . . . 0 . . . ∗β . . . 0
...

... . . .
...

...

0 . . . ∗β . . . ∆β . . . 0
...

... . . .
...

...

0 . . . 0 · · · 0 . . . 0



























,

where ∗β and ∆β are all elements in Fq, the ∗β and ∆β are

respectively entries located in the (i+1, h+1)th, (h+1, i+
1)th and (h + 1, h + 1)th positions, and the other elements

are all zero.

Let G = [C1 : Cγ ] and h > 0. Then

GGT = C1C
T
1 + CγC

T
γ

=











2k 0 . . . 0 0
0 0 . . . 0 (1 + γk)k
...

... . . .
...

...

0 (1 + γk)k · · · 0 0











+



























0 . . . 0 . . . 0 . . . 0
...

... . . .
...

...

0 . . . 0 . . . ∗1 + ∗γ . . . 0
...

... . . .
...

...

0 . . . ∗1 + ∗γ . . . ∆1 +∆γ . . . 0
...

... . . .
...

...

0 . . . 0 · · · 0 . . . 0



























.

It is easy to find an elementary matrix P such that

PGGTPT =











2k 0 . . . 0 0
0 0 . . . 0 (1 + γk)k
...

... . . .
...

...

0 (1 + γk)k · · · 0 0











+



























0 . . . 0 . . . 0 . . . 0
...

... . . .
...

...

0 . . . 0 . . . 0 . . . 0
...

... . . .
...

...

0 . . . 0 . . . ∆1 +∆γ . . . 0
...

... . . .
...

...

0 . . . 0 · · · 0 . . . 0



























.

By the given conditions, we have k | (q−1), k < (q−1), q
is even, and γ is a primitive element of Fq . Hence, γk+1 6= 0
and 2k = 0. Then we have rank(GGT ) = k − 1. The result

follows from Lemma 2.1. �

Lemma 3.2: Let Fq be a finite field of odd order q and k be a

positive integer with k | (q−1) and 2 < k < (q − 1)/2. If h >

1, then there exists a [2k, k− 1]q twisted Reed-Solomon code

Ck−1(α, t, h, η) over Fq with one-dimensional hull for α =
(α1, . . . , αk, γα1, . . . , γαk), where γ is a primitive element of

Fq and αi = γ
q−1

k
i for 1 ≤ i ≤ k.

Proof Let

Dβ =











1 1 . . . 1 1
βα1 βα2 . . . βαk−1 βαk

...
... . . .

...
...

(βα1)
k−2 (βα2)

k−2 · · · (βαk−1)
k−2 (βαk)

k−2











. (4)

Then

DβD
T
β =















k 0 0 . . . 0 0
0 0 0 . . . 0 0
0 0 0 . . . 0 βkk
...

... . . .
...

...

0 0 βkk · · · 0 0















.

Let Hβ = Dβ + Eβ , where

Eβ =

















0 0 . . . 0 0
...

... . . .
...

...

η(βα1)
k−2+t η(βα2)

k−2+t . . . η(βαk−1)
k−2+t η(βαk)

k−2+t

...
... . . .

...
...

0 0 . . . 0 0

















← (h+ 1)th .

Let G = [H1 : Hγ ]. By the proof of Lemma 3.1,

GGT = H1H
T
1 +HγH

T
γ

=















2k 0 0 . . . 0 0 0
0 0 0 . . . 0 0 0
0 0 0 . . . 0 (1 + γk)k 0
...

... . . .
...

...

0 0 (1 + γk)k · · · 0 0 0















+



























0 . . . 0 . . . 0 . . . 0
...

... . . .
...

...

0 . . . 0 . . . ∗1 + ∗γ . . . 0
...

... . . .
...

...

0 . . . ∗1 + ∗γ . . . ∆1 +∆γ . . . 0
...

... . . .
...

...

0 . . . 0 · · · 0 . . . 0



























.

Note that q is odd and k < q−1

2
. We have 2k 6= 0 and 1+γk 6=

0. By the same process of the proof of Lemma 3.1, the rank

of GGT is k − 1 and result follows from Lemma 2.1. �

Remark 3.3: By the process of Lemma 3.2, we can also

construct some twisted Reed-Solomon codes with small hulls.

An effective method for construction of twisted Reed-

Solomon codes with MDS property is to use the lifting of

the finite field (refer to [2]). Hence, we obtain the following

theorem by Lemmas 2.5, 2.7, 3.1 and 3.2.

Theorem 3.4: Let q be a power of a prime and Fs ⊂ Fq

with |Fq\Fs| > 6. Suppose that k is a positive integer with

k | (q − 1).
(1) If q is even and 2 < k < (s − 1), then there exists a

[2k, k]q MDS non-Reed-Solomon code with one-dimensional

hull.

(2) If q is odd and 2 < k < (s − 1)/2, then there

exists a [2k, k− 1]q MDS non-Reed-Solomon code with one-

dimensional hull.
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In the following, we will present some examples to show

our main results.

Example 3.5: (1) Let q = 24 = 16, k =
5, and γ be a primitive element of Fq. Consider a

twisted Reed-Solomon code C5(α, 1, 3, η), when α =
(1, γ3, γ6, γ9, γ12, γ, γγ3, γγ6, γγ9, γγ12) and η = γi ∈ F16.

By Lemma 3.1, C5(α, 1, 3, γi) has one-dimensional hull for

all i. By Magma, it follows that the codes C5(α, 1, 3, η) are

not MDS codes, which have parameters [10, 5, 5]16.

(2) Let q = 28 = 256, k = 5, and w be a prim-

itive element of Fq and γ = w17 ∈ F16. Consider

a twisted Reed-Solomon code C5(α, 1, 3, η), when α =
(1, γ3, γ6, γ9, γ12, γ, γγ3, γγ6, γγ9, γγ12) and η = wi ∈
F256. By Lemma 3.1, C5(α, 1, 3, wi) has one-dimensional hull

for all i. By Magma and Lemmas 2.5 and 2.7, there exists an

integer i with 17 ∤ i such that the code C5(α, 1, 3, η) is an

MDS non-Reed-Solomon code with parameters [10, 5, 6]256.

Example 3.6: (1) Let q = 34 = 81, k =
5, and γ be a primitive element of Fq. Consider a

twisted Reed-Solomon code C4(α, 2, 2, η), when α =
(1, w, w2, w3, w4, γ, γw, γw2, γw3, γw4) and η = γi ∈ F81

and w = γ16. By Lemma 3.2, C4(α, 2, 2, γi) has one-

dimensional hull for all i. By Magma, it follows that the codes

C4(α, 2, 2, γi) are MDS with parameters [10, 4]81 when η
belongs to H = {γj : j = 0, 6, 16, 22, 32, 38, 48, 54, 64, 70}.
Since |H | > 6, by Lemma 2.6, there exists η ∈ H such

that C4(α, 2, 2, η) is a non-Reed-Solomon code. As a result,

there exists a [10, 4]81 MDS non-Reed-Solomon code with

one-dimensional hull.

(2) Let q = 38 = 6561, k = 5, and θ be a primitive

element of Fq , γ = θ82 ∈ F81, and w = γ16. Consider

a twisted Reed-Solomon code C4(α, 2, 2, η), when α =
(1, w, w2, w3, w4, γ, γw, γw2, γw3, γw4) and η = θi ∈ F6561.

By Lemma 3.2, C4(α, 2, 2, γi) has one-dimensional hull for all

i. By Magma and Lemmas 2.5 and 2.7, there exists an integer

i with 82 ∤ i such that the code C4(α, 2, 2, γi) is an MDS

non-Reed-Solomon code with parameters [10, 4, 7]6561.

IV. CONCLUDING REMARKS

For a given linear code, in general case it is hard to show

that if the code is monomially equivalent to a Reed-Solomon

code with the same parameters. In this paper, we applied

twisted Reed-Solomon codes to construct some MDS codes,

which have one-dimensional hull and are not monomially

equivalent to Reed-Solomon codes. We also presented some

examples by using Magma.
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