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Abstract—This paper applies a feedforward neural network
trained in an unsupervised fashion to the problem of optimiz-
ing the transmit powers in centralized radio access networks
operating on a cell-free basis. Both uplink and downlink are
considered. Various objectives are entertained, some leading to
convex formulations and some that do not. In all cases, the
performance of the proposed procedure is very satisfactory and,
in terms of computational cost, the scalability is manifestly
superior to that of convex solvers. Moreover, the optimization
relies on directly measurable channel gains, with no need for
user location information.

Index Terms—Neural networks, unsupervised learning, cell-
free networks, ultradense networks, power control, power allo-
cation, C-RAN

I. INTRODUCTION

A preceding letter proposed leveraging the expressive power
of neural networks (NNs) to solve large-dimensional para-
metric optimizations in an unsupervised fashion [?]. Then,
in a follow-up letter, this approach was applied to power
control for cellular systems [?]. In this final letter, it is further
applied to the intertwined problems of power control and
power allocation for centralized, possibly cloud-based, radio
access networks (C-RAN). The more intricate optimizations
that arise in this richer setting offer an excellent opportunity
to further test the efficacy of the technique. In particular:
• In a C-RAN, the transmit power optimization is neces-

sarily centralized and decidedly many-parametric; it runs
into dimensionality issues faster than in cellular setups.

• The loss functions introduced in [?] continue to be
applicable, but, in contrast with the cellular case, here
they do not always admit convex forms. When they
do not, the performance of our learning-based approach
becomes itself a yardstick against which other solutions
can be gauged.

C-RANs inherently operate on a cell-free basis: on each
time-frequency resource unit, every access point (AP) commu-
nicates, rather than only with the user in its cell, with every
user in the system [?]. This inherits ideas from network MIMO
and takes to its natural limit the notion of cell cooperation [?].
C-RANs offer multiple advantages over their cellular coun-
terparts, including large-scale diversity, interference handling,

R. Nikbakht, A. Jonsson, and A. Lozano are with Univ. Pompeu Fabra,
08018 Barcelona (e-mail: angel.lozano@upf.edu). Work supported by the
European Research Council under the H2020 Framework Programme/ERC
grant 694974, by the Maria de Maeztu Units of Excellence Programme
(MDM-2015-0502), and by the ICREA Academia program. Parts of this paper
were presented at the 2019 IEEE Int’l Symp. Personal, Indoor & Mobile Radio
Communications [?] and at the 2020 IEEE Int’l Conf. Communications [?].

flexibility, and elasticity, and it is reasonable to anticipate that,
at least for ultradense deployments, C-RANs might become
the norm [?], [?].

As in [?], we desire for the power control to respond only to
the large-scale behavior of the channel gains, and not to the
small-scale fluctuations that occur on scales of milliseconds
(in time) and hundreds of kilohertz (in frequency). This
guarantees relatively stable transmit powers, leaving the small-
scale swings to the province of link adaptation [?].

II. C-RAN MODEL

On a time-frequency resource, a basic C-RAN consists of N
APs and K users, all equipped with omnidirectional antennas.
The positions of APs and users are uniformly random. Every
AP can communicate with every user and, to render matched-
filter beamforming effective, N is substantially larger than K.

A. Large-Scale Features

Signals are subject to distance-dependent power decay with
exponent η = 3.8, for a large-scale channel gain Gn,k between
the kth user and the nth AP. Correspondingly, that link’s
signal-to-noise ratio is

SNRn,k =
Gn,kP

σ2
(1)

with P the maximum transmit power and σ2 the noise power.
Both APs and users are positioned uniformly at random,

with shadowing implicitly embedded in that randomness [?].
For the sake of a cleaner notation, P/σ2 is taken as equal

for uplink and downlink, but asymmetries could be had by
simply discriminating the respective SNR variables. We set
P/σ2 such that SNRn,k = 20 dB at a distance d, where d
would be the inter-AP spacing if the network were arranged
as a hexagonal grid. Under reasonable values for P and σ2,
this is compatible with a dense C-RAN.

In addition to Gn,k, the channel that connects the kth user
with the nth AP includes a small-scale fading coefficient
hn,k ∼ NC(0, 1), independent across users and APs. These
fading coefficients are presumed known, with comments on
the impact of channel estimation provided in Section ??.

B. Uplink

In the uplink, the nth AP observes

yn =

K−1∑

k=0

√
Gn,khn,k

√
pkPsk + vn, (2)
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where sk is the unit-power symbol emitted by user k whereas
pk ∈ [0, 1] is its power control coefficient and vn ∼ NC(0, σ2)
is the noise. With the observations of the N APs centrally
combined so as to effect matched-filter beamforming for each
user, the SINR of user k equals [?]

sinrULk =
pk

(∑N−1
n=0 SNRn,k |hn,k|2

)2

denk
(3)

with

denk =
∑

` 6=k

p`

∣∣∣∣∣
N−1∑

n=0

√
SNRn,kSNRn,` h

∗
n,k hn,`

∣∣∣∣∣

2

+

N−1∑

n=0

SNRn,k |hn,k|2. (4)

A subsequent expectation over the small-scale fading yields
the operationally meaningful local-average SINR [?], i.e.,

E
[
sinrULk

]
= E



pk

(∑N−1
n=0 SNRn,k |hn,k|2

)2

denk


 . (5)

To formulate loss functions that, as intended, drive the NN
based only on large-scale quantities, we replace |hn,k|2 and
|hn,`|2 by their expected value (unity), and h∗n,khn,` for ` 6= k
also by their expected value (zero), obtaining the proxy

SINRUL

k =
pk

(∑N−1
n=0 SNRn,k

)2

∑
` 6=k p`

∑N−1
n=0 SNRn,kSNRn,` +

∑N−1
n=0 SNRn,k

.

(6)

Other approximations to (??) could also be legitimate proxies
to drive the NN.

C. Downlink

Turning now to the downlink, with conjugate beamforming
the nth AP transmits

∑K−1
k=0

√
pn,kP hn,ksk, where sk is the

unit-power symbol intended for user k while pn,k is the share
of power that the nth AP devotes to such user, subject to∑K−1

k=0 pn,k ∈ [0, 1] in order for the AP’s total power not to
exceed P . User k observes

yk =

N−1∑

n=0

√
Gn,k pn,kP h

∗
n,khn,ksk (7)

+

N−1∑

n=0

√
Gn,k P h

∗
n,k

∑

6̀=k

√
pn,` hn,`s` + vk, (8)

from which its local-average SINR can be seen to be

E
[
sinrDL

k

]
= E




(∑N−1
n=0

√
SNRn,k pn,k |hn,k|2

)2

∑
` 6=k

∣∣∣
∑N−1

n=0

√
SNRn,k pn,` h∗n,khn,`

∣∣∣
2

+1


.

(9)

Again replacing |hn,k|2 and h∗n,khn,` for ` 6= k by their
expected values (respectively one and zero), we obtain the
proxy

SINRDL

k =

(∑N−1
n=0

√
SNRn,k pn,k

)2

1 +
∑N−1

n=0 SNRn,k

∑
` 6=k pn,`

. (10)

In contrast with the C-RAN uplink, and with the cellular
uplink and downlink, the optimization of the transmit powers
in the C-RAN downlink actually subsumes two intertwined
problems:
• Power control, which amounts to adjusting the total

transmit power at every AP, i.e.,
∑K−1

k=0 pn,k ∀n.
• Power allocation, which entails dividing the power of

each AP among the users, i.e., setting pn,k for every k,
subject to the total power established for the nth AP.

This enhanced problem richness is reflected by the existence
of NK downlink power coefficients (as opposed to K or N )
and by the aggregate (rather than individual) nature of the
constraint at each AP.

III. LOSS FUNCTIONS

Owing to the different form of the constraints in uplink
and downlink, the formulation of the loss functions must be
individualized for either case.

A. Soft Max-Min
For the uplink, our first loss function adopts the form

LUL

MM =
1

K

[
K−1∑

k=0

exp

(
αk

(SINRUL

k + 0.01)0.4

)

︸ ︷︷ ︸
Objective

+

K−1∑

k=0

[pk − 1]+

︸ ︷︷ ︸
Constraints

]

(11)

where {αk} are regulating factors and [z]+ = max(0, z). As
{αk} grow large, the loss becomes dominated by the smallest
SINR and a hard max-min policy emerges. Conversely, for
decreasing {αk}, this max-min behavior softens as SINRs
other than the smallest one enter the optimization.

The offset 0.01 added to SINRk prevents the loss from being
dragged down by users below −20 dB and avoids numerical
problems in the learning stage. The exponent 0.4 compresses
the dynamic range, improving the high-SNR behavior and
making the learning more stable.1

For the downlink,

LDL

MM =
1

K

[
K−1∑

k=0

exp

(
αk

(SINRDL

k + 0.01)0.4

)

︸ ︷︷ ︸
Objective

+

N−1∑

n=0

[K−1∑

k=0

pn,k − 1

]+

︸ ︷︷ ︸
Constraints

]
. (12)

In both uplink and downlink, the multiplier applied to
the constraints, obtained from cross-validation, is unity. The
ensuing probability that the solution falls outside the feasible
set, and the impact thereof, are quantified in Section ??.

1A variation of (??) that excludes this compression is considered in [?].
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TABLE I
NN SETTINGS.

Input
layer

Hidden
layer

Output
layer

Neurons (Uplink) 200 50 K = 12

Neurons (Downlink) 1000 1000 NK = 360

Activation function RLU RLU Linear

Regularization L2 norm
λ = .001

L2 norm
λ = .001

L2 norm
λ = .001

B. Max-Product

The maximization of ΠK−1
k=0 SINRk, or equivalently of its

logarithm, amounts to the minimization of

LUL

MP =
1

K

[
K−1∑

k=0

βk loge

(
0.01 +

1

SINRUL

k + 0.01

)

︸ ︷︷ ︸
Objective

+ 0.1

K−1∑

k=0

[pk − 1]+

︸ ︷︷ ︸
Constraints

]
(13)

in the uplink, and of

LDL

MP =
1

K

[
K−1∑

k=0

βk loge

(
0.01 +

1

SINRDL

k + 0.01

)

︸ ︷︷ ︸
Objective

+ 0.1

N−1∑

n=0

[K−1∑

k=0

pn,k − 1

]+

︸ ︷︷ ︸
Constraints

]
(14)

in the downlink. Here, the constraint multiplier is 0.1. When
the factors {βk} are equal, the combination {SINRk} minimiz-
ing the above loss function offers a satisfying tradeoff between
average performance and fairness. And, by regulating {βk},
specific users could be afforded higher priorities.

Again, the offset shifting SINRk by 0.01 avoids it being
pulled down by users below −20 dB while a second offset
added to 1

SINRk+0.01 lessens the pull of users above 20 dB.

IV. POWER CONTROL AND POWER ALLOCATION

Connecting back with the description in [?], for the uplink
the input parameter θ contains the ingredients that appear in
(??), namely

∑N−1
n=0 SNRn,k ∀k and

∑N−1
n=0 SNRn,kSNRn,`

∀k, `, while the optimization vector x is made of the power
coefficients {pk}.2 For the downlink, in turn, θ = {SNRn,k}
and x = {pn,k}. The loss function is given by LMM or LMP,
as appropriate.

2The uplink learning could be expedited by restricting the input parameter
to
∑N−1

n=0 SNRn,k ∀k, i.e., the ingredients in the numerator of (??), dis-
regarding those in the denominator. This alternative, explored in [?], yields
an only slightly diminished performance. Relevant to this alternative, as an
additional baseline, is the fractional power control for C-RANs, which relies
on the same inputs [?].
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Fig. 1. Learning pipeline.

A. Learning Stage

The learning pipelines for both uplink and downlink are
combined into Fig. ?? while the NN parameters are summa-
rized in Table ??. The input parameters are first converted
to log scale and subsequently rendered zero-mean and unit
variance. The processing then properly starts with feature
extraction by an input layer equipped with rectified linear
unit (RLU) activation functions. Afterwards, a hidden layer
processes the data also via RLUs, and an output layer with
linear activation functions generates power coefficients in log
scale; this guarantees positive outputs and averts numerical
problems. From the SNRs and the corresponding NN outputs,
the loss function of choice is quantified and an Adam optimizer
is applied to minimize it. To prevent oscillations around local
optima, the learning rate is reduced gradually from 0.001 down
to 0.0001. And, to avoid overfitting, L2-norm regularization is
employed in conjunction with the Adam optimizer: a portion
λ = 0.001 of the L2 norm of the weights is added to the loss.

To streamline the learning, rather than a single large
database, 50 (for the uplink) and 500 (for the downlink)
databases of 12800 system realizations are generated and, over
each, 200 updates of the NN weights take place; each update
relies on a randomly selected batch of 128 realizations. The
initialization is also random.

While the uplink learning curve is similar to its cellular
counterpart [?] and not shown for the sake of brevity, the
downlink learning curve is different (see Fig. ??). Besides
settling more slowly due to the larger number of power
coefficients, it exhibits two stages that are not distinguishable
in the uplink and that can be roughly mapped to the constraints
and to the objective, the constituent parts of the loss function.

B. Performance Evaluation

For the C-RAN uplink, the power control problem can be
cast in convex form under both of the considered loss func-
tions. Therefore, performance benchmarks can be produced
with an off-the-shelf convex solver.

For the C-RAN downlink, conversely, the feasible sets are
convex but the loss functions LMM and LMP cannot be cast as
convex in {pn,k}. This is, in essence, because any increase in a
user’s transmit power simultaneously increases the interference
to other users and detracts from their transmit powers. No
convex-solver benchmarks are thus available in general. Only
in the hard max-min limit (LMM with αk → ∞) does the
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Fig. 2. Downlink max-product learning curve with βk = 1.
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Also shown is the baseline performance without power control, and the hard
max-min performance (αk → ∞).

downlink power optimization become quasi-convex in {pn,k}
and can be solved through a tedious bisection search whose
steps entail a sequence of convex feasibility optimizations [?].

We consider N = 30 APs and K = 12 users. The perfor-
mance is evaluated via the cumulative distribution function
(CDF) of local-average SINRs over the ensemble of user
and AP positions. The NN and the convex-solver benchmarks
(when available) are driven by the proxies in (??) and (??),
while the performance with the obtained powers are asserted
by means of the actual local-average SINRs in (??) and (??).

The uplink performance for the soft max-min loss function,
shown in Fig. ??, prompts the following remarks:

• Power control is instrumental to avoid major disparities
among users.

• For given {αn} (unity in this case), the agreement with
the convex solver is excellent. The NN slightly favors
high-SNR users, falling shy of the convex benchmark in
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for max-product (βk = 1): NN vs convex solver.

terms of the soft max-min behavior.
• Hardening the loss function is ill-advised, as that uni-

formly worsens the performance; in the limit, the entire
system is conditioned by its worst situated user.

For the max-product loss function, Fig. ?? again reveals an
excellent match between the NN and the convex solver.

In the downlink, where convex solvers do not in general
provide optimality guarantees, we invoke as baseline

pn,k =
SNRn,k∑K−1

k=0 SNRn,k

n = 0, . . . , N − 1 (15)

whereby every APs transmits its complete power and the
share that the nth AP allocates to user k is proportional to
the strength of the corresponding link. This baseline, rather
standard as a complement to matched-filter beamforming, is
exhibited in Fig. ?? alongside the NN-based performance
under both soft max-min and max-product loss functions. In
both cases, the NN outperforms markedly the baseline, with
more emphasis on fairness—a steeper CDF—in the soft max-
min case and less emphasis in the max-product case.

With very small probability, the objective part of the loss
function could push the solution to violate one or several
constraints. As shown by Fig. ??, the probability that the
transmit power of an AP exceeds its maximum value is below
2% in the soft max-min case with αk = 1, and the impact of
trimming down these power spillovers is minute (see Fig. ??).

C. Computational Cost

As in [?] and [?], we invoke, as a measure of the compu-
tational cost, the running time on a CPU-based platform.

Each NN inference is in essence a matrix multiplication,
over two (in the uplink) and three (in the downlink) orders of
magnitude faster than a convex solver for our 30-AP system.

As far as the learning, which needs to take place upon
changes in the C-RAN or the environment, it is of interest
to compare the learning time of our unsupervised NN with
that of a supervised NN of the same dimensions [?], [?],
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[?], [?]. While the training effort per parameter sample is
essentially the same, a supervised NN requires producing
those samples by solving the corresponding optimizations in
the first place, again resulting in the two-to-three-order-of-
magnitude advantage for the example at hand. (Allowing the
NN to train on a more apt GPU-based platform, the superiority
of unsupervised training increases by yet another order of
magnitude.) And, for nonconvex objectives, it is challenging
to generate those training samples in the first place.

V. SUMMARY

The unsupervised learning approach to parametric optimiza-
tion described in [?] has been shown to be very effective for
the problems of power control and power allocation in cell-
free C-RANs—even with the NN trained with a proxy to the
actual objective, the local-average SINR.

For the uplink, where the considered objectives lead to
convex formulations, the NN performance matches that of
convex solvers while incurring orders of magnitude less com-
putational cost. For the downlink, where those objectives
cannot be tackled with certainty by convex solvers, the NN
itself becomes a source of benchmark results. On that note, it
would be of interest to tackle other nonconvex loss functions,
for instance those related to energy efficiency with minimum
performance guarantees at the users [?], [?].

The NN-based power optimizations continue to be effective
if the assumption of known fading coefficients is overcome,
and the fading coefficients are explicitly estimated on the
basis of pilot transmission. Some results under that proviso
are presented in [?], [?] for uplink and downlink, respectively.

The Python code developed to produce the results in this
letter is openly available [?].


