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Abstract

In this letter, we optimize the channel estimator of the cascaded channel in an intelligent reflecting surface

(IRS)-assisted millimeter wave (mmWave) multi-antenna system. In this system, the receiver is equipped with

a hybrid architecture adopting quantized beamforming. Different from traditional multiple-input multiple-output

(MIMO) systems, the design of channel estimation is challenging since the IRS is usually a passive array with

limited signal processing capability. We derive the optimized channel estimator in a closed form by reformulating the

problem of cascaded channel estimation in this system, leveraging the typical mean-squared error (MSE) criterion.

Considering the presence of possible channel sparsity in mmWave channels, we generalize the proposed method

by exploiting the channel sparsity for further performance enhancement and computational complexity reduction.

Simulation results verify that the proposed estimator significantly outperforms the existing ones.

Index Terms

Intelligent reflecting surface, mmWave, channel estimation, hybrid transceiver architecture.

I. INTRODUCTION

M
ILLIMETER wave (mmWave) massive multiple-input multiple-output (MIMO) promises an

order of magnitude increase in spectral efficiency of wireless communication [1]. However,

massive MIMO is characterized by an enormous antenna array, requiring a large number of radio-frequency

(RF) chains, which is costly and energy-consuming. In particular, an analog-to-digital converter (ADC)
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is one of the basic infrastructures of a RF chain, significantly contributing to the extra cost and energy

consumption.

To address this issue, one can resort to a hybrid analog-and-digital architecture with a limited number

of RF chains [2], where low-precision ADCs can also be exploited to further reduce power consumption

[3]. To alleviate the high cost and power consumption of massive MIMO, intelligent reflecting surface

(IRS) consisting of a mass of passive reflecting elements emerges as a complementary technology, whose

superiority in flexibly manuipulating electromagnetic wave is evident [4]. In particular, by altering the

phases of reflected signals, IRS enables energy focusing and energy nulling at desired locations via beam-

forming. There are numerous potential use cases of IRS and multiple-input single-output (MISO)/single-

input multiple-output (SIMO) which cover a wide range of practical scenarios, e.g., enhancing cell-edge

coverage against blockage and enabling cost-and-energy efficient communication especially at mmWave

band [5].

In spite of the enormous merits of aforementioned techniques, there are a number of challenges of

channel estimation in practice. In massive MIMO adopting hybrid architecture, it is difficult to accurately

estimate a high-dimensional channel matrix from a low-dimensional observation using a limited number of

RF chains. As a remedy, a compressive sensing (CS)-based channel estimator was proposed by exploiting

the channel sparsity [6]. It was then extended in [7] to a hybrid MIMO system with low-precision ADCs,

incorporating orthogonal matching pursuit (OMP) for sparse channel recovery.

Furthermore, the problem of channel estimation becomes more challenging when IRS is deployed in

communication networks. Firstly, the signaling overhead of channel estimation increases dramatically

since the number of reflecting elements of an IRS is usually large and the inherent two-hop channels

result in a high dimensionality compared to existing networks [8]. To be specific, the composite cascaded

channel changes dynamically with the reflection matrix adopted at the IRS even though the physical

channel remains static. Secondly, since IRSs are mostly passive which cannot transmit and receive pilot

signals, it is less tractable to construct separate channel estimation as in conventional MIMO networks.

For channel estimation in passive IRS-assisted systems, a typical solution is the “on-off” scheme, which

turns on only one IRS element in each sub-phase in order to realize separate channel estimation at the cost

of huge signaling overhead [9]. In [10], a bilinear generalized approximate message passing (BiG-AMP)-

assisted algorithm was proposed by exploiting matrix decomposition on the cascaded channel, which is

equivalent to a random “on-off” scheme. Moreover, to reduce the pilot consumption, a three-phase channel
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estimation protocol was proposed by fully utilizing the common channel between the IRS and the base

station (BS) [11]. Following the same philosophy, the authors in [12] proposed a two-timescale channel

estimation framework adopting a dual-link pilot transmission scheme, which was further extended in [13]

by introducing anchor nodes to assist the estimation of the common BS-IRS channel with reduced pilot

consumption.

Apparently, when considering the application of IRS in the popular setup, i.e., hybrid massive MIMO,

the problem of channel estimation is even more problematic. In particular, due to the hybrid architecture,

there are only limited observations for estimating a high-dimensional channel matrix. However, the

dimension of the cascaded channel matrix of an IRS-assisted system increases rapidly due to the numerous

number of IRS elements, requiring more observations for channel estimation. To the best of our knowledge,

it is still an open problem to estimate the cascaded MIMO channel for IRS-assisted hybrid MIMO,

especially with low-precision ADCs. In this letter, we propose a cascaded channel estimation method in

a hybrid structure mmWave multi-antenna assisted by an IRS. A uniform planar array (UPA) is deployed

at a BS while low-precision ADCs are deployed at the receiver for the sake of low cost. We derive a

closed-form expression of the optimal linear channel estimator which alleviates the impact of the distortion

caused by nonlinear quantization of the low-precision ADCs. Furthermore, if the channel sparsity is known

as a prior, we show that the proposed estimator can exploit this information and be further enhanced with

lifted performance and reduced complexity.

Notations: Throughout this paper, (·)H, (·)T, (·)∗, (·)†, R(C), ⊗, E{·}, tr(X), and ‖X‖2 denote the

conjugate transpose, transpose, conjugate, Moore-Penrose inverse, space of real (complex) numbers,

Kronecker product operator, expectation operator, trace, and Frobenius norm, respectively. The kth entry

of vector x and the (i, j)th element of matrix X are represented by [x]k and [X]ij , respectively. We adopt

ceiling ⌈a⌉ to return the smallest integer no smaller than a ∈ R. Operators vec(X) and mat(x) imply

that x = vec(X) is the column-stacked form of X and X = mat(x) for X ∈ CM×N , x ∈ CMN×1,

respectively. 1 ∈ RN is the N × 1 vector of all ones. CN (0, 1) represents the distribution of a circularly

symmetric complex Gaussian variable with zero mean and unit variance. U [0, 2π) indicates the uniform

distribution with the range from 0 to 2π.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider the uplink of an IRS-assisted mmWave multi-antenna system, where the IRS consists of

N passive reflecting antenna elements, i.e., N = N1 ×N2 as a planar array, and the BS is equipped with
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a UPA of M = M1 ×M2 antennas driven by L RF chains (L < M) serving a single-antenna user. For

channel estimation, pilots are transmitted by the user, then they are firstly reflected by the IRS before

received by the BS. The direct channel component between the user and the BS is not considered due to

severe blocked propagation conditions, as commonly adopted in the literature, e.g. [10].

The channel between the user and the IRS and the channel between the IRS and the BS are denoted

by g ∈ CN and G ∈ CM×N , respectively. Considering that the antenna arrays at the BS and the IRS are

UPAs with standard antenna half-wavelength spacing, the corresponding channels can be expressed as [6]

g =

Np1∑

k=1

αkaI(uIk, vIk),G =

Np2∑

k=1

γkaR(uRk, vRk)a
H
I (u

′
Ik, v

′
Ik), (1)

respectively, where αk ∈ C and γk ∈ C are the corresponding channel gains of the kth path, Np1 and

Np2 are the numbers of paths of the corresponding channels, aI(uIk, vIk), aR(uRk, vRk), and aI(u
′
Ik, v

′
Ik)

are the antenna array response vectors, as elaborated in Appendix A.

At the IRS, we define a diagonal matrix Φ = diag(β1e
jθ1 , · · · , βNejθN ) as the signal reflection matrix

adopted at the IRS, 0 ≤ βi ≤ 1, is the amplitude coefficient of the ith reflecting element of the IRS and

θi ∈ (0, 2π] is the phase coefficient, ∀i ∈ {1, 2, · · · , N}. Note that the reflection matrix can be pre-trained

exploiting some coarse beam pre-training techniques, e.g., the synchronization reference signals in current

5G networks.

Let T be the number of channel uses for pilot transmission within one coherence time. Usually, T can

be chosen as ⌈MN/L⌉ for a full-rank channel estimation [7]. Let s(t) ∈ C be the pilot symbol with a

normalized power satisfying E
{
s(t)sH(t)

}
= 1. Assume that the block-fading channel G and g remain

unchanged during T channel uses within each coherence time. Then, at time t, the corresponding received

pilot signal at the BS is

r(t) = GΦgs(t) + n(t), (2)

where n(t) is the additive white Gaussian noise (AWGN) following CN (0, σ2
nIM). The received signal

is firstly processed by an analog combiner WAt ∈ C
M×L, which only imposes phase shifts on the input

signal and then the processed signal passes through L low-resolution ADCs. To complete the channel

estimation, a subsequent linear digital estimator WDt ∈ CM×L is used. Then, the channel estimate can

be expressed as

ĥ(Φ) = WDy, (3)
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where WD, [WD1, · · · ,WDT ]
T, y , [y(1), · · · ,y(T )]T, y(t) , Q

(
WH

Atr(t)
)
, |[WAt]ij | = 1, and Q(·)

represents the operation caused by the quantization of ADCs.

Since the input vector is Gaussian, to improve the tractability of the mathematical problem, we apply

the linear model of ADC quantization characterized by the Bussang theorem in [14] which yields:

y(t)=(1−ηb)
(
WH

AtGΦgs(t)
)
+(1−ηb)WH

Atn(t) + eq(t)

, (1−ηb)
(
WH

AtGΦgs(t)
)
+ (1−ηb)e(t) + eq(t)

= (1−ηb)
[ (

sH(t)⊗WH
At

)

︸ ︷︷ ︸

ζ(t)

vec(GΦg)
]
+ẽ(t), (4)

where e(t) , WH
Atn(t), 0 < ηb < 1 represents the distortion factor of b-bit ADCs [3], and ẽ(t) ,

(1−ηb)e(t) + eq(t) represents the noise caused by both AWGN and ADC quantization. Then, stacking

vectors of all the T channel uses in a coherence time, the estimated channel vector in (3) is rewritten as

ĥ(Φ) = WDy = WD

(

(1−ηb)
(
ζGΦg

)
+ẽ

)

, (5)

where ζ = [ζ(1), · · · , ζ(T )]T and ẽ = [ẽ(1), · · · , ẽ(T )]T are the stacked vectors of ζ(t) and ẽ(t),

respectively.

By observing (5), we find that due to the limited number RF chains, the dimension of observations y(t)

is only L per estimation, which is insufficient to recover MN channel coefficients. Also, it is difficult to

estimate individual channels, G and g, in a separate manner because G and g are both coupled with the

IRS reflection matrix Φ which is, however, not determined before the channel estimation.

III. PROPOSED ESTIMATOR FOR IRS CHANNEL

A. Problem Reformulation

Considering the channel estimation in (5), it would be common to express the channels in the angular

domain for designing both the analog and digital estimators, WAt and WD. Note that this reformulation

would facilitate the estimator design when channel sparsity is further considered. By applying the spatial

channel deconstructing approach, we decompose the multi-antenna channels g and G as

gv = AH
i g, Gv = AH

r GAi, (6)



6

respectively, where

Ai =
[
aI(ũI,1, ṽI,1), · · · , aI(ũI,N1

, ṽI,1), aI(ũI,1, ṽI,2), · · · ,

aI(ũI,N1
, ṽI,N2

)
]
∈ C

N×N ,

Ar =
[
aR(ũR,1, ṽR,1), · · · , aR(ũR,M1

, ṽR,1), aR(ũR,1, ṽR,2),

· · · , aR(ũR,M1
, ṽR,M2

)
]
∈ C

M×M , (7)

and the virtual angular directions for the two UPAs at the BS and the IRS are chosen as

ũI,p ,
1

2N1

(
2p−N1 − 1

)
, p ∈ {1, 2, · · · , N1},

ṽI,q ,
1

2N2

(
2q −N2 − 1

)
, q ∈ {1, 2, · · · , N2},

ũR,i ,
1

2M1

(
2i−M1 − 1

)
, i ∈ {1, 2, · · · ,M1},

ṽR,j ,
1

2M2

(
2j −M2 − 1

)
, j ∈ {1, 2, · · · ,M2}, (8)

where N1, N2 are the numbers of antennas in the horizontal and vertical direction of the IRS, respectively.

M1,M2, are defined similarly at the BS.

Then, by substituting (6), the received signal in (4) becomes

y(t)=(1−ηb)
[
WH

AtGdiag{g}φs(t)
]
+ẽ(t)

=(1−ηb)
[
WH

AtAr(Gvgv1
T)φs(t)

]
+ẽ(t)

=(1−ηb)
([(

sT(t)φT
)
⊗
(
WH

AtAr

)])

︸ ︷︷ ︸

Ψ(t)

(
vec

(
He

v

))

︸ ︷︷ ︸

hv

+̃e(t), (9)

where φ , [β1e
jθ1, · · · , βNejθN ]T ∈ C

N×1, i.e., Φ = diag{φ}, 1 ∈ R
N , and He

v,Gvgv1
T. Note that φ

can be any fixed feasible phase shifts in (9) and the choice of φ does not change the proposed estimator

in the following.

Then we stack vectors y(t) of all the T channel uses together within a coherence time as

y = [y(1), · · · ,y(T )]T = (1−ηb)Ψhv + ẽ, (10)

where Ψ , [Ψ(1), · · · ,Ψ(T )]T, and from (5), we get

ĥv = (1−ηb)WDΨhv +WDẽ, (11)
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where ĥv is now the desired estimation of the equivalent cascaded channel hv.

Due to the deployment of large IRS, the number of variables in hv could be large. In mmWave channels,

there normally existing some sparsity in the angular domain of the channel. We can further express the

cascaded channel in a general form by including the case where a priori channel sparsity pattern, say

P, is known. This general form helps reduce the computational complexity of channel estimation in (11)

if channel sparsity presents. Assume that substantial channel coefficients present only in Nv non-sparse

angular components, i.e., π(1), · · · , π(Nv). The sparsity pattern is defined as

P = [eπ(1), eπ(2), · · · , eπ(Nv)

]
, (12)

where eπ(i) is a unit vector with the π(i)th element being 1 and zeros elsewhere and P = IMN represents

the case where no sparsity is known or presents. Then, the channel coefficients to be estimated in hv can

be rewritten as

hs
v=PThv,

[
eπ(1), eπ(2), · · · , eπ(Nv)

]T
hv. (13)

Substituting (13) into (11), we have

ĥs
v , WD

[
(1−ηb)Ξhs

v+ẽ
]
, (14)

where Ξ , ΨP. Exploiting the typical estimation criterion as MMSE for continuous variables, we are

ready to formulate the channel estimation problem as:

arg min
WD,WAt

E

{

‖ĥs
v−hs

v‖22
}

, (15)

s.t. (13), (14).

To solve the problem in (15), we need to optimize WAt and WD. According to (3), WAt is restricted

as a unity-magnitude valued matrix. Since it is infeasible to apply isotropic pilot directions via the analog

hardware of hybrid architecture, which corresponds to independent and identically distributed (i.i.d.)

Gaussian WAt, we draw phases uniformly from [0, 2π) for the construction of WAt. Then, we have

[WAt]ij =
1√
M
ejψij with ψij ∼ U [0, 2π). Note that the channel estimation should not be directive if no

priori channel statistic direction is available. Therefore, this design of analog estimator is able to achieve

a uniform performance for an arbitrary channel [7].
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B. Optimal Linear Digital Estimator

The channel estimation problem remains to design the digital estimator WD by minimizing the MSE

between the estimated cascaded channel and the actual one. From (15), the MSE is formulated as

MSE = E

{

‖ĥs
v−hs

v‖22
}

= E

{

‖
[
(1−ηb)WDΞ− INv

]
hs
v +WDẽ‖22

}

= σ2
h(1−ηb)2tr{WDΞΞHWH

D} − σ2
h(1−ηb)tr{WDΞ

+WH
DΞ

H}+ σ2
hNv + σ2

ẽ tr(W
H
DWD). (16)

Applying the law of large numbers, for large M , we have

E{WH
AtWAt} a.s.−−→ IL, (17)

and assume that hv satisfies E{hvh
H
v } = σ2

hINM with σ2
h known in advance. Besides, as defined before,

e(t) , WH
Atn(t) and n(t) ∼ CN (0, σ2

nIM), we can also obtain

E{eeH} = σ2
nITL, (18)

where σ2
n are known in advance. According to the MMSE criteria, the main task to minimize (16) is to

cope with the complex calculation of σ2
ẽ , which is to calculate E

{
ẽẽH

}
:

E
{
ẽẽH

} (a)
=(1−ηb)[(1−ηb)E{eeH}

+ ηbdiag
(
E{(Ψhv+e)(Ψhv+e)H}

)
]

(b)
=(1−ηb)σ2

nITL+(1−ηb)ηbσ2
hdiag

(
E{ΨΨH}

)

(c)
=(1−ηb)(σ2

n+ηbσ
2
hN)ITL, (19)
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where (a) applies [15, eq. (30)], (b) applies (18), and (c) exploits the following expectation as

E
{
ΨΨH

}

(d)
=diag

(

E{
(
sT(1)φT ⊗WH

A1Ar

) (
φ∗s∗(1)⊗WA1A

H
r

)
},

· · · ,E{
(
sT(T )φT ⊗WH

ATAr

) (
φ∗s∗(T )⊗WATA

H
r }

) )

=diag
(

E{sT(1)φTφ∗s∗(1)⊗WH
A1ArA

H
r WA1}, · · · ,

E{sT(T )φTφ∗s∗(T )⊗WH
ATArA

H
r WAT}

)

(e)
=diag

(

NIL, · · · , NIL

)

= NITL, (20)

where (d) uses (9) and (e) follows by the fact

E
{
sT(t)φTφ∗s∗(t)

}
=

N∑

i=1

β2
i E

{
sT(t)s∗(t)

}
= N, (21)

where βi = 1 and E{s(t)sH(t)} = 1.

Observing the MSE in (16), it is easy to check that

∂2(MSE)

∂W2
D

= (1− ηb)
2σ2

hΞΞH + σ2
ẽ
INM (22)

is a positive definite matrix, where 0 < ηb < 1 and typical values of ηb can be found in [7, Table. I].

Hence, the MSE is convex with respect to WD. Now, we can minimize the MSE in (16) by forcing the

following derivative to zero:

∂(MSE)

∂WD
=
∂E

{

||ĥs
v−hs

v||22
}

∂WD

= (1− ηb)
2σ2

hΞΞHWD − (1− ηb)σ
2
hΞ+ σ2

ẽ
WD, (23)

where the variance of ẽ is σ2
ẽ
= E

{
ẽHẽ

}
= TL(1− ηb)(σ

2
n + ηbσ

2
hN) from (19). It yields

W∗
D=

1

1−ηb

(

ΞHΞ+
σ2
ẽ

(1− ηb)2σ
2
h

INv

)−1

ΞH. (24)

Noting that if no a priori channel sparsity is exploited, the burden of matrix inversion computation in

(24) will be extremely tremendous. Moreover, the number of quantization bits of ADCs, i.e. b, directly

affects the value of equivalent noise σ2
ẽ

which further deteriorates the estimation accuracy.

As a result, the estimated equivalent channel vector in the angular domain is ĥv =
(
PT

)†
W∗

Dy. Then,
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according to (9), we can recover the estimated cascaded angular-domain channel by using Ĝvĝv1
T =

mat(ĥv). By further multiplying by the transformation matrix Ar, we obtain the desired channel estimate1

as

Ĝdiag{ĝ} = Armat(ĥv). (25)

IV. SIMULATION RESULTS

For simulation, we set N = 16, i.e., N1 = N2 = 4, and M = 16 composed of an 4× 4 UPA driven by

L = 4 RF chains. As for the IRS reflection matrix adopted in the simulation, the phase coefficient θi is

drawn uniformly from [0, 2π) and βi is normalized to 1, ∀i ∈ {1, 2, · · · , N}. We evaluate the performance

in terms of the normalized mean squared error (NMSE) of the cascaded channel with a normalized pilot

power, i.e., Pw = 1, and the signal-to-noise ratio (SNR) is defined as 10log10(Pw/σ
2
n), which is defined

the same between the user-IRS and IRS-BS links.

Fig. 1 compares our proposed channel estimation (CE) method, the conventional LMMSE, and the CE

method proposed in [9] of the Rayleigh fading channel [6], [16]. It can be seen that when the number

of ADCs quantization bits b increases, the performance of all three CE methods improves. In particular,

our proposed CE method demonstrates its advantage by effectively suppressing the influence of nonlinear

1Note that in time division duplex (TDD) systems, the uplink channel is estimated and the channel can be used for downlink beamforming

design even if hardware impairments exist. For this use case, calibration techniques are needed to ensure the reciprocity between the two

channels.
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quantization noise and the associated negative effects enhanced by the IRS, while the performance of

other two methods deteriorates at high SNRs. Moreover, the estimation error in terms of NMSE eventually

saturates for an increasing SNR which is due to the effects of non-vanishing quantization noise. Similar

observations can also be found in Fig. 2 under the Rician fading channel with a Rician factor of 10 dB.

Fig. 3 evaluates the effect of the number of antennas on the performance of the proposed CE method.

It shows that the performance of the proposed method improves with the increasing number of antennas,

while for the other two baseline methods, their performance basically either remain unchanged or become

even worse, due to the lack of quantization noise suppression. Fig. 4 shows the comparison between our

proposed CE method utilizing the sparsity information by the OMP algorithm and our CE method without

sparsity at SNR = 10 dB. The sparsity here is defined as the percentage of the number of non-zero channel

coefficients divided by number of zero ones in the angular domain. It is obvious that the proposed CE

method performs significantly better by incorporating the sparsity information with the burden of matrix

inversion computation in (24) being reduced. Specifically, after exploiting the sparsity of the channel by

the proposed CE method, we can accurately locate non-zero channel coefficients via receive beamforming

which facilitates a better coherent combining of received energy. It is demonstrated in Fig. 4 that NMSE

performs worse with more non-zero channel coefficients of the cascaded channel, as a large portion of

signal energy is dissipated during signal propagation.
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V. CONCLUSION

In this paper, an optimized channel estimator was proposed in a closed-form for IRS-assisted multi-

antenna systems exploiting hybrid architecture transceivers with low-precision ADCs. The proposed CE

method can obtain more accurate cascaded channel estimation with less complexity. For further study, our

work can be extended to wideband systems with hardware imperfection of user equipments.

APPENDIX A

DEFINITION OF UPA ARRAY RESPONSE VECTORS

Here, we elaborate the definition of antenna array response vectors aI(uIk, vIk) , aR(uRk, vRk), and

aI(u
′
Ik, v

′
Ik) for UPA, which mainly follows the definition for uniform linear array (ULA) in [17].

Let us take the receiving antenna array at the BS in Fig. 5 as an example. The elevation angle and

azimuth angle-of-arrival (AOA) of path k are denoted by θRk and φRk, respectively.

We define two AOA related variables with a carrier wavelength, λ, and antenna spacing, d (d ≥ λ
2
), as

follows

uRk =
d

λ
cosθRk, vRk =

d

λ
sinθRkcosφRk. (26)
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Fig. 5. An uniform planar array system model schematic diagram.

Using (26), we define the steering matrix (or called array manifold) AR(uRk, vRk) ∈ CM1×M2 as

1√
M












1 · · · e−j2π(M2−1)vRk

e−j2πuRk · · · e−j2π[uRk+(M2−1)vRk ]

...
...

...

e−j2π(M1−1)uRk · · · e−j2π[(M1−1)uRk+(M2−1)vRk ]












. (27)

To simplify the calculation in our paper, the steering matrix AR(uRk, vRk) is then vectorized as

aR(uRk, vRk) = vec
(
AR(uRk, vRk)

)
. (28)

Similarly, we can define the elevation and azimuth AOA of path k at the IRS and angle-of-departure

(AOD) of path k at the IRS as θIk , φIk and θ′Ik , φ′
Ik. The steering matrix AI(uIk, vIk) ∈ CN1×N2 ,

AI(u
′
Ik, v

′
Ik) ∈ CN1×N2 and vector aI(uIk, vIk) ∈ CN1N2×1, aI(u

′
Ik, v

′
Ik) ∈ CN1N2×1 can be expressed

similarly. It is worth noting that the steering matrix AI(uIk, vIk) and AI(u
′
Ik, v

′
Ik) are different for different

AOAs and AODs at the IRS.
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