
1

Unsupervised Learning for Parametric Optimization
Rasoul Nikbakht, Student Member, IEEE, Anders Jonsson, Angel Lozano, Fellow, IEEE

Abstract—This letter proposes the unsupervised training of
a feedforward neural network to solve parametric optimization
problems involving large numbers of parameters. Such unsuper-
vised training, which consists in repeatedly sampling parameter
values and performing stochastic gradient descent, foregoes the
taxing precomputation of labeled training data that supervised
learning necessitates. As an example of application, we put this
technique to use on a rather general constrained quadratic pro-
gram. Follow-up letters subsequently apply it to more specialized
wireless communication problems, some of them nonconvex in
nature. In all cases, the performance of the proposed procedure
is very satisfactory and, in terms of computational cost, its
scalability with the problem dimensionality is superior to that
of convex solvers.

Index Terms—Machine learning, neural networks, unsuper-
vised learning, parametric optimization, convex optimization,
quadratic program

I. INTRODUCTION

In parametric optimization [1]–[4], the aim is not to solve
a specific optimization problem, but rather to represent the
solution to an entire family of problems. This family of prob-
lems is governed by parameters, such that each combination
of parameter values corresponds to a particular optimization
problem. The desired output of parametric optimization is a
mapping from parameter values to the optimum solution of
the specific associated problem.

When the objective function is nonlinear in the input,
the setting becomes that of parametric nonlinear program-
ming [5]. For this setting, a number of approximation algo-
rithms exist, including outer approximations [5], [6], gradient
descent [7], or piecewise quadratic fitting [8]. Such state-of-
the-art algorithms have in common that they completely (or
approximately) solve a sequence of optimization problems in
order to estimate the desired mapping between parameters and
solutions. When the parameter dimensionality increases, these
algorithms need to solve a very large number of such opti-
mizations in order to estimate an accurate solution, eventually
becoming computationally intractable. As a result, existing
algorithms scale poorly to parametric optimizations with many
parameters.

This letter propounds to leverage the expressive power of
neural networks (NNs) to solve large-dimensional parametric
optimizations. Because of their nonlinear nature, NNs are
ideal candidates for nonlinear optimizations. Indeed, NNs have
been applied already to solve parametric optimizations in a
supervised fashion, by sampling parameter values and solving

R. Nikbakht, A. Jonsson, and A. Lozano are with Univ. Pompeu Fabra,
08018 Barcelona (e-mail: angel.lozano@upf.edu). This work was supported by
the European Research Council under the H2020 Framework Programme/ERC
grant agreement 694974, by the Maria de Maeztu Units of Excellence
Programme (MDM-2015-0502) as well as by MINECO’s Projects RTI2018-
102112 and RTI2018-101040, and by the ICREA Academia program.

the associated optimization problems [9], [10]. Again, for large
parameter dimensionalities this becomes unfeasible because of
the sheer size of the parameter space.

As an alternative, what is proposed in this letter is to train
a feedforward NN by repeatedly sampling parameter values,
but, rather than completely solving the associated optimization
problem for each, taking a single step along the gradient of
the objective function. Despite not providing the NN with
the solution for each parameter value, descending along the
gradient allows the NN to generalize information for different
such values.

To test the proposed idea, we apply it to quadratic program-
ming (QP), a simple but very common—and convex—class
of optimizations. In two follow-up letters, we turn to more
involved problems motivated by wireless communications and
not always exhibiting convex objectives. Precisely, power
control for cellular networks is considered in [11] whereas
power control for centralized radio-access networks is the
object of [12].

II. PARAMETRIC OPTIMIZATION

Letting θ ∈ Θ ⊆ RQ be a Q-dimensional parameter vector
and x ∈ X ⊆ RD a D-dimensional optimization vector,
consider the optimization problem

min
x∈X

f(θ,x). (1)

In parametric optimization, the goal is to estimate a mini-
mizer function x? : Θ → X or a value function g : Θ → R,
both of which map parameter vectors to a solution of the
corresponding optimization problem. For a specific θ, the
minimizer and value functions are

x?(θ) = arg min
x∈X

f(θ,x) (2)

g(θ) = min
x∈X

f(θ,x). (3)

Note that, if we have access to x?(θ), the value function is
trivially g(θ) = f

(
θ,x?(θ)

)
. However, in general it is not as

easy to induce a minimizer function from a value function.
Previous work in parametric optimization typically imposes

restrictions on the sets Θ and X (convexity) as well as on the
objective function f (differentiability and, again, convexity).
Under these restrictions, and in particular if both X and f are
convex, any local minimizer is also a global minimizer and
hence x? is well defined. One contribution of our approach
is that it makes minimal assumptions about the optimization
problem: the only strict requirement is that f be differentiable
in x. We also do take the feasible set X to be convex, which
suffices to ensure that x? is well defined, but we do not restrict
f to being convex. Of course, for nonconvex f , what gradient



2

descent can do is to find a local minimizer, with no guarantee
that it is also the global minimizer x?.

As advanced in the introduction, several algorithms do exist
already that efficiently approximate x?(θ) or g(θ). However,
these come at the expense of having to solve a sequence of
optimization problems whose number increases exponentially
with the parameter dimensionality, Q.

III. PROPOSED APPROACH

A. Neural Networks

NNs are universal function approximators that combine
simple nonlinear units to form complex networks with substan-
tial expressive power. The universal approximation theorem
states that feed-forward NNs with a single hidden layer can
approximate continuous functions to arbitrary precision [13]–
[15]. Formally, a feed-forward NN represents a vector-valued
function h(a,w) with D output dimensions, where a is an
input vector and w is a vector of weights. NNs are typically
trained using gradient descent on a given loss function L(y),
where y = h(a,w) is the NN’s output. Since

L(y) = L(h(a,w)) (4)
= (L ◦ h)(a,w), (5)

the chain rule allows us to write

∇wL(y) = J(a,w)>∇yL
(
h(a,w)

)
, (6)

where J(a,w) is the Jacobian matrix

J(a,w) =

 ∇wh0(a,w)>

...
∇whD−1(a,w)>

 . (7)

The Jacobian is not explicitly computed; rather, backpropa-
gation is used to disseminate the gradient through the NN in
order to update its weights [16]. For example, a regression task
can be formulated by means of a square loss L(y) = ‖y−t‖2,
where t is the target output associated with input a. The goal
is to minimize the loss such that the difference between y and
t becomes as small as possible for each input a.

B. Unsupervised Learning for Parametric Optimization

Let us consider an NN that represents a minimizer function
x? : Θ→ X . Upon an input θ ∈ Θ, the network outputs a D-
dimensional vector x = h(θ,w). In supervised learning [10],
NN training requires a learning stage in which parameter
vectors θ0, . . . ,θS−1 are sampled and each of the associated
convex optimization problems is solved to obtain respective
target outputs x?

0, . . . ,x
?
S−1. The NN is then trained by means

of regression as described above, with the loss being a function
of the difference between the predicted and the target output.

The NN is trained by means of stochastic gradient descent
applied directly on the objective function, f . To do so, we
define the loss function

L(x) = f(θ,x), (8)

whose gradient equals

∇wL(x) = J(a,w)>∇xf
(
θ,h(θ,w)

)
, (9)

which requires f to be differentiable in x. As anticipated, this
is the one premise that cannot be lifted.

If the constraints are simple enough, they can be hardwired
into the structure of the NN itself, say by selecting nonlinear
units for the output layer that can only produce values within a
certain range [17]. With a view to broader generality, though,
we prefer to transform the constrained optimization problem

min
x∈X

L(x) (10)

into the unconstrained optimization problem

min
x
L(x) + β>C(x), (11)

where C(x) is the vector of constraints that define the feasible
set X and β is a vector of Lagrangian (or KKT) multipli-
ers. Hence, the gradient also involves a problem-dependent
term that corresponds to C(x). Since the loss function is a
combination of the objective function and of the cost that is
associated with the constraints, training the NN by gradient
descent has the effect of minimizing f(θ,x) over the feasible
set X , which is precisely the aim of parametric optimization.
To circumvent having to identify the optimum β analytically,
which would require solving the dual optimization problem,
we adopt the common strategy of cross-validation: apply the
same multiplier β to every constraint, and select its value after
trialing β ∈ {0.01, 0.1, 1, 10, 100}.

The crux of the proposed approach is that, rather than
completely solving the optimization problem associated with
each specific θ, we take a single step along the gradient
before sampling a new parameter vector. We do not know the
correct output for a given input, but we can compute the loss
given the current prediction of x and update such prediction
in order to minimize the corresponding loss. Even though
the NN is not provided with the solution for each parameter
vector, descending along the gradient allows the NN to quickly
generalize across parameter vectors.

Altogether, our proposition can be summarized as follows:
• Treat the optimization parameters as inputs to the NN.
• Create a custom loss function based on the parametric

optimization problem.
• Evaluate the NN and update the weights by means of any

gradient-based optimizer.

IV. APPLICATION TO CONSTRAINED QP

Before proceeding, in follow-up letters [11] and [12], to
more specific parametric optimizations motivated by wireless
communications, let us herein entertain a simpler yet much
more general one.

A. Formulation

A constrained QP is a convex instance of the parametric
optimization in (1) with

f(θ,x) = x>Rx+ b>x, (12)

where R is a positive-semidefinite matrix and b is a vector,
together constituting the parameter θ = {R, b}. The feasible



3

TABLE I
NN SETTINGS FOR QP.

Input
layer

Hidden
layer

Output
layer

Neurons 900 500
D = 10 + 10
or 30 + 30

Activation function RLU RLU Linear

Regularization L2 norm
λ = .001

L2 norm
λ = .001

L2 norm
λ = .001

set for every entry of x is the interval [0, 1], ensuring that X
is a D-dimensional convex set.

To demonstrate the functionality of the proposed approach
as broadly as possible, we do not posit any structure for R
and b. Rather, R is generated as

R =

I−1∑
i=0

rir
>
i (13)

with the entries of ri, as well as those of b, drawn uniformly
within [−1, 1]. To solve this parametric optimization using the
introduced framework, the loss function is defined as

LQP = x>Rx+ b>x︸ ︷︷ ︸
Objective

+ 100

D−1∑
k=0

(
[−xk]

+
+ [xk − 1]

+
)

︸ ︷︷ ︸
Constraints

, (14)

where [z]+ = max(0, z) and the multiplier of 100 applied
to the constraint portion is the result of cross-validation. By
increasing it, the (very small) probability that the constraints
are violated and that the solution thus falls outside the feasible
set could be reduced further, at the expense of the objective
value. This issue is tackled in [12] within the context of a
wireless communications problem.

B. Learning Stage

The learning pipeline employed to train the NN is depicted
in Fig. 1 and the NN’s parameters are summarized in Table I.
A single hidden layer is featured, as additional ones have
not been found to improve the performance—yet the training
does become longer. With D dimensions, there are D × D
dimensional interactions and thus the number of neurons in
the input layer should be at least D2 while the number of
neurons in the hidden layer should be between D and D2.

After centering and scaling, θ is fed to a feature-extracting
input layer equipped with rectified linear unit (RLU) activation
functions. A hidden layer then processes the data also via
RLUs, and an output layer with linear activation functions
generates values x. To improve the dynamic range as well
as the sensitivity to small values, these outputs are taken
to be in log scale, yet this restricts them to being positive.
This limitation is circumvented by allowing the NN to output
two distinct vectors, x+ and x−, both in log scale, which
are linearized into positive and negative values, respectively,
and then summed. With that, the NN can produce any real
vector x while preserving the advantages of an internal log

NNSubtract mean and divide
 by standard deviation

Adam
optimizer

U
pd

at
e 

N
N

 w
ei

gh
ts

LQP

x

x

x

x x

x x

Fig. 1. Learning pipeline.

-0.1 -0.08 -0.06 -0.04 -0.02 0
Objective value

0

0.2

0.4

0.6

0.8

1

C
D

F

Convex Solver
NN

D = 10
D = 30

Fig. 2. CDF of minx∈X f(θ,x) for a QP with either D = 10 or D = 30
dimensions. The distribution is induced by that of θ = {R, b} with I = 5.

representation. From θ and from the output x, the loss LQP is
quantified and an Adam optimizer—a standard algorithm that
updates NN weighs iteratively [18]—is applied to minimize it.
To avoid oscillations around local optima during the weight
adjustment, the learning rate, i.e., the amplitude of the gradient
steps, is reduced gradually from 0.001 down to 0.0001.
And, to prevent overfitting, L2-norm regularization is used
in conjunction with the Adam optimizer. Precisely, a portion
λ = 0.001 of the L2 norm of the weights is added to the loss.

In order to streamline the learning, rather than a single large
database, we generate multiple small databases. Specifically,
M = 500 databases of 12800 parameter realizations are
generated and, over each such database, 100 updates of the NN
weights take place; every update involves a randomly selected
batch of 128 realizations. Altogether, 12800M realizations
are produced for learning purposes, and the NN weights are
updated 100M times.

C. Performance

Once the learning stage has concluded, the inference of
solutions can take place. To evaluate the performance, an
ensemble of realizations of the parameter θ is produced; each



4

realization is fed to the NN, which outputs the corresponding
inference of the QP solution. Depicted in Fig. 2 is the
cumulative distribution function (CDF) of the objective value,
minx∈X f(θ,x), for a constrained QP with either D = 10
or D = 30 dimensions and with I = 5 in (13). The match
between the solutions produced by the NN and by a convex
solver [19] is very satisfying for D = 30, when the number of
neurons in the input layer is tight at its minimum value of D2,
while the match is absolute for D = 10, when excess neurons
are available therein.

D. Computational Cost

Relative to a convex solver, the computational cost of the
unsupervised-learning approach scales better with the dimen-
sionality of the QP. Likewise, its training scales better than it
would if the learning were supervised, as that would require
solving the QP for each individual training parameter.

For the QP herein invoked to illustrate the performance,
however, the computational savings and the improvement in
scalability are modest. It is for more intricate problems such
as the ones tackled in [11], [12] that the advantage becomes
prominent, hence its assessment is deferred to these sequels.

V. CONCLUSION

An unsupervised NN-based procedure to tackle parametric
optimizations over convex sets has been presented and put to
use in the classic problem of constrained QP. The results match
those produced by convex solvers with extreme accuracy. In
the follow-up letters [11] and [12], more involved problems
motivated by wireless communications are tackled and major
advantages in computational scalability are revealed relative
to convex solvers. For some of these problems, furthermore,
the feasible set is convex but the objective function is not.

We believe that the restriction of the feasible set being
convex could be lifted, at least in those cases in which the
existence of a local minimizer can be established [20], and
this is an interesting avenue for subsequent research.

Also suggestive of further work is that, while computation-
ally more scalable than convex solvers (when applicable) and
appearing to perform well even with nonconvex objectives, the
presented approach still suffers from weaknesses:
• The NN is fully connected, hence the number of neuronal

interconnects grows rapidly with the dimensionality of
the parameter and optimization vectors, and so does the
number of training samples.

• Retraining needs to take place whenever those dimensions
change.

The first issue can be mitigated by exploiting the structure
of each problem, say the existence of entries within θ that are
zero (or small enough to be negligible); this is often the case
in the problems confronted in [11], [12]. Then, a non-fully-
connected NN could be employed, at the expense of generality.

As of the second issue, one idea would be to dimension the
problem for its largest possible size and then train with some
of the dimensions randomly zeroed out [21]. Alternatively,
a modular NN could be considered, and interesting ideas in
this direction are propounded in [22], [23], also in the context

of wireless communications. Modular NN designs that could
be applied to generic parametric optimization would be a
welcome proposition.

ACKNOWLEDGMENT

The invitation from the Editor-in-Chief, the handling of
the Associated Editor, and the constructive feedback from the
anonymous reviewers, as well as from Dr. Giovanni Geraci,
are all gratefully acknowledged.

REFERENCES

[1] A. V. Fiacco, Introduction to Sensitivity and Stability Analysis in
Nonlinear Programming, Academic Press, New York, 1983.

[2] G. Bank, J. Guddat, D. Klatte, B. Kummer, and D. Tammer, Non-linear
Parametric Optimization, Birkhauser Verlag, Basel, 1983.

[3] F. Bonnans and A. Shapiro, Perturbation analysis of optimization
problems, Springer Series in Operations Research, Springer-Verlag, New
York, 2000.

[4] D. Klatte and B. Kummer, Nonsmooth equations in Optimization,
Kluwer Ac. Publishers Dortrecht, 2002.

[5] J. Acevedo and E. N. Pistikopoulos, “A parametric MINLP algorithm
for process synthesis problems under uncertainty,” Ind. Eng. Chem. Res.,
vol. 35, pp. 147–158, 1996.

[6] V. Dua and E. N. Pistikopoulos, “An outer-approximation algorithm for
the solution of multiparametric MINLP problems,” Computers them.
Engng, vol. 22, pp. S955–S958, 1998.

[7] A. Rantzer, “Dynamic dual decomposition for distributed control,” in
Proceedings of the American Control Conference, 2009, p. 884–888.

[8] P. Patrinos and H. Sarimveis, “Convex parametric piecewise quadratic
optimization: Theory and algorithms,” Automatica, vol. 47, pp. 1770–
1777, 2011.

[9] L. Sanguinetti, A. Zappone, and M. Debbah, “Deep learning power
allocation in massive MIMO,” in Asilomar Conf. Signals, Systems, and
Computers, 2018, pp. 1257–1261.

[10] T. Van Chien, E. Björnson, and E. G. Larsson, “Sum spectral efficiency
maximization in massive MIMO systems: Benefits from deep learning,”
CoRR, vol. abs/1903.08163, 2019.

[11] R. Nikbakht, A. Jonsson, and A. Lozano, “Unsupervised learning for
cellular power control,” IEEE Commun. Letters, vol. 24, 2020.

[12] R. Nikbakht, A. Jonsson, and A. Lozano, “Unsupervised learning for
C-RAN power control and power allocation,” IEEE Commun. Letters,
vol. 24, 2020.

[13] G. Cybenko, “Approximations by superpositions of sigmoidal func-
tions,” Mathematics of Control, Signals, and Systems, vol. 2(4), pp.
303–314, 1989.

[14] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural Networks, vol. 2, no. 5,
pp. 359–366, 1989.

[15] K. Hornik, “Approximation capabilities of multilayer feedforward
networks,” Neural Networks, vol. 4(2), pp. 251–257, 1991.

[16] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
representations by back-propagating errors,” Nature, vol. 323(6088),
pp. 533–536, 1986.

[17] F. Liang, C. Shen, W. Yu, and F. Wu, “Towards optimal power control
via ensembling deep neural networks,” IEEE Trans. Commun., vol. 68,
no. 3, pp. 1760–1776, 2019.

[18] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[19] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming, version 2.1,” http://cvxr.com/cvx, Mar. 2014.

[20] G. Still, “Lectures on parametric optimization: An introduction,”
Optimization Online, 2018.

[21] M. Khani, M. Alizadeh, J. Hoydis, and P. Fleming, “Adaptive neural
signal detection for massive MIMO,” IEEE Trans. Wireless Commun.,
2020.

[22] W. Cui, K. Shen, and W. Yu, “Spatial deep learning for wireless
scheduling,” IEEE J. Sel. Areas Commun., vol. 37, no. 6, pp. 1248–
1261, 2019.

[23] W. Lee, M. Kim, and D.-H. Cho, “Deep power control: Transmit power
control scheme based on convolutional neural network,” IEEE Commun.
Letters, vol. 22, no. 6, pp. 1276–1279, 2018.


