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Abstract—Suppression of undesired non-information bearing
multipaths, aka clutter, from received signals is a key process for
sensing parameter estimation in the perceptive mobile network,
a next generation mobile network that integrates radar sensing
into communications. In this correspondence, we propose a novel
clutter suppression method based on the Gaussian mixture model
(GMM) and expectation maximization (EM) estimation, which
can achieve fast and effective clutter estimation requiring only
a small number of samples. We then apply a one-dimension
(1D) compressive sensing (CS) based sensing algorithm to extract
useful channel information after removing the estimated clutter.
Simulation results are provided for the proposed solution and
existing techniques, and validate the effectiveness of the proposed
scheme.

Index Terms—Joint communication and radar sensing (JCAS),
dual-functional radar-communication, compressive sensing, clut-
ter suppression, Gaussian mixture model.

I. INTRODUCTION

IN the recently proposed perceptive mobile networks based
on joint communication and radar sensing (JCAS) tech-

niques [1], [2], aka, dual-functional radar-communication [3],
the single transmitted signals are used for both mobile commu-
nications and sensing. In a typical environment, base-stations
(BSs) receive many multipath signals that are originated from
permanent or long-period static objects. These signals are
useful for communications, but are generally not of the interest
for sensing and are known as clutter in the traditional radar
literature. Clutter is better to be removed before sensing in
perceptive mobile networks as it can significantly increase
the number of sensing parameters to be estimated and make
sensing algorithms failure [4].

In traditional radar, clutter is typically returned from ground,
sea, rain, and atmospheric turbulence, and generally has dis-
tinct features from useful reflections [5], [6]. Most known
algorithms in radar, such as space-time adaptive processing
(STAP) [5], independent component analysis (ICA) [6] and
singular value decomposition (SVD) [7] are adapted to such
scenarios. In contrast, in perceptive mobile networks, clutter
can be from the same types of objects with the ones of interest,
and from complicated propagation environment with dense
multipath. Moreover, most of the existing clutter reduction
techniques used in radar is applied after radar sensing and
thus unable to reduce multipath from the input to the sensing
process in JCAS. So, traditional clutter suppression methods
for radars may not directly work here.
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Recently, a limited number of clutter suppression techniques
that are closely related to modern mobile networks were
reported in [4]. In [4], maximum-likelihood based amplitude
estimation was proposed for clutter estimation in JCAS. The
sample averaging evaluation presented in this work uses a
simplistic clutter model. However, under more complicated
clutter models, the clutter cancellation residual will be larger
and may adversely affects both communications and radar
performance. Clutter reduction in JCAS can also be based on
matched filtering [4], and differential or recursive background
subtraction techniques [8]. Generally, background subtraction
algorithms are of three types [8], such as background subtrac-
tion implemented by averaging or filtering, fuzzy model (a
form of filtering) and Gaussian mixture model. For example,
the results of using filtering based differential and recursive
background subtraction methods for clutter suppression in
the perceptive mobile network are reported in [9] and [1],
respectively. These techniques typically require a large number
of samples over a long period, and cannot adapt to fast
channel variation. It was shown that the sample symbols
need to be sufficiently separated in time and collected over
a long period, to allow sufficient discrimination of signals
with different Doppler frequencies. Moreover, it is hard for
these methods to extract parameters containing information of
slow moving objects. Their performance also highly depends
on the effectiveness of the assumption that signal phases are
unchanged across packets which may not always be met in
practice. Hence more reliable clutter suppression algorithms
need to be developed for the perceptive mobile network.

This correspondence proposes a novel clutter estimation
(CE) and suppression method, called GMM-EM-CE, based
on the Gaussian mixture model (GMM) and expectation
maximization (EM) for perceptive mobile networks. GMM
has been widely used in analyzing and separating moving
objects from the background in image and video analysis,
target identification and classification in radar system, image
processing and positioning solutions [8], [10]. The statistical
learning of the GMM model with respect to the mean and
variance in background subtraction is used to determine the
state of each pixel whether a pixel is background or fore-
ground. It has also been applied recently to extract static
channel state information from channel measurement in [10],
using estimated signal parameters. Different from GMM in
the image or video analysis where background and foreground
cover each other, clutter and multipath of interest in perceptive
mobile networks are additive and can coexist. Therefore,
placing of foreground and background into two different sets
by classical clustering approaches, which is applied in image
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and video signal processing is not feasible in the case of GMM
based clutter separation from dynamic signals in radio sensing.

Our proposed method in this correspondence can achieve
faster and more accurate clutter estimation, leading to more
effective sensing parameter estimation. We first propose a
GMM model for modelling dynamic and clutter multipaths
that are added up the received signal. We highlight the factors
that differentiate the usage of GMM in radio signal processing
for clutter estimation in comparison with background and
foreground separation in image processing. We then propose a
method for estimating clutter signals from that received signal
by discovering the distinctive phenomenon of dynamic and
static paths in the radio propagation channel, using the EM
algorithm. Different from the work in [10], we apply GMM
to complicated modern mobile signals and directly to the
received signals rather than to the estimated channel param-
eters. For the first time, we demonstrate how to apply GMM
and EM to complicated communication signals with multi-
user multiple-input-multiple-output (MIMO) and orthogonal
frequency division multiple access (OFDMA) modulations.
We also show how to perform clutter-free radio sensing from
extracted dynamic signals. Simulation results are provided for
the proposed method, as well as existing clutter estimation
methods based on averaging [1] and maximum likelihood
estimation [4]. The comparing results between our proposed
GMM-EM-CE and the existing clutter estimation methods
demonstrate that GMM-EM-CE can achieve clutter estimation
faster and effectively.

The rest of this correspondence is organized as follows: In
section II, the problem is formulated. Section III describes
the proposed GMM-EM-CE method and clutter-free 1D radio
sensing. Section IV presents simulation results, and Section V
concludes the paper.

II. SIGNAL MODELS AND PROBLEM FORMULATION

Here we only briefly summarize the signal and channel
models to make this paper self-contained. For more details,
the readers are referred to [1], [2].

We consider 5G-compatible demodulation reference signals
(DMRS) [11] for sensing, which are comb-type training sig-
nals at non-equally-spaced interleaved subcarriers. The values
and indices of interleaved DMRS subcarriers of received
signals are known to the BS when doing sensing from the
received signals. Let N denote the number of total subcarriers
and B be the total bandwidth. Then the subcarrier interval is
f0 = B/N and OFDM symbol period is Ts = N/B + Tp
where Tp is the period of cyclic prefix.

Consider uniform linear antenna arrays (ULA) with MT and
M antennas at the transmitter and receiver, respectively. The
array response vector a size-M ULA is

a(M, θ) = [1, ejπ sin(θ), · · · , ejπ(M−1) sin(θ)]H , (1)

where θ is either an angle of arrival (AoA) or angle of
departure (AoD).

After removing the DMRS signals, the estimated frequency-
domain channel matrix at the n-th subcarrier in the t-th OFDM

block between the k − th transmitter and the BS receiver is
given by

Ĥn,k,t(f) = Hn,k,t + ∆n,k,t, (2)

where Hn,k,t is the true channel matrix, and ∆n,k,t is the
channel estimation error and is approximated as AWGN. The
signal to interference ratio (SIR) between the mean power of
the channel coefficients and AWGN is denoted by Υ.

The true channel matrix can be represented as,

Hn,k,t =

L∑
`=1

bk,t,`e
−j2πnτk,t,`f0ej2πtfD,k,t,`Ts ·

a(M,φk,t,`)a
T (MT , θk,t,`). (3)

where for the `-th out of total L multipath signals, θ`, φ`, b`,
τ` and fD,` are the AoD, AoA, amplitude, propagation delay,
and Doppler frequency, respectively.

In this paper, we consider clutter as propagation paths
with near-zero Doppler-frequencies. Relatively, we call other
echoes with nonzero Doppler frequencies as dynamic multi-
path or multipath of interests. So, Hn,k,t of (2) written as,

Hn,k,t = Hdy
n,k,t + Hst

n,k,t, (4)

where Hst
n,k,t and Hdy

n,k,t refer to (static) clutter matrix and
dynamic channel matrix, respectively. Both Hst

n,k,t and Hdy
n,k,t

have a size of M ×MT .
Note, L = L1 +L2, where L1 is the number of paths from

moving scatters with nonzero fD,` and L2 is the number of
paths from static scatters with fD,` set to be near-zero values.

Our clutter reduction method focuses on separating Hst
n,k,t

from Hn,k,t. Once the clutter Hst
n,k,t is estimated, it can

be removed from Hn,k,t to reduce the unknown parameters
to be estimated and improve the accuracy of target sensing
parameter estimation.

III. PROPOSED GMM-EM-CE METHOD

Fig.1 highlights the major process in the GMM-EM-CE
method. Firstly, the estimated channel matrix is obtained from
the received signal and then GMM-EM is used to estimate the
clutter. The clutter estimate is then subtracted from the channel
estimate to obtain the dynamic channel, and one-dimension
(1D) compressive sensing (CS) technique is finally applied to
accomplish radio sensing.

A. Signal Modelling Using GMM

Wireless channels can be modeled and estimated by a
mixture of Gaussian distributions since each density represents
multipaths in the channel [12]. Static and dynamic paths can
be represented by Gaussian distributions with very different
parameters over the time domain. This is because over a
short time period, Hst

n,k,t changes little and Hdy
n,k,t could vary

significantly. It is also quite common that static paths typically
have larger mean power than dynamic ones. Hence, their
distributions at least have very different variance values: static
paths have near-zero variances, which is much smaller than
those of the dynamic ones. Therefore, by learning the mean
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Fig. 1: Process of the proposed GMM-EM-CE method.

values of the distribution, static paths can be identified and
separated via comparing the variance. GMM on the repeated
prior received channel distribution of (2) for each user can
provide the approximate distribution of the static multipaths
with the EM principle.

We define ρ as a measure of clutter to dynamic signal ratio
for all users K at the t-th OFDM block, which is given by

ρ =
1

NMK

N∑ M∑ K∑∣∣∣∣∣Hst
n,k,t

Hdy
n,k,t

∣∣∣∣∣ . (5)

The GMM consists of L multivariate Gaussian distributions
known as mixture components [10]. The probability density
function (PDF) of multipath channel is obtained based on the
estimated channel data, Ĥn,k,t in (2). The PDF for GMM for
the estimated channel is expressed as,

P (Θth) =

L∑
l=1

ωl.η(Θth |µl,Σl). (6)

where η(Θth |µl,Σl), each component of the multivariate
Gaussian mixture l = 1, .., L has its mean value µl, co-
variance matrix Σl and non-negative mixing weight ωl. Here
the value of Θth in (6) is taken the same as Ĥn,k,t in (2) for
over a time th and d is the dimension of Ĥn,k,t.

We assume moving scatters move a short distance over
the period of th and the individual Gaussian distribution
η(Θth |µl,Σl) is given by

η(Θth |µl,Σl) =
1

(2π)
d
2 |Σl|

1
2

e−
1
2 (Ĥn,k,t−µl)

T Σ−1
l (Ĥn,k,t−µl).

(7)

B. The Expectation Maximization Algorithm
Here, we estimate ωl, µl,Σl to maximize the log-likelihood

function
∑Ns

i=1 P ((Θth)i), where (Θth) denotes the set of
samples and (Θth)i denotes its i−th element. Note, Ns is the
number of samples taken within the period of th. EM starts
from some initial estimate of ωl, µl,Σl and then proceeds to
iteratively updating them until convergence is detected. The
detailed operations in each EM iteration are described next.

In the expectation step, we estimate the probability matrix of
(Θth)i generated by the lth Gaussian mixture component from
dividing the weighted probabilities by the sum of weighted
probabilities as

Ω(i, l) =
ωl.η((Θth)i|µl,Σl)∑L
j=1 ωj .η((Θth)i|µj ,Σj)

. (8)

We take initial mean µl as a randomly selected data point
from the set (Θth). We use the overall co-variance of the
dataset (Θth) as the initial variance Σl and assign unit prior
probability as initial mixing weight ωl. EM algorithm is then
used to derive the parameters of the GMM.

In the maximization step, we estimate the updated ωl, µl,Σl.
The updating equations are given by

µl =
1

Nl

Ns∑
i=1

Ω(i, l)(Θth)i. (9a)

Σl =
1

Nl

Ns∑
i=1

Ω(i, l)((Θth)i − µl)((Θth)i − µl)T . (9b)

ωl =
Nl
Ns

. (9c)

where Nl =
∑Ns

i=1 Ω(i, l). The final {ωl, µl,Σl} are obtained
when the results either converge or the maximal number of
iterations Nm is reached. Then we obtain the clutter estimate
as Ĥst

n,k,t from the finalized values of {ωl, µl,Σl}. That means,
clutter estimate is actually taken as the estimate of the mean
when the covariance matrix is near zero.

After subtracting the clutter estimate from the current chan-
nel estimate, we can obtain dynamic multipath signals with
different non-zero Doppler frequencies. Most sensing parame-
ter estimation algorithms can achieve better performance when
the number of unknown parameters is smaller. Therefore, we
can further separate multipath signals with different ranges of
non-zero Doppler frequencies into different groups, enabling
refined identification of different objects, such as pedestrian,
slow moving vehicles and fast moving vehicles for future 5G
networks and obviously in 5G/6G based vehicular solutions.
This remains as one of the interesting future works.

C. Clutter Free Sensing Parameter Estimation

Now, we get the clutter-free channel estimate, Ĥdy
n,k,t, as

Ĥdy
n,k,t = Ĥn,k,t − Ĥst

n,k,t, (10)

Referring to (3), we consider delay-on-grid signal model where
the delays τ`f0 are quantized as q`/N ′ with q` being an integer
and N ′ = gN . Therefore e−j2πnτ`f0 ≈ e−j2πnq`/N

′
. Then,

the dynamic channel matrix part of (4) can be written as,

Hdy
n,k,t =

L1∑
`=1

b`e
−j2πnq`/N ′ej2πtfD,`Ts ·

a(M,φ`)a
T (MT , θ`) = ARDCnAT

T , (11)

where the `-th column in AR (or AT ) is a(M,φ`) (or
a(MT , θ`)), D and Cn are diagonal matrices with the `-th
diagonal element as b`e

j2πtfD,`Ts and e−j2πnq`/N
′
, respec-

tively.
By stacking similarly formulated row vectors for all usable

subcarriers together, we obtain

Ĥdy
n,k,t = W DAT

RAT
T︸ ︷︷ ︸

G

, (12)

where the `-th column of the Nu × L matrix W is
{e−j2πnq`/N ′}.
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Now, we do sensing parameter estimation for each user
using Ĥdy

n,k,t of (12) by the same indirect method developed
in [1] by extending 1D CS algorithms [13]. Here we consider
only one multipath signal stays within each quantized delay
bin for each user.

Treating (12) as an on-grid multi-measurement vector
(MMV) CS problem, we can get the estimate for G. Once the
delays and G are estimated, we get the AoA estimates through
calculating the cross-correlation between columns from G on
the indexes obtained from a given threshold as below,

φ̂` ≈
1

π
∠
(M−1∑
p=1

((G)·,p)
∗(G)·,p+1︸ ︷︷ ︸

ε`

)
, (13)

where (G)·,p denote the p-th column of G.
The value of |b`|2 can also be obtained easily during the

process of computing AoA, being |ε`|2. The estimates of |b`|2
can be used to find the effective multipath delay bins in noisy
channels from the MMV CS estimation output by using a
threshold of γ ·max(abs(ε`)) determined, e.g., as a fractional
scalar of the maximum power of multipath signals.

IV. SIMULATION RESULTS

We consider a system with 4 SDMA users, each with a
single antenna, and a BS with a 4 antenna uniform linear
array. The signal bandwidth is assumed to be 100 MHz
and the carrier frequency is 2.35 GHz. Propagation channels
are generated based on clustered channel models following
a complex Gaussian distribution. In each cluster, multipath
signals for each RRU/MS are generated randomly by mimick-
ing reflected/scattered signals from objects, similar to those in
[1], [2]. The total number of channel paths in each cluster
is generated following a uniform distribution over [5, 10].
Random continuous values are generated within given ranges
for AoAs, AoDs, Doppler shift, delay, and amplitude. We use
a pathloss model with pathloss factor 40 for downlink and 20
for uplink sensing. As in [1], the transmission power of the
RRU and MS is 30 dBm and 25 dBm respectively. The total
thermal noise in the receiver is −174 + 10 log(108) = −94
dBm.

The noise is assumed to be AWGN with variance deter-
mined from the product of the basic thermal noise power
spectrum density and the bandwidth. While the transmission
power is fixed, the multipath signals reflected from objects
at different distances to the transceiver will lead to different
SIRs for estimating the sensing parameters. For the simulated
sensing range, the received SIR range could be from 0 dB to
30 dB, due to the pathloss factor of 40 and 20 for downlink
and uplink sensing, respectively.

A. Performance Evaluation of GMM-EM-CE
GMM-EM is applied to obtain the clutter channel esti-

mation, Ĥdy
n,k.t. Then we calculate root mean square error

(RMSE) of clutter estimation as

RMSE =

√√√√ 1

(Ψ ∗NMK)

Ψ∑
j=1

∣∣∣Ĥst
n,k,t −Hst

n,k,t

∣∣∣2. (14)
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Fig. 2: CDF of RMSE at different Υ values.

We take histogram-based PDF from the correct window of 40
bins while Ψ = 20. Then, interpolated cumulative distribution
functions (CDF) are derived from the PDFs of RMSE to
present clutter estimation results.

Fig. 2 provides CDF results for RMSE of clutter estimation
obtained at different values of SIR, Υ with Nm = 10. The
figure shows that the RMSE is quite small at a high probability
and it also decreases with Υ increases.

B. Comparison of GMM-EM-CE with Recursive Averaging
and Maximum Likelihood Amplitude Estimation

Next we compare GMM-EM-CE with the simple recursive
moving average (RMA) method [1] and maximum likelihood
amplitude estimation (MLAE) method [4]. RMA estimates the
clutter via averaging over channels at different measurements
using a forgetting factor. The RMA is applied to the channel
coefficient at each subcarrier for each user. From the refined
channel matrix estimates, we pick up estimates at an interval of
Th seconds, and denote them as, · · · ,H(i − 1),H(i),H(i +
1), · · · , where the expression of H(i) is similar to Ĥn,k,t

of (2), but H(i1) and H(i2), i1 6= i2 may have different
sensing parameters. We use the following recursive equation
with learning rate α for estimating the clutter matrix H̄,

H̄(i) = αH̄(i− 1) + (1− α)H(i), (15)

where the initial one H̄(1) can be either 0 or computed as
the average of several initial H(i)s after r recursions. For
MLAE, we introduce it to (2) in the way similarly to that
being implemented in [4], since the clutter is static over a
certain period.

Fig. 3 provides clutter estimation RMSE results vs Υ values
obtained at high and low ranges of ρ for GMM-EM-CE, RMA
and MLAE. The RMSE of clutter estimation with GMM-EM-
CE is obtained at Nm = 10. We perform MLAE over r = 10
realizations of Ĥn,k,t to get the RMSE of clutter estimation.
Whereas, the RMSE of RMA is obtained with the forgetting
factor of 0.95 over both r = 10 and 150 iterations. For both
cases of ρ = 1 and 100, the GMM-EM-CE method with
Nm = 10 outperforms MLAE with r = 10 and RMA with
both r = 10 and 150 iterations, achieving significant lower
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Fig. 3: Clutter estimation RMSE vs Υ at high and low values of ρ
for the GMM-EM-CE, RMA and MLAE method.

RMSE for clutter estimation. Noticeably the impact of noise
is predominant with the RMA and MLAE, causing hardly
varying RMSE with the SIR compared to GMM-EM-CE.

C. Radio Sensing Results after Clutter Reduction

Fig. 4 demonstrates the results of AoA estimation in the
uplink sensing, for the cases with (in the top plot) GMM-EM-
CE and with (in the bottom plot) RMA. A total of Nu = 128
interleaved subcarriers are used. The estimates with clutter
reduction by GMM-EM-CE with Nm = 10 are shown to be
much more accurate compared to those by RMA with the
same 10 iterations. Moreover, different from the bottom plot,
the top plot results show no presence of residual clutter in
AoA estimation. Note that, with the increment of iterations r
and simulation complexity, the RMA method can also provide
more accurate AoA estimation with complete clutter removal
as shown in [1]. Hence, GMM-EM-CE indicates its usefulness
by providing more accurate results at much lower complexity
and iterations in comparison with the RMA method.

V. CONCLUSION

We presented a Gaussian mixture model based clutter esti-
mation method for joint communication and sensing, and pro-
vided 1D compressive sensing based cluster channel parameter
estimator based on estimated dynamic channels. For the first
time, we utilized the GMM approach in clutter suppression
for achieving effective sensing applications in modern mobile
communication systems. We presented the GMM modeling
for complicated communication signals, proposed the EM
method for clutter estimation, and 1D compressive sensing for
sensing parameter estimation. Simulation results demonstrate
that our proposed method can achieve fast and effective clutter
estimation, leading to accurate sensing parameter estimation.
The proposed techniques can also be applied to (MIMO)-
OFDM radar systems. Our scheme can be further improved
by incorporating more accurate statistical information of the
multipath signals into the GMM model, and by developing
lower-complexity algorithms than EM for clutter estimation.

Fig. 4: Uplink sensing at γ = 0.25, Υ = 12 dB, ρ = 1, after clutter
suppression by (top) GMM-EM-CE with Nm = 10 at th = 30 ms
and by (bottom) RMA with r = 10. The estimated values for AoA
are shown in star and the actual AoAs are shown in circle. Different
colours correspond to different users.
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