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A Direct Construction of Optimal ZCCS With
Maximum Column Sequence PMEPR Two for

MC-CDMA System
Palash Sarkar, and Sudhan Majhi

Abstract—Multicarrier code-division multiple-access (MC-
CDMA) combines an orthogonal frequency division multiplexing
(OFDM) modulation and a code-division multiple-access (CDMA)
scheme to exploits the benefits of both the technologies. The high
peak-to-mean envelope power ratio (PMEPR) is a considerable
problem in MC-CDMA system. However, the problem can be
addressed by utilizing complete complementary codes (CCCs)
in MC-CDMA system. But the set size upper bound of CCC
does not allow the system to support large number of users for
a given number of subcarriers in the system. In a CCC and Z-
complementary code set (ZCCS) based asynchronous MC-CDMA
system, the PMEPR is determined by column sequence PMEPR
of the codes. In order to suuport a large number of users with low
column sequence PMEPR, in this paper, we have proposed a new
optimal ZCCS with larger set size. The code is constructed using
Boolean function approach, i.e., by a direct construction method.
The number of constituent sequences in ZCCS is the same as the
number of subcarriers in MC-CDMA. So, large size ZCCS for
large number of users in MC-CDMA can be constructed through
a rapid hardware generation. The proposed ZCCS has mximum
column sequence PMEPR of 2 and it achieves the theoretical
upper bound of optimality. Our proposed construction can also
generate inter-group complementary (IGC) code set for MC-
CDMA with the same PMEPR. This work also establishes a link
from ZCCS and IGC code set to higher-order (≥ 2) Reed-Muller
(RM) code.

Index Terms—Complementary code (CC), complete comple-
mentary code (CCC), multicarrier code-division multiple-access
(MC-CDMA), generalized Boolean function (GBF), inter-group
complementary (IGC) code set, Reed-Muller (RM) codes, Z-
complementary code set (ZCCS), zero correlation zone (ZCZ)

I. INTRODUCTION

Multicarrier code-division multiple-access (MC-CDMA) is
a most promising technology for fifth generation (5G) and
beyond wireless communication. It has brilliant features as it
combines multicarrier modulation and multiplexing technique.
However, it suffers from high peak-to-mean envelope power
ratio (PMEPR) problem. The high PMEPR value problem in
MC-CDMA system can be compensated by employing proper
spreading codes which provide low column sequence PMEPR.
Because of suitable auto- and cross-correlation properties, such
spreading codes [1]–[8] are also used to deal multiple access
interference (MAI) and multipath interference (MPI) besides
PMEPR problem.

Palash Sarkar is with Department of Mathematics and Sudhan Ma-
jhi is with the Department of Electrical Engineering, Indian Institute
of Technology Patna, India, e-mail: palash.pma15@iitp.ac.in;
smajhi@iitp.ac.in.

In this context, we introduce Golay complementary pair
(GCP), complete complementary code (CCC), and ZCCS.
A pair of sequences, with the sum of their aperiodic auto-
correlation function (AACF) to zero for all nonzero time shift,
called GCP [9]. Sequences of a GCP is known as Golay
sequences. The concept of complementary code (CC) was
introduced by Tseng and Liu in [10] by extending the idea of
GCP. The sum of AACFs of the sequences in a CC become
zero for all out of phase shift. In 1999, Davis et al. proposed
a constrcution of GCP in [11], known as Golay-Davis-Jedweb
(GDJ), by using second-order generalized Boolean function
(GBF) and provided a link between their GCPs and Reed-
Muller (RM) code. Later, Paterson et al. proffered a construc-
tion of CC by using graph and second-order RM code in [12]
and the work is generalized by Schmidth by using higher-order
RM in [13]. Paterson’s idea of CCs were extended to CCC by
Rathinakumar et al. in [1] by using second-order GBF. A set
of CCs with ideal cross-correlation properties is said to be
CCC if the number of CCs is equal to the number sequences
in each CC. A construction of CCC were introduced in [14]
where it was shown that the column sequence PMEPR of a
CCC based MC-CDMA system can have at most 2 unlike the
CCC introduced in [1].

ZCCS has the same correlation properties as CCC inside a
zone, called zero correlation zone (ZCZ). As compared with
CCC, ZCCS has much larger set size [15] which allows a
ZCCS based MC-CDMA system to support a large number
of users unlike CCC based MC-CDMA system where number
of subcarriers is equal to the number of users. Having the
ZCZ properties, ZCCS is used to mitigate MAI for received
multiuser quasi-synchronous signals within the ZCZ width
[16]. In 2007, Fan et al. [17] introduced binary ZCCS and it is
generalized to pairwise ZCCS by Feng et al. [18] in 2008. In
2019, a construction of ZCCS has been introduced by Palash
et al. in [3] by associating it with second-order RM code and
graph. Another construction of ZCCS has been reported in
[4] by using second-order GBFs. In 2015, a construction of
ZCCS which has maximum column sequence PMEPR of 2,
was introduced by Li et al. in [5]. The construction is based on
Golay sequences and orthogonal matrix. But this construction
is not a direct construction and it may not be advantageous
for the hardware generation of long ZCCSs. To reduce high
PMEPR problem and in order to support a large number of
users in a MC-CDMA system, the aim of this paper is to
provide a direct construction of a new ZCCS based on which
a MC-CDMA system can have PMEPR of at most 2.
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A ZCCS is known as inter-group complementary (IGC)
code set when it is divided into numerous distinct code groups
with the properties that the AACF of each code is ideal
within the ZCZ width. The aperiodic cross-correlation function
(ACCF) of two disjoint codes drawn from the same code
group is also ideal inside the ZCZ width. The ACCF of two
codes drawn from two different code groups is zero for all
time shifts. In 2008, Li et al. proposed a construction of
IGC code set based on CCCs in [19]. Their code assignment
algorithm shows that the CDMA systems employing the
IGC codes (IGC-CDMA) outperform traditional CDMA with
respect to bit error rate (BER). The ZCZ width of IGC code
set in [19] depends on the length of constituent sequences
of CCs and the construction is not direct. Recently, a direct
construction of IGC code set has introduced in [20] by using
second-order GBFs. However, the constructions given in [19],
[20] cannot provide a tight column sequence PMEPR as the
column sequnce PMEPRs of IGC code sets from both of the
constructions is upper bounded by the number of constituent
sequences which motivate us to provide a direct constrcution
of IGC code set with maximum column sequence PMEPR 2.

In this paper, we first propose a direct construction of ZCCS
by using higher-order (≥ 2) GBFs. The maximum column
sequence PMEPR of our proposed ZCCS based MC-CDMA
system is 2 unlike the ZCCS given in [3], [4]. Then we
show that our propose ZCCS can also generate IGC code set
with maximum column sequence PMEPR of IGC based MC-
CDMA is 2 which make our construction more efficient than
existing IGC code set construction. Our propose construction
establish a relation of ZCCS and IGC code set with higher
order (≥ 2) RM code. We also relate our constructions with
graph. Specially, we have shown that our propose construction
generates ZCCS corresponding to a GBF if the graphs of
all possible restrictions of the GBF over some fixed specific
variables, contain a path and some fixed isolated vertices.
The construction generates IGC code set if the GBF does
not contain a term which is associated with the restricted
variables and the variables which appear as isolated vertices
in the grpahs of restricted Boolean functions.

The paper is arranged as follows. In Section II, some
definitions and useful notations are presented. A construction
of ZCCS with maximum column sequence PMEPR 2 has
been presented in Section III. In Section IV, a construction
IGC code set with maximum column sequence PMEPR 2
is presented. We compare our proposed construction with
existing construction in Section V. Finally, we conclude our
proposed constrcution in Section VI.

II. PRELIMINARY

A. Definitions of Correlations and Sequences

Let a = (a0, a1, . . . , aL−1) and b = (b0, b1, . . . , bL−1)
be two complex-valued sequences of equal length L. For an
integer τ , define

C (a,b)(τ) =


∑L−1−τ
i=0 ai+τ b

∗
i , 0 ≤ τ < L,∑L+τ−1

l=0 aib
∗
i−τ , −L < τ < 0,

0, otherwise,
(1)

and A (b)(τ) = C (b,b)(τ). The following functions C (a,b)
and A (b) are called ACCF of a and b, and AACF of b
respectively. Let C = {C0, C1, . . . , CK−1} where

Cµ =


aµ0
aµ1
...

aµM−1


M×L

=
[
dµ0 dµ1 · · · dµL−1

]
, (2)

where aµp (0 ≤ p ≤ M − 1, 0 ≤ µ ≤ K − 1) is the pth row
sequence or pth constituent sequence of Cµ and dµe (0 ≤ e ≤
L − 1) is the eth column sequence of Cµ. For Cµ, Cν ∈ C
(0 ≤ µ, ν ≤ K − 1), the ACCF of Cµ and Cν is defined by

C (Cµ, Cν)(τ) =

M−1∑
p=0

C (aµp , a
ν
p)(τ). (3)

Definition 1: C is called CCC if K = M and it satisfies the
following properties:

C (Cµ, Cν)(τ) =


LM, τ = 0, µ = ν;

0, 0 < |τ | < L, µ = ν;

0, |τ | < L, µ 6= ν.

(4)

The code Cµ (0 ≤ µ ≤ K − 1), is called CC and it is called
GCP if it contains a pair of sequences.

Definition 2: C is said to be ZCCS and we denote it by
(K,Z)-ZCCSLM if it satisfies the following properties:

C (Cµ, Cν)(τ) =


LM, τ = 0, µ = ν,

0, 0 < |τ | < Z, µ = ν,

0, |τ | < Z, µ 6= ν,

(5)

where Z is called ZCZ width.
Definition 3: Let C can be expressed as the union of M

distinct code groups Ig (g = 0, 1, . . . ,M − 1) where each
code group is a collection of K/M codes and K = ML/Z.
C is said to be IGC code set and denoted by I (K,M,L,Z)
if it satisfies the following properties:

C (Cµ, Cν)(τ)=



ML, τ = 0, µ = ν,

0, 0 < |τ | < Z, µ = ν,

0, |τ | < Z, µ 6= ν, Cµ, Cν ∈ Ig,
0, |τ |<L,Cµ∈Ig1 , Cν∈Ig2 , g16=g2,
others, otherwise.

(6)

B. Peak-to-Mean Envelope Power Ratio (PMEPR)

Let A = (A0, A1, . . . , AM−1) be a complex valued se-
quence of length M . For a multi-carrier system with M
subcarriers, the time domain multi-carrier signal can be written
as [14]

S(A)(t) =

L−1∑
j=0

Aje
2π
√
−1jt, (7)

where the carrier spacing has been normalized to 1 and A
is spreaded over M subcarriers. Denote P (a)(t) = |S(a)(t)|2.
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The PMEPR of a polyphase sequence A under the multi-carrier
modulation is defined as

PMEPR(a) =
1

M
sup

0≤t<1
P (A)(t).

Let Cµ be a code from the ZCCS C which is defined in
Definition 3. In a ZCCS based MC-CDMA system, aµν is
spread in µth subcarrier over L chip-slots and dµν′ is spread
in the ν′th chip-slot over M subcarriers. The PMEPR of Cµ
is given by

PMEPR (Cµ) = sup
0≤ν′<L

PMEPR (dµν′) . (8)

A CCC based MC-CDMA system transmitter structure is given
by Liu et al. in [14]. A ZCCS based MC-CDMA is given in
[5] and QCSS based MC-CDMA is given in [21].

C. Generalized Boolean Functions and Graphs

There are 2m distinct monomials which are of degree
0, 1, . . . ,m over the variables x0, x1, . . . , xm−1. If Sr is the
set of all monomials of degree at most r, Sr can be expressed
as

Sr = {xα1xα2 · · ·xαk : 0 ≤ k ≤ r,
0 ≤ α1 < α2 < · · · < αk ≤ m− 1} ,

(9)

where Sr contains
r∑

α=0

(
m
α

)
distinct monomials of degree 0

to r (0 ≤ r ≤ m). A rth degree GBF f of m variables
x0, x1, . . . , xm−1 over Zq can uniquely be expressed as a
linear combination of monomials from the set Sr with Zq-
valued coefficients provided that the coefficient of at least one
of the rth order monomials is nonzero. For a second-order
GBF f , the graph of f is denoted by G(f) which contains a
edge between the vertices xi and xj if there is a term qi,jxixj
(0 ≤ i < j ≤ m − 1, qi,j 6= 0) in the expression of f . The
complex-valued sequence corresponding to f is expressed as
follows:

ψ(f) = (ωf0 , ωf1 , . . . , ωf2m−1), (10)

where fi = f(i0, i1, . . . , im−1), ω = exp(2π
√
−1/q), q (≥ 2)

is an even number, and (i0, i1, . . . , im−1) is the binary vector
representation of i. Below some notations are presented for
better presentation of the paper:
• f̃ denotes f(1− x0, 1− x1, . . . , 1− xm−1).
• x̄ denotes the binary complement of x ∈ {0, 1}.
• a∗ is the complex conjugate of a complex-valued vector

a.
• J = {j0, j1, . . . , jk−1} (⊂ {0, 1, . . . ,m− 1}).
• xJ = (xj0 , xj1 , . . . , xjk−1

).
• c = (c0, c1, . . . , ck−1) ∈ {0, 1}k.

Consider the function f |xj=c, obtained by substituting xj =
c in f , be equivalent to the graph obtained by deleting
the vertex xj and all the edges associated with xj from
G(f). Similarly, G(f |xJ=c) is obtained by deleting the
vertices xj0 , xj1 , . . . , xjk−1

from G(f). The ith component
of the complex-valued sequence ψ(f |x=c) is denoted by
ωf(i0,i1,...,im−1) if ijα = cα for each 0 ≤ α < k and equal to
zero otherwise.

A second-order GBF f can be expressed as

f = Q+

m−1∑
i=0

gixi + g′, (11)

where Q is the quadratic form present in f and g′, gi ∈ Zq .
For more details, readers can go through [1], [3].

Definition 4 (Reed-Muller Code): A set of sequences which
are obtained from the GBFs of m variables x0, x1, . . . , xm−1
of order no greater than r over Zq is said to be rth order RM
code over Zq and is denoted by RMq(r,m). RMq(r,m) is said
to be the rth order RM code

D. Existing Constrcutions of CC, CCC, and ZCCS

Some lemmas has been presented in this subsection and
we also introduce some notations which will be used for our
proposed constructions.

Lemma 1 ( [12]): Let f, g are two GBFs. Assume d =
(d0, d1, . . . , dk−1) ∈ {0, 1}k and {i0, i1, · · · , il−1} be a set of
l indices such that 0 ≤ i0 < i1 < · · · < il−1 < m and has no
intersection with J . Let y = (xi0 , xi1 , . . . , xil−1

), then

C
(
ψ(f |xJ=c), ψ(g|xJ=d)

)
(τ)

=
∑
c1,c2

C
(
ψ(f |xJy=cc1), ψ(g|xJy=dc2)

)
(τ). (12)

Lemma 2 ( [12, Th. 12]): Let f is a second-order GBF and
G(f |xJ=c) is a path with xγ as it’s one of the end vertices
for all c ∈ {0, 1}k. Assume all the edges in the path have the
identical weights of q/2. Then for any choice of gi, g′ ∈ Zq{

f +
q

2

(
k−1∑
α=0

uαxjα + uxγ

)
: uα, u ∈ {0, 1}

}
(13)

is a CC of size 2k+1.

Lemma 3 ( [1]): (Construction of CCC)
Let f is a second-order GBF which has the same property as
defined in Lemma 2. Consider (t0, t1, . . . , tk−1) is the binary
representation of the integer t. Define the CC Ct to be{

f+
q

2

(
k−1∑
α=0

uαxjα+

k−1∑
α=0

tαxjα+uxγ

)
: u, uα ∈ {0, 1}

}
,

(14)
and C̄2k+t to be{

f̃+
q

2

(
k−1∑
α=0

uαx̄jα+

k−1∑
α=0

tαx̄jα+ūxγ

)
: u, uα ∈ {0, 1}

}
.

(15)
Then{

ψ(Ct) : 0 ≤ t < 2k
}
∪
{
ψ∗(C̄2k+t) : 0 ≤ t < 2k

}
(16)

generate a set of CCC, where ψ∗(·) is the complex conjugate
of ψ(·).

Before presenting the next lemmas, define It = {0, 1, . . . , t−
1}. Therefore, Im is a set of indices of the variables
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x0, x1, . . . , xm−1. We assume J ′ :
{
j′0, j

′
1, . . . , j

′
m−k−1

}
⊂

Im \ J , and{
W : {w0, w1, . . . , wk−1} ⊂ In, {wk} ⊂ In \W ;

W ′ :
{
w′0, w

′
1, . . . , w

′
n−k−2

}
⊂ In \ {W,wk} .

(17)

The above defined sets will be used for representation
of below binary vectors: x = (x0, x1, . . . , xm−1), u =
(u0, u1, . . . , un−1), uW =

(
uw0 , uw1 , . . . , uwk−1

)
, and uW ′ =(

uw′0 , uw′1 , . . . , uw′n−k−2

)
.

Lemma 4 ( [3]): (Construction of ZCCS)
Let f is a second-order GBF. Assume, G(f |xJ=c) consists
of a path with xγ as one of its end vertices and p isolated
vertices xm−p, xm−p+1, . . . , xm−1. Let t0, t1, . . . , tk+p−1 be
the binary vector representation of t then the ordered set St
is defined as{

f +
q

2

(
k−1∑
α=0

uαxjα +

k−1∑
α=0

tαxjα +

p−1∑
α=0

tk+αxm−p+α

+ukxγ) : uk, uα ∈ Z2} ,
(18)

and the counterpart set S̄t to be{
f̃ +

q

2

(
k−1∑
α=0

uαx̄jα +

k−1∑
α=0

tαx̄jα +

p−1∑
α=0

tk+αx̄m−p+α

+ūkxγ) : uk, uα ∈ {0, 1}} .
(19)

Then{
ψ(St) : 0 ≤ t ≤ 2k+p − 1

}
∪
{
ψ∗(S̄t) : 0 ≤ t ≤ 2k+p − 1

}
,

form
(
2k+p+1, 2m−p

)
-ZCCS2m

2k+1 .
Lemma 5 ( [15]): For any (K,Z)-ZCCSLM , the theoretical

bound is given by
K ≤MbL/Zc, (20)

We call (K,Z)-ZCCSLM is optimal if K = MbL/Zc.

III. PROPOSED NEW CONSTRUCTION OF ZCCS WITH
MAXIMUM COLUMN SEQUENCE PMEPR 2

Before presenting our propose construction, we first define
the following notations:

Z : {m− p,m− p+ 1, . . . ,m− 1} ⊂ Im,
where 0 ≤ p ≤ m− k − 1

J1 : {j0, j1, . . . , jk−1} ⊂ Im \ Z
J ′1 :

{
j′0, j

′
1, . . . , j

′
m−k−p−1

}
⊂ Im \ J1 ∪ Z.

Here, J1 is equals to J , when Z = φ. We also define the
following binary vectors: xZ = (xm−p, xm−p+1, . . . , xm−1)
and xJ1 =

(
xj0 , xj1 , . . . , xjk−1

)
. Now, we present a lemma

which will be used in our propose construction.
Lemma 6: Let f and f ′ are two GBFs and f ′|xJ1=c are

given by

f |xJ1=c = P + L+ gm−pxm−p + gm−p+1xm−p+1

+ · · ·+ gm−1xm−1 + g′,

f ′|xJ1=c = f |xJ1=c +
q

2
xγc ,

where

P =
q

2

m−k−p−2∑
α=0

xj′αxj′α+1
,

L =

m−k−p−1∑
α=0

gj′αxj′α ,

g′, gj′α ∈ Zq , α = 0, 1, . . . ,m − k − p − 1 and γc is one of
the end vertices of the path G(P ). Then for fixed c ∈ {0, 1}k
and d′ 6= d′′, where d′ = (d′1, d

′
2, . . . , d

′
p) (∈ {0, 1}p) and

d′′ = (d′′1 , d
′′
2 , . . . , d

′′
p) ({0, 1}p), we have

C (f |xx′=cd′ , f |xx′=cd′′) (τ) + C (f ′|xx′=cd′ , f
′|xx′=cd′′) (τ)

=


ω(d′1−d

′′
1 )gm−p + · · ·+ (d′p − d′′p)gm−12m−(k+p)+1,

τ = (d′1 − d′′1)2m−p + · · ·+ (d′p − d′′p)2m−1,

0, otherwise.
(21)

Theorem 1: Let f(x,uW ′) : {0, 1}n+m−k−1 → Zq and
h(u) : {0, 1}n → Zq are two GBFs of of degree greater than
1. Suppose, f has the property that G

(
f |xJ1=c,uW ′=e

)
, where

c ∈ {0, 1}k and e ∈ {0, 1}n−k−1, contains a Hamiltonian
path whose vertices are specified by J ′1 and γc is one of
the end vertices. p is the number of isolated vertices which
are specified by Z and the edges in the path are having
identical weights q/2. Also, let (t0, t1, . . . , tn+p−2) be binary
representation of the integer t. Define, the code St to be{

g +
q

2

(
k−1∑
α=0

uwαxjα + uwkxγc

)
+
q

2

(
k−1∑
α=0

tαxjα

+

n−k−2∑
α=0

tα+kuw′α+

p−1∑
α=0

tα+n−1xm−p+α

)}
,

(22)

and the counterpart code S̄t is defined as{
g̃ +

q

2

(
k−1∑
α=0

uwα x̄jα + ūwkxγc

)
+
q

2

(
k−1∑
α=0

tαx̄jα

+

n−k−2∑
α=0

tα+kuw′α +

p−1∑
α=0

tα+n−1x̄m−p+α

)}
.

(23)

Then

{ψ(St) : 0 ≤ t ≤ 2n+p−1−1}∪{ψ∗(S̄t) : 0 ≤ t ≤ 2n+p−1−1},
(24)

form (2n+p, 2m−p)-ZCCS2m

2n if

h|uW ′ ,uWuwk=e,bb ∈ {δ,
q

2
+ δ}, (25)

where δ ∈ Zq and bb ∈ {0, 1}k+1.
Proof: Please see Appendix A.

Remark 1 (Construction of GBFs as Defined in Theo-
rem 1): The GBF corresponding to Theorem 1 is given by
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g(x,u) = f(x,uW ′) + h(u), where the function f(x,uW ′)
can be expressed as

f (x,uW ′) =

q

2

∑
c∈{0,1}k

m−k−p−2∑
α=0

xj′
πc(α)

xj′
πc(α+1)

k−1∏
α=0

xcαjα (1− xjα)1−cα

+

k∑
r=1

∑
0≤α0<α1<···<αr<k

%jα0
,jα1

,...,jαr
xjα0

xjα1
· · ·xjαr

+

k∑
r=1

m−k−p−1∑
α=0

∑
0≤α0<α1<···<αr<k

καjα0
,jα1

,...,jαr
xjα0

xjα1
· · ·xjαrxj′α

+

k∑
r=1

p−1∑
α=0

∑
0≤α0<α1<···<αr<k

%m−p+αjα0
,jα1

,...,jαr
xjα0

xjα1
· · ·xjαrxm−p+α

+

k∑
r=1

n−k−2∑
α=0

∑
0≤α0<α1<···<αr<k

%′αjα0 ,jα1 ,...,jαr
xjα0

xjα1
· · ·xjαrxuw′α

+

m−1∑
α=0

xα

n−k−2∑
β=0

ϑβαxuw′
β

+

m−1∑
α=0

gαxα + g′,

(26)

where
• πc (c ∈ {0, 1}k) is a permutation on the set {0, 1, . . . ,m−
k − p− 1},

• %jα0
,jα1

,...,jαr ∈ Zq for r = 1, 2, . . . , k, 0 ≤ α0 < α1 <
· · · < αr < k,

• καjα0
,jα1

,...,jαr
∈ Zq , for r = 1, 2, . . . , k, 0 ≤ α0 < α1 <

· · · < αr < k, α = 0, 1, . . . ,m− k − p− 1,
• %m−p+αjα0 ,jα1 ,...,jαr

∈ Zq for r = 1, 2, . . . , k, 0 ≤ α0 < α1 <
· · · < αr < k, α = 0, 1, . . . , p− 1,

• %′αjα0
,jα1

,...,jαr
∈ Zq for r = 1, 2, . . . , k, 0 ≤ α0 < α1 <

· · · < αr < k,
• ϑβα ∈ Zq, α = 0, 1, . . . ,m− 1, β = 0, 1, . . . , n− k − 2,
gα ∈ Zq , g ∈ Zq ,

and the term
k∑
r=1

p−1∑
α=0

∑
0≤α0<α1<···<αr<k

%m−p+αj0,j1,...,jr
xjα0

xjα1
· · ·xjαrxm−p+α, (27)

is denoted by GxJ1xZ in the proof of Theorem 1 and also will
be used in the construction of IGC code set. The function h(u)
can be taken to be of any order. For our desired result (as we
are interested to design ZCCS of maximum column sequence
PMEPR 2) we take the function as follows:

h(u) =
q

2

n−2∑
α=0

uπ(α)uπ(α+1) +

n−1∑
α=0

λαuα + λ′, (28)

where π is a permutation on the set {0, 1, . . . , n−1}, λα ∈ Zq
for α = 0, 1, . . . , n− 1, and λ′ ∈ Zq .

It is noted that we design f such a way that G(f |x=c) con-
tains path over the vertices xj′

πc(0)
, xj′

πc(1)
, . . . , xj′

πc(m−k−p−1)

and p isolated vertices xm−p, xm−p+1, . . . , xm−1. It is also
noted that xj′

πc(0)
and xj′

πc(m−k−p−1)
are the end vertices in the

path which is contained in G(f |x=c) and in Theorem 1, γc is
taken as either j′πc(0)

or j′πc(m−k−p−1).

Corollary 1: From Theorem 1, we obtain K (= 2n+p) codes
where each code contains M (= 2n) constituent sequences of
length L (= 2m) with ZCZ width Z (= 2m−p). The code set
also satisfies the equality K = LM

Z and thus, (2n+p, 2m−p)-
ZCCS2m

2n is an optimal ZCCS.
Corollary 2: In Theorem 1, we take f(x,uW ′) and h(u

as given in (26) and (28) respectively. As, g(x,u) =
f(x,uW ′) + h(u and G (g(c,u)) is a path over the vertices
u0, u1, . . . , un−1 for all c ∈ {0, 1}m, the maximum column
sequence PMEPR of the (2n+p, 2m−p)-ZCCS2m

2n is 2.
Proof: We recall the set St given in (22) and assume

F tx,u = g +
q

2

(
k−1∑
α=0

uwαxjα + uwkxγ

)

+
q

2

(
k−1∑
α=0

tαxjα +

n−k−2∑
α=0

tα+kuw′α

+

p−1∑
α=0

tα+n−1xm−p+α

) (29)

Let x0, x1, . . . , xm−1 are the binary vector representations of
0, 1, . . . , 2m − 1, and u0,u1, . . . ,un−1 are the binary vector
representations of 0, 1, . . . , 2n − 1. Therefore,

ψ(St) =


ωF

t
x0,u0 ωF

t
x1,u0 · · · ω

Ftx2m−1,u0

ωF
t
x0,u1 ωF

t
x1,u1 · · · ω

Ftx2m−1,u1

...
...

. . .
...

ω
Ftx0,u2n−1 ω

Ftx1,u2n−1 · · · ω
Ftx2m−1,u2n−1


(30)

The jth column of the code ψ(St) is denoted by ψ(F txj ,u)

and given by
[
ω
Ftxj ,u0 ω

Ftxj ,u1 · · · ωF
t
xj ,u2n−1

]T
, where j =

0, 1, . . . , 2m−1. If we setup k = 0 in Lemma 2, i.e., if G(f) is
a path, the set

{
ψ(f), ψ(f + q

2xγ)
}

forms a GCP. From (29),
it is clear that G(F txj ,u) is the same as G(g(xj ,u)) which is a
path for all j over the vertices u0, u1, . . . , un−1. Therefore, by
using Lemma 2, the set

{
ψ(F txj ,u), ψ(F txj ,u + uγ)

}
forms a

GCP where uγ is assumed to be one of the end vertices of the
path G(F txj ,u). Therefore, each column of the code ψ(St) lies
in a GCP and hence the maximum PMEPR is 2. Similarly, we
can show that the maximum PMEPR of each column of the
code ψ∗(S̄t) is 2. Therefore, the maximum column sequence
PMEPR of the ZCCS {ψ(St) : 0 ≤ t ≤ 2n+p−1 − 1} ∪
{ψ∗(S̄t) : 0 ≤ t ≤ 2n+p−1− 1} or, (2n+p, 2m−p)-ZCCS2m

2n is
2.

Remark 2: For the case, Z = φ, the result of Theorem 1
reduces to the result given in [14]. Therefore, the construction
given in [14] appears as special case of the proposed ZCCS
construction.

Remark 3: For W ∪W ′∪{wk} = φ, the function g given in
Theorem 1 reduces to g = f . If we consider the degree of f
is 2 and W ∪W ′∪{wk} = φ, the result of Theorem 1 reduces
to the result given in [3, Th. 2]. Therefore, the construction
given in [3] and [12], which appear as Lemma 2 and Lemma
4 repectively in this paper, are special cases of our proposed
construction.
Below, we present an example to illustrate Theorem 1.
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TABLE I: Optimal ZCCS over the alphabet Z4 with maximum column sequence PMEPR 2.

(8, 16)-ZCCS32
4

ψ(S0) ψ(S1)
22330031001300333102130013221302 20310233021102313300110211201100
20310233021102313300110211201100 22330031001300333102130013221302
22110013003100113120132213001320 20130211023302133322112011021122
02312033201120311100330233203300 00332231221322331302310031223102

ψ(S2) ψ(S3)
22330031001300331320312231003120 20310233021102311122332033023322
20310233021102311122332033023322 22330031001300331320312231003120
22110013003100111302310031223102 20130211023302131100330233203300
02312033201120313322112011021122 00332231221322333120132213001320

ψ∗(S̄0) ψ∗(S̄1)
20312231003120131122132231221100 00110211201100333102330211023120
00110211201100333102330211023120 20312231003120131122132231221100
20132213001320311100130031001122 00330233203300113120332011203102
22112011021122331302110233021320 02310031223102133322312213223300

ψ∗(S̄3) ψ∗(S̄4)
02130013221302311122132231221100 22332033023322113102330211023120
22332033023322113102330211023120 02130013221302311122132231221100
02310031223102131100130031001122 22112011021122333120332011203102
00330233203300111302110233021320 20132213001320313322312213223300
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Fig. 1: Correlation plots of (8, 16)-ZCCS32
4 in TABLE I.

Example 1: We consider m = 5, n = 2, k = 1, p = 1,W =
{w0} = {0}, and {w1} = {1}. Therefore, W ′ is a null set.
We also consider Let f : {0, 1}5 → Z4 be a GBF given by

f =2((1− x0)(x3x2 + x2x1) + x0(x1x3 + x3x2) + x0x4

+ x1 + 2x2 + 2x3 + x4 + 2,
(31)

and the function h(u0, u1) is given by

h(u0, u1) = 2u0u1. (32)

From f , it is clear that J1 = {0}, J ′1 = {1, 2, 3}, and Z =
{4}. Therefore, from Theorem 1 and Corollary 2, we obtain
(8, 16)-ZCCS32

4 with maximum column sequence PMEPR 2.
The (8, 16)-ZCCS32

4 is given in TABLE I. In TABLE I, ψ(St)
and ψ∗(S̄t) are obtained by following (22) and (23). In Fig.

1, Fig. 1-(a) represents AACF of any codes given in TABLE
I, and Fig. 1-(b) and Fig. 1-(c) represent the ACCFs between
two distinct codes in TABLE I.

IV. PROPOSED NEW CONSTRUCTION OF IGC CODE SET
WITH MAXIMUM COLUMN SEQUENCE PMEPR 2

In this section, a new construction of IGC code set
has been presented by using GBFs of order no less
than 2. We recall (t0, t1, . . . , tn+p−2) be binary represen-
tation of the integer t (0 ≤ t ≤ 2n+p−1 − 1), where
t1 = (t0, t1, . . . , tk−1), t2 = (tk, tk+1, . . . , tn−2), and t3 =
(tn−1, tn, . . . , tn+p−2). We assume (t0, t1, . . . , tn−2), or, t1t2
be the binary vector representation of T (0 ≤ T ≤ 2n−1−1).
Also (t0, t1, . . . , tn+p−2) and t1t2t3 represent the same bi-
nary vectors. Now, we define the following code groups
I0, I1, . . . , I2n−1−1, Ī∗0 , Ī∗1 , . . . , Ī∗2n−1−1 as follows:

IT = {ψ(St) : t3 ∈ {0, 1}p} , (33)

and

Ī∗T =
{
ψ∗(S̄t) : t3 ∈ {0, 1}p

}
, (34)

where 0 ≤ T ≤ 2n−1 − 1.
Theorem 2: Let f(x,uW ′) : {0, 1}n+m−k−1 → Zq and

h(u) : {0, 1}n → Zq be two q-ary GBFs as defined in (26) and
(28) respectively. We also assume GxJ1xZ = 0. Then the code
groups I0, I1, . . . , I2n−1−1, Ī∗0 , Ī∗1 , . . . , Ī∗2n−1−1 form an IGC
code set I(2n+p, 2n, 2m, 2m−p).

Proof: Please see Appendix B.
Corollary 3: In Theorem 2, g(x,u) = f(x,uW ′) + h(u),

where f(x,uW ′) is given in (26) with GxJ1xZ = 0 and h(u) is
given in (28). Therefore, G (g(c,u)) is a path over the vertices
u0, u1, . . . , un−1 for all c ∈ {0, 1}m. Hence, by following the
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TABLE II: I(8, 4, 32, 16) over the alphabet Z4 with maximum column sequence PMEPR 2.

I0

ψ(S0)

23012321123230303012303223030101
21032123103032323210323021010303
23232303121030123030301023210123
03030323323010321010103003012103

ψ(S2)

23012321123230301230121001212323
21032123103032321032101203232121
23232303121030121212123201032301
03030323323010323232321221230321

I1

ψ(S1)

21032123103032323210323021010303
23012321123230303012303223030101
21212101101232103232321221230321
01010121303212301212123201032301

ψ(S3)

21032123103032321032101203232121
23012321123230301230121001212323
21212101101232101010103003012103
01010121303212303030301023210123

Ī∗0

ψ((̄S)0)

30121030212323230123210132303030
10323010010303032103012112101010
30301012210123010101212332123012
32321210230321030303232130103210

ψ((̄S)2)

12303212030101010123210132303030
32101232232121212103012112101010
12123230032301230101212332123012
10103032012103210303232130103210

Ī∗1

ψ((̄S)1)

10323010010303032103012112101010
30121030212323230123210132303030
10103032012103212121010312321032
12123230032301232323030110301230

ψ(S3)

32101232232121212103012112101010
12303212030101010123210132303030
32321210230321032121010312321032
30301012210123012323030110301230

proof of Corollary 2, the maximum column sequence PMEPR
of the IGC code set I(2n+p, 2n, 2m, 2m−p) is 2.
We have illustrated Theorem 2 in the below given example.

Example 2: We consider m = 5, n = 2, k = 1, p = 1,W =
{w0} = {0}, {w1} = {1}. Therefore, W ′ is a null set. We
also consider Let f : {0, 1}5 → Z4 be a GBF given by

f = 2((1− x0)(x3x2 + x2x1) + x0(x1x3 + x3x2)

+x0 + 2x1 + 3x3 + x4 + 2,
(35)

and the function h(u0, u1) is given by

h(u0, u1) = 2u0u1. (36)

From f , it is clear that J1 = {0}, J ′1 = {1, 2, 3},, Z = {4},
xJ1 = (x0), xZ = (x4) and GxJ1xZ = 0. From Theorem
2, Corollary 3, (33), and (34), we obtain I(8, 4, 32, 16). The
code groups I0, I1, Ī∗0 , Ī∗1 are given in TABLE II. Fig. 2-(a)
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Fig. 2: Correlation plots of I(8, 4, 32, 16) in TABLE II.

represents AACF of any code given in TABLE II. Fig. 2-(b)
represents AACF of between two distinct codes from same
code group and Fig. 2-(c) represents AACF of between two
codes from different code groups in TABLE II.

V. COMPARISON OF THE PROPOSED CONSTRUCTION WITH
EXISTING ZCCS AND IGC CODE SET CONSTRUCTIONS

In this section, we compare our proposed ZCCS construc-
tion with the construction given in [3]–[5] and the proposed
IGC code set construction with [19], [20].

The constructions of ZCCS given in [3] and [4] both
are based on second-order GBFs but the maximum column
sequence PMEPR depends on the number of subcarriers or the
number of sequences in the code. In order to increase number
of users in a ZCCS based MC-CDMA system with large ZCZ,
we need to increase number of subcarriers which increase
column sequence PMEPR. For this scenario all GBFs based
ZCCS degrades the performance of a ZCCS based MC-CDMA
system. Our proposed constrcution of both ZCCS and IGC
code set are based on higher-order (≥ 2) GBFs with maximum
column sequence PMEPR 2. Additionaly, we have linked our
proposed ZCCS with higher order RM code unlike the order
of GBFs used in [3], [4]. Although, the constrcution given
in [5] can generate ZCCS with maximum column sequence
PMEPR 2 but the constrcution is based on Golay sequences
with large zero autocorrelation zone and orthogonal matrix.
Therefore, the constrcution given in [5] may not be suitable
for fast hardware generation specially for long ZCCS [14].

The constrcution of IGC code set given in [20] is based
on second-order Boolean function but maximum column se-
quence PMEPR depends on the number of constituent se-
quences in the code. Therefore, in a large subcarrier MC-
CDMA system, the IGC code set obtained from [20] cannot
provide a tight PMEPR upper bound unlike the proposed
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TABLE III: Comparison of proposed construction with
[3]–[5], [19], [20]

Code Set Method PMEPR Remark

ZCCS [3]
Based on
second-order
GBFs

> 2 Direct

ZCCS [4]
Based on
second-order
GBFs

> 2 Direct

ZCCS [5]

Golay sequences
with large zero
autocorrelation
zone and
orthogonal
matrix

2 Indirect

IGC [19]

Based on
CCCs and
orthogonal
matrix

> 2 Indirect

IGC [20]
Based on
second-order
GBFs

> 2 Direct

Proposed ZCCS
Based on
higher-order (≥ 2)
GBFs

2 Direct

Proposed IGC
Based on
higher-order (≥ 2)
GBFs

2 Direct

IGC code set. The IGC code set construction given in [19]
is based on CCCs and orthogonal matrix as well as the
maximum column sequence PMEPR depends on the number
of constituent sequences in the code. Therefore, the IGC code
set obtained from [19] may not be suitable for fast hardware
generation as well as for a large subcarrier MC-CDMA system
where the high PMEPR value may not be acceptable. Hence,
our proposed construction is more suitable than the above
mentioned constructions. We also have provided a comparison
table for column sequence PMEPR for ZCCS and IGC code
set in TABLE III.

VI. CONCLUSION
This paper focuses on a direct construction of ZCCS and

IGC code set with maximum column sequence PMEPR 2.
Both the constructions are based on GBFs of order no less
than 2. We also have linked our proposed construction with
graph. The construction of ZCCS achieves the theoritical upper
bound. The maximum column sequence PMEPR of existed
ZCCS, based on GBFs depend on number of constituent
sequence in a code. Also, the maximum column sequence
PMEPR of all existed IGC code sets depend on the number
of constituent sequences in a code.

APPENDIX A
PROOF OF Theorem 1

To prove Theorem 1, it is enough to show that the AACF of
any code from the set given in (24) is zero for all nonzero time
shifts inside the ZCZ, 2m−p and the ACCF of any two codes
is zero for all time shifts inside the ZCZ, 2m−p. We define

the following binary vectors: t1 = (t0, t1, . . . , tk−1), t2 =
(tk, tk+1, . . . , tn−2), and t3 = (tn−1, tn, . . . , tn+p−2), where
(t0, t1, . . . , tn+p−2) is the binary representation of the in-
teger t which already define in Theorem 1. Also, we de-
fine t′1 = (t′0, t

′
1, . . . , t

′
k−1), t′2 = (t′k, t

′
k+1, . . . , t

′
n−2), and

t′3 = (t′n−1, t
′
n, . . . , t

′
n+p−2), where (t′0, t

′
1, . . . , t

′
n+p−2) is the

binary representation of the integer t′. In the expression of St
and S̄t, we assume

η1 =
q

2

(
k−1∑
α=0

uwαxjα + uwkxγ

)
=
q

2
(uW · xJ1 + uwkxγ) ,

η2 =
q

2

(
k−1∑
α=0

uwα x̄jα + ūwkxγ

)
=
q

2
(uW · x̄J1 + ūwkxγ) ,

(37)

, where x̄J1 = 1k − xJ1 and ūwk = 1− uwk . Let us start with
C (ψ(St), ψ(St′))(τ), where the expression denotes the ACCF
of the codes ψ(St) and ψ(St′) at the time shift τ when t 6= t′,
and AACF of ψ(St) (or, ψ(St′) ) at the time shift τ when
t = t′. The expression C (ψ(St), ψ(St′))(τ) can be written as

C (ψ(St), ψ(St′))(τ)

=
∑

u∈{0,1}n
C
(
g + η1 +

q

2
(t1 · xJ1 + t2 · uW ′ + t3 · xZ) ,

g + η1 +
q

2
(t′1 · xJ1 + t′2 · uW ′ + t′3 · xZ)

)
(τ)

=
∑

uW ′=e

(−1)(t2−t′2)·e

×

 ∑
uW ,uwk

C
(
f |uW ′=e + η1 +

q

2
(t1 · xJ1 + t3 · xZ) ,

f |uW ′=e + η1 +
q

2
(t′1 · xJ1 + t′3 · xZ)

)
(τ)
)

=
∑

uW ′=e

(−1)(t2−t′2)·eA,

(38)

where

A =

 ∑
uW ,uwk

C
(
f |uW ′=e + η1 +

q

2
(t1 · xJ1 + t3 · xZ) ,

f |uW ′=e + η1 +
q

2
(t′1 · xJ1 + t′3 · xZ)

)
(τ)
)
.

(39)

Now, A given in (39), can be expressed as

A = A1 +A2, (40)

where

A1 =

 ∑
uW ,uwk

∑
c1 6=c2

C
(
f |uW ′=e,xJ1=c1 + η1|xJ1=c1

+
q

2
(t1 · c1 + t3 · xZ) , f |uW ′=e,xJ1=c2 + η1|xJ1=c2

+
q

2
(t′1 · c2 + t′3 · xZ)

)
(τ)
)
,

(41)
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A2 =

 ∑
uW ,uwk

∑
c∈{0,1}k

C
(
f |uW ′=e,xJ1=c + η1|xJ1=c

+
q

2
(t1 · c + t3 · xZ) , f |uW ′=e,xJ1=c + η1|xJ1=c

+
q

2
(t′1 · c + t′3 · xZ)

)
(τ)
)
.

(42)

From (37) and (41), we have

A1 =

∑
uwk

∑
c1 6=c2

C
(
f |uW ′=e,xJ1=c1 +

q

2
uwk

+
q

2
(t1 · c1 + t3 · xZ) , f |uW ′=e,xJ1=c2 +

q

2
uwk

+
q

2
(t′1 · c2 + t′3 · xZ)

)
(τ)
∑
uW

(−1)uW ·(c1−c2)

)
.

(43)

Since, c1 6= c2,
∑

uW (−1)uW ·(c1−c2) = 0 and therefore, from
(41)

A1 = 0 ∀ τ. (44)

From (37) and (42), we have

A2 =

∑
uwk

∑
c∈{0,1}k

2k(−1)(t1−t′1)·cC
(
f |uW ′=e,xJ1=c+

q

2
uwkxγc +

q

2
(t3 · xZ) , f |uW ′=e,xJ1=c +

q

2
uwkxγc

+
q

2
(t′3 · xZ)

)
(τ)
)
.

(45)

Assume, F|xJ1=c = f |uW ′=e,xJ1=c. The following expression
present in (44), can be expressed as follows:

C
(
f |uW ′=e,xJ1=c +

q

2
uwkxγc +

q

2
(t3 · xZ) ,

f |uW ′=e,xJ1=c +
q

2
uwkxγc +

q

2
(t′3 · xZ)

)
(τ)
)

=
∑

d′ 6=d′′
(−1)(t3·d′−t′3·d

′′)C
(
F|xJ1xZ=cd′ +

q

2
uwkxγc ,

F|xJ1xZ=cd′′ +
q

2
uwkxγc

)
(τ)
)

+
∑

d′=d′′
(−1)(t3·d′−t′3·d

′′)C
(
F|xJ1xZ=cd′ +

q

2
uwkxγc ,

F|xJ1xZ=cd′′ +
q

2
uwkxγc

)
(τ)
)

=
∑

d′ 6=d′′
(−1)(t3·d′−t′3·d

′′)C
(
F|xJ1xZ=cd′ +

q

2
uwkxγc ,

F|xJ1xZ=cd′′ +
q

2
uwkxγc

)
(τ)
)

+
∑

d′
(−1)(t3−t′3)·d

′
A
(
F|xJ1xZ=cd′ +

q

2
uwkxγc

)
(τ).

(46)

The only term associated with restricted ver-
tices xj0 , xj1 , . . . , xjk−1

and isolated vertices
xm−p, xm−p+1, . . . , xm−1 can be expressed as follows:

GxJ1xZ=

k∑
r=1

p−1∑
α=0

∑
0≤α0<α1<...<αr<k

%m−p+αj0,j1,...,jr
xjα0

xjα1
. . . xjαrxm−p+α,

where, we have introduced the term GxJ1xZ in (27). By
taking sum over uwk and then using Lemma 6, the following
expression of (46) can be expressed as follows:

∑
uwk

C
(
F|xJ1xZ=cd′ +

q

2
uwkxγc ,

F|xJ1xZ=cd′′ +
q

2
uwkxγc

)
(τ)
)

=


ωGcd′−cd′′ω(d′1−d

′′
1 )gm−p+...+(d′p−d

′′
p )gm−12m−(k+p)+1,

τ = (d′1 − d′′1)2m−p + . . .+ (d′p − d′′p)2m−1,

0, otherwise,

=


ωGcd′−Gcd′′ω(d′−d′′)·(gm−p,...,gm−1)2m−(k+p)+1,

τ = (d′ − d′′) · (2m−p, . . . , 2m−1),

0, otherwise.
(47)

In the above expression d′ and d′′ are two p-length bi-
nary vectors and (d′ − d′′) · (2m−p, . . . , 2m−1) takes the
value τ . It is possible to get another pair of vectors d′
and d′′ such that (d′ − d′′) · (2m−p, . . . , 2m−1) also takes
the value τ . We assume, for all possible d′ and d′′ in
{0, 1}p, (d′−d′′) · (2m−p, . . . , 2m−1) takes the integer values
τ1, τ2, . . . , τς , where 0 ≤ ς < 3p. Therefore, we define Ki ={

(d′,d′′) : d′ 6= d′′, (d′ − d′′) · (2m−p, . . . , 2m−1) = τi
}

, for
i = 1, 2, . . . , ς . From (46) and (47), we have

∑
uwk

C
(
f |uW ′=e,xJ1=c +

q

2
uwkxγc +

q

2
(t3 · xZ) ,

f |uW ′=e,xJ1=c +
q

2
uwkxγc +

q

2
(t′3 · xZ)

)
(τ)
)

=
∑

d′ 6=d′′
(−1)(t3·d′−t′3·d

′′)C
(
F|xJ1xZ=cd′ +

q

2
uwkxγc ,

F|xJ1xZ=cd′′ +
q

2
uwkxγc

)
(τ)
)

=

ς∑
i=1

∑
(d′,d′′)∈Ki

(−1)(t3·d′−t′3·d
′′)C

(
F|xJ1xZ=cd′ +

q

2
uwkxγc ,

F|xJ1xZ=cd′′ +
q

2
uwkxγc

)
(τ)
)

=



ς∑
i=1

∑
(d′,d′′)∈Ki

(−1)(t3·d′−t′3·d
′′)ωGcd′−Gcd′′

×ω(d′−d′′)·(gm−p,...,gm−1)2m−(k+p)+1,

τ = (d′ − d′′) · (2m−p, . . . , 2m−1),

0, otherwise

=



∑
(d′,d′′)∈Ki

(−1)(t3·d′−t′3·d
′′)ωGcd′−Gcd′′

×ω(d′−d′′)·(gm−p,...,gm−1)2m−(k+p)+1,

τ = τi, i = 1, 2, . . . , ς

0, otherwise.
(48)
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For each of c ∈ {0, 1}k, G
(
F|xJ1xZ=cd′′

)
is a path over the

vertices specified in J ′1. Therefore,

∑
uwk

A
(
F|xJ1xZ=cd′ +

q

2
uwkxγc

)
(τ) =

{
2m−k−p+1, τ = 0,

0, othewise.

(49)

Therefore, from (45), (46), (48), and (49), we have

A2 =

∑
uwk

∑
c∈{0,1}k

2k(−1)(t1−t′1)·cC
(
f |uW ′=e,xJ1=c+

q

2
uwkxγc +

q

2
(t3 · xZ) ,

f |uW ′=e,xJ1=c +
q

2
uwkxγc

+
q

2
(t′3 · xZ)

)
(τ)
)

=



2m−p+1
∑

c∈{0,1}k
(−1)(t1−t′1)·c

×
∑

d′∈{0,1}p
(−1)(t3−t′3)·d

′
, τ = 0

2m−p+1
∑

(d′,d′′)∈Ki

(−1)(t3·d′−t′3·d
′′)ω(d′−d′′)·(gm−p,...,gm−1)

×
∑

c∈{0,1}k
(−1)(t1−t′1)·cωGcd′−Gcd′′ ,

τ = τi, i = 1, 2, . . . , ς

0, otherwise.
(50)

From (38), (40), and (41), we have

C (ψ(St), ψ(St′))(τ)

=
∑

uW ′=e

(−1)(t2−t′2)·eA

=



2m−p+1
∑

uW ′=e

(−1)(t2−t′2)·e
∑

c∈{0,1}k
(−1)(t1−t′1)·c

×
∑

d′∈{0,1}p
(−1)(t3−t′3)·d

′
, τ = 0

2m−p+1
∑

uW ′=e

(−1)(t2−t′2)·e

×
∑

(d′,d′′)∈Ki

(−1)(t3·d′−t′3·d
′′)ω(d′−d′′)·(gm−p,...,gm−1)

×
∑

c∈{0,1}k
(−1)(t1−t′1)·cωGcd′−Gcd′′ ,

τ = τi, i = 1, 2, . . . , ς

0, otherwise.
(51)

Similarly, we can show that

C (ψ∗(S̄t), ψ
∗(S̄t′))(τ)

=
∑

uW ′=e

(−1)(t2−t′2)·eA

=



2m−p+1
∑

uW ′=e

(−1)(t2−t′2)·e
∑

c∈{0,1}k
(−1)(t1−t′1)·c

×
∑

d′∈{0,1}p
(−1)(t3−t′3)·d

′
, τ = 0

2m−p+1
∑

uW ′=e

(−1)(t2−t′2)·e

×
∑

(d′,d′′)∈Ki

(−1)(t3·d′−t′3·d
′′)ω(d′−d′′)·(gm−p,...,gm−1)

×
∑

c∈{0,1}k
(−1)(t1−t′1)·cωGcd′−Gcd′′ ,

τ = τi, i = 1, 2, . . . , ς

0, otherwise.
(52)

Finally, we need to find out C (ψ(St), ψ
∗(S̄t))(τ) for all τ .

By using (37), C (ψ(St), ψ
∗(S̄t))(τ) can be expressed as

C (ψ(St), ψ
∗(S̄t′))(τ)

=
∑

u∈{0,1}n
C
(
g + η1 +

q

2
(t1 · xJ1 + t2 · uW ′ + t3 · xZ) ,

g̃ + η2 +
q

2
(t′1 · x̄J1 + t′2 · uW ′ + t′3 · x̄Z)

)
(τ)

=
∑

uW ′=e

(−1)(t2+t′2)·e

×

 ∑
uW ,uwk

C
(
f |uW ′=e + h|uW ′=e + η1 +

q

2
(t1 · xJ1 + t3 · xZ) ,

f̃∗|uW ′=e + η2 + h∗|uW ′=e +
q

2
(t′1 · x̄J1 + t′3 · x̄Z)

)
(τ)
)

=
∑

uW ′=e

(−1)(t2−t′2)·eA3,

(53)

where

A3

=
∑

uW ,uwk

C
(
f |uW ′=e + h|uW ′=e + η1 +

q

2
(t1 · xJ1 + t3 · xZ) ,

f̃∗|uW ′=e + η2 + h∗|uW ′=e +
q

2
(t′1 · x̄J1 + t′3 · x̄Z)

)
(τ)

=
∑

uWuwk=bb

C
(
f |uW ′ ,uWuwk=e,bb + h|uW ′ ,uWuwk=e,bb

+ η1|uWuwk=bb +
q

2
(t1 · xJ1 + t3 · xZ) ,

f̃∗|uW ′ ,uWuwk=e,bb + h∗|uW ′ ,uWuwk=e,bb

+η2|uWuwk=bb +
q

2
(t′1 · x̄J1 + t′3 · x̄Z)

)
(τ)

(54)
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=
∑

uWuwk=bb

ω2h|u
W ′ ,uWuwk

=e,bbC
(
f |uW ′ ,uWuwk=e,bb

+ η1|uWuwk=bb +
q

2
(t1 · xJ1 + t3 · xZ) ,

f̃∗|uW ′ ,uWuwk=e,bb

+η2|uWuwk=bb +
q

2
(t′1 · x̄J1 + t′3 · x̄Z)

)
(τ).

From (25) and (53), we have

A3 = ω2δ
∑

uWuwk=bb

C
(
f |uW ′ ,uWuwk=e,bb

+ η1|uWuwk=bb +
q

2
(t1 · xJ1 + t3 · xZ) ,

f̃∗|uW ′ ,uWuwk=e,bb

+η2|uWuwk=bb +
q

2
(t′1 · x̄J1 + t′3 · x̄Z)

)
(τ)

= ω2δA4,

(55)

where,

A4 =
∑

uWuwk=bb

C
(
f |uW ′ ,uWuwk=e,bb

+ η1|uWuwk=bb +
q

2
(t1 · xJ1 + t3 · xZ) ,

f̃∗|uW ′ ,uWuwk=e,bb

+η2|uWuwk=bb +
q

2
(t′1 · x̄J1 + t′3 · x̄Z)

)
(τ).

(56)

Assume, F1 = f |uW ′ ,uWuwk=e,bb. From, (37), we have

η1|uWuwk=bb =
q

2
(b · xJ1 + bxγc) ,

η2|uWuwk=bb =
q

2

(
b · x̄J1 + b̄xγc

)
.

(57)

From (57), (56), and substituting F1 = f |uW ′ ,uWuwk=e,bb in
(56), we have

A4 =
∑

uWuwk=bb

C
(
F1 +

q

2
(b · xJ1 + bxγc)

+
q

2
(t1 · xJ1 + t3 · xZ) ,

F̃∗1 +
q

2

(
b · x̄J1 + b̄xγc

)
+
q

2
(t′1 · x̄J1 + t′3 · x̄Z)

)
(τ).

(58)

For each c ∈ {0, 1}k, G
(
F1|xJ1=c

)
contains a path over the

vertices specified in J ′1 and p isolated vertices labeled m −
p,m − p + 1, . . . ,m − 1. Therefore, by employing Lemma 4
in (58), we have

A4 =
∑

uWuwk=bb

C
(
F1 +

q

2
(b · xJ1 + bxγc)

+
q

2
(t1 · xJ1 + t3 · xZ) ,

F̃∗1 +
q

2

(
b · x̄J1 + b̄xγc

)
+
q

2
(t′1 · x̄J1 + t′3 · x̄Z)

)
(τ)

= 0 ∀τ.

(59)

From, (53), (55), and (59), we have

C (ψ(St), ψ
∗(S̄t′))(τ) = 0 ∀τ. (60)

We have defined before

Ki=
{

(d′,d′′):d′ 6=d′′, (d′ − d′′)·(2m−p, . . . , 2m−1)=τi
}
,

for i = 1, 2, . . . , ς . Now, we shall find out min
i∈{1,2,...,ς}

|τi|.

|τi| =
∣∣(d′ − d′′)·(2m−p, . . . , 2m−1)

∣∣
=
∣∣(d′1 − d′′1)2m−p + . . .+ (d′p − d′′p)2m−1

∣∣
= 2m−p

∣∣(d′1 − d′′1) + . . .+ (d′p − d′′p)2p−1
∣∣

≥ 2m−p.

(61)

In (61), the equality occurs if we take d′ = (1, 0, . . . , 0) and
d′′ = (0, 0, . . . , 0). There can exist another d′ and d′′ for
which the equality can also occur. Therefore,

min
i∈{1,2,...,ς}

|τi| = 2m−p. (62)

From (51), we have

C (ψ(St), ψ(St′))(τ) =


2m+n, τ = 0, t = t′,

0, 0 < |τ | < 2m−p, t = t′,

0, |τ | < 2m−p, t 6= t′.

(63)

From (52), we have

C (ψ(S̄t), ψ(S̄t′))(τ) =


2m+n, τ = 0, t = t′,

0, 0 < |τ | < 2m−p, t = t′,

0, |τ | < 2m−p, t 6= t′.

(64)

Finally, from (60), (63), and (64), we have

{ψ(St) : 0 ≤ t ≤ 2n+p−1−1}∪{ψ∗(S̄t) : 0 ≤ t ≤ 2n+p−1−1},
(65)

is a (2n+p, 2m−p)-ZCCS2m

2n .

APPENDIX B
PROOF OF Theorem 2

The ψ(St) and ψ(St′) will be in a same code group if t1 =
t′1, t2 = t′2, otherwise the codes will be in two different code
groups. The term GxJ1xZ is assumed to be zero in Theorem
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2. Therefore, by replacing Gcd′ = Gcd′′ = 0 in (51) and from
(62), we have

C (ψ(St), ψ(St′))(τ)

=



2m−p+1
∑

uW ′=e

(−1)(t2−t′2)·e
∑

c∈{0,1}k
(−1)(t1−t′1)·c

×
∑

d′∈{0,1}p
(−1)(t3−t′3)·d

′
, τ = 0

2m−p+1
∑

uW ′=e

(−1)(t2−t′2)·e

×
∑

(d′,d′′)∈Ki

(−1)(t3·d′−t′3·d
′′)ω(d′−d′′)·(gm−p,...,gm−1)

×
∑

c∈{0,1}k
(−1)(t1−t′1)·c,

τ = τi, i = 1, 2, . . . , ς

0, otherwise.

=



2m+n, τ = 0, t1 = t′1, t2 = t′2, t3 = t′3,
0, 0 < |τ | < 2m−p, t1 = t′1, t2 = t′2, t3 = t′3,
0, |τ | < 2m−p, t1 = t′1, t2 = t′2, t3 6= t′3,
0, |τ | < 2m, t1 = t′1, t2 6= t′2, t3 = t′3,
0, |τ | < 2m, t1 = t′1, t2 6= t′2, t3 6= t′3,
0, |τ | < 2m, t1 6= t′1, t2 = t′2, t3 = t′3,
0, |τ | < 2m, t1 6= t′1, t2 = t′2, t3 6= t′3,
0, |τ | < 2m, t1 6= t′1, t2 6= t′2, t3 = t′3,
0, |τ | < 2m, t1 6= t′1, t2 6= t′2, t3 6= t′3.

(66)

Similarly, from (52), we can show that

C (ψ∗(S̄t), ψ
∗(S̄t′))(τ)

=



2m+n, τ = 0, t1 = t′1, t2 = t′2, t3 = t′3,
0, 0 < |τ | < 2m−p, t1 = t′1, t2 = t′2, t3 = t′3,
0, |τ | < 2m−p, t1 = t′1, t2 = t′2, t3 6= t′3,
0, |τ | < 2m, t1 = t′1, t2 6= t′2, t3 = t′3,
0, |τ | < 2m, t1 = t′1, t2 6= t′2, t3 6= t′3,
0, |τ | < 2m, t1 6= t′1, t2 = t′2, t3 = t′3,
0, |τ | < 2m, t1 6= t′1, t2 = t′2, t3 6= t′3,
0, |τ | < 2m, t1 6= t′1, t2 6= t′2, t3 = t′3,
0, |τ | < 2m, t1 6= t′1, t2 6= t′2, t3 6= t′3.

(67)

Also, from (60), we have

C (ψ(St), ψ
∗(S̄t′))(τ) = 0 ∀τ.

By using the results of (66), (67), and (60), the code groups
I0, I1, . . . , I2n−1−1, Ī∗0 , Ī∗1 , . . . , Ī∗2n−1−1 forms an IGC code
set I(2n+p, 2n, 2m, 2m−p).
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